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Dostupný z http://www.nusl.cz/ntk/nusl-42853

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.
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Abstract:

The multitime-scale nature residing in the processes concerning the growth of microalgae is
presented as a singularly perturbed problem. In order to provide the convincing simulation
results, the model of photosynthesis and photoinhibition in microalgae based on the mechanistic
description in the form of the so called photosynthetic factory (PSF model) is chosen. Two
complementary reductions to both slow and fast dynamics are used to derive the performance
index, being the integral average of the activated state of PSF model. Afterward, for a periodic
piecewise constant input, so-called light-dark cycles, the performance index is calculated in the
explicit form from the non-reduced PSF model. The objective is to show graphically the limits
of the order reduction by singular perturbation method.
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1 Introduction

Biotechnology with microalgae and photo-bioreactor (PBR) design is nowadays regaining
attention thanks to emerging projects of algal biofuels and CO2 sequestration. Neverthe-
less, there neither exist reliable methods nor software for modelling, simulation and con-
trol of PBR. This is based on fact that modelling in a predictive way the photosynthetic
response in the three-dimensional flow field seems today unrealistic, because the global
response depends on numerous interacting intracellular reactions, with various time-scales.

Till nowadays, the most important information about the photosynthetic production of
some microalgae species resides in the measurement of the coupling between photosynthesis
and irradiance (being a controlled input), in form of the steady-state light response curve
(so-called P–I curve), which represents the microbial kinetics. There are two most common
type of microbial kinetics, i.e. Monod and Haldane type kinetics [18], see Fig. 1, when
the first one is usually chosen either due to the small levels of irradiance in microalgal
culture or due to the fast measurements (photoinhibition needs at least some minutes to
be detected).

max

S

µ∗

µ

KIKS

Figure 1: Steady-state production curve of Haldane type or Substrate inhibition kinetics. The
physiological meaning of parameters µ∗, KS (saturation constant), KI (inhibition constant) is
clearly shown. Note that for KI → ∞, the production curve changes to Monod kinetics.

Hence, if we see that even in the laboratory experiments both dynamic and photoinhibi-
tion effects are often neglected, the same occurs in modelling and simulation of photobiore-
actors, despite the fact that PBR operating under high irradiance, permitting the photoin-
hibition of the cell culture, belong to intensively studied topics of microalgal biotechnology,
see e.g. [11] and references within there.

Moreover, there is another important phenomenon, which occurs under periodic in-
termittent light condition, the so-called flashing light effect, urgently demanding some
dynamical model describing the photosynthetic productivity under fluctuating light con-
dition. One of such adequate dynamical models of microorganism growth is, as we know,
the three-state phenomenological model of photosynthetic factory – PSF model [3, 4].

In our previous papers [14, 17, 16] we studied the PSF model behavior and the tech-
niques for its parameter estimation as well. The purpose of this paper is to continue in
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our work [15], where the reduction to slow dynamics was used in order to derive the op-
timal feedback control. We aim to present the analysis and an illustrative example of the
two-time-scale phenomena of PSF model and namely, two alternative order reductions of
this dynamical system under periodic excitation. For a piecewise constant (intermittent)
periodic input, see Fig. 2, the corresponding boundary value problem is solved analytically
for the reduced problem and for the non-reduced as well. The resulting performance index,
being an integral average of the activate state of PSF model, is then compared with the
results computed using both slow and fast reduction.

ha hb

ub

ua

t

Figure 2: Schematic presentation of the periodic intermittent input signal u(t): ua stands for
irradiance during time period ha, ub is irradiance level during period hb. Total cycle period is
h = ha + hb.

Our paper is organized as follows. Section 2 presents the dynamical model of the
microalgal growth in detail and derives its reduction to both slow and fast manifold. Simu-
lation experiments are collected in Section 3 while the final section draws some conclusions
and outlooks for further research.

2 Dynamical model of photosynthesis and photoinhibition in mi-

croalgae

Microalgal growth is modelled based on the following experimental observations: (i) the
steady state kinetics is of Haldane type or Substrate inhibition kinetics [13]; (ii) the mi-
croalgal culture in suspension has the so-called light integration property [19, 13], i.e. as
the light/dark cycle frequency, [6], is going to infinity, the value of the resulting produc-
tion rate (e.g. oxygen evolution rate) goes to a certain limit value, which depends on the
average irradiance only [14]. These features are best comprised by the dynamical model,
called as the model of photosynthetic factory, described further in detail.

2.1 Model of photosynthetic factory – PSF model

The dynamical model of photosynthetic factory – PSF model, see Fig. 3, has been
thoroughly studied in the biotechnological literature [10, 22]. Although relatively simple, it
describes three phenomena occurring simultaneously in three largely separated time-scales:
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(i) cell growth, (ii) photoinhibition, and (iii) photosynthetic light and dark reactions. The
state vector y of the PSF model is three dimensional, namely, y = (yR, yA, yB)

⊤, where yR
represents the probability that PSF is in the resting state R, yA the probability that PSF
is in the activated state A, and yB the probability that PSF is in the inhibited state B.
The PSF can only be in one of these states, so:

yR + yA + yB = 1 . (1)

αu

βu

uu

B

A

δ

γ

R

Figure 3: States and transition rates of the photosynthetic factory – Eilers and Peeters’s PSF
model.

The possible transitions among states are supposed to be of zero or first order respective
to the irradiance I(t). Hence from the PSF model, schematically depicted in Fig. 3, it
directly follows that ẏR

ẏA
˙yB

 =

 0 γ δ
0 −γ 0
0 0 −δ

 yR
yA
yB

+ I(t)

 −α 0 0
α −β 0
0 β 0

 yR
yA
yB

 (2)

For given values of the model parameters α, β, γ, δ and the input variable, i.e. the
irradiance I(t), the ODE system (2) can be solved either by numerical methods or by
asymptotic methods, cf. [8]. For the special case of the periodic piecewise constant input,
the state trajectories were calculated explicitly in [14].

The PSF model has to be completed by an equation connecting the hypothetical states
of PSF model with some quantity related to the cell growth. This quantity is the specific
growth rate µ.3 According to [3, 22], the rate of photosynthetic production is proportional
(there is a dimensionless constant κ) to the number of transitions from the activated to
the resting state:

d

dt
cx = κ γ yA(t) cx . (3)

3µ := ċx/cx, cx stands for microbial cell concentration. The notation used is the most usual in biotech-
nological literature, cf. [2].
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Considering that the value of κ · γ is of order 10−4, cf. [22], and yA(t) is periodic with
period h, cf. [14] for more details, we have the following relation for the specific growth
rate µ, according to [8]:

µ =
κγ

h

∫ h

0

yA(t)dt . (4)

Equation (4) reveals the reason why PSF model can successfully simulate the microalgae
growth in high-frequency fluctuating light conditions: the growth is described through the
”fast” state yA, hence we reach the sensitivity to high-frequency inputs, see e.g. flashing
light experiments [13]. As we know, this highly required sensitivity is not reached in
any other model describing microalgae growth, see e.g. [12] where the time step for the
numerical integration of the ODE describing the microalgae cell concentration has to be
set to one hour...

2.2 Re-parametrization of the PSF model

In order to apply the singular perturbation method, we shall use the re-parametrization
firstly introduced in [17]:

q1 :=

√
γδ

αβ
, q2 :=

√
αβγ

δ(α + β)2
, q3 := κγ

√
αδ

βγ
q4 := αq1 , q5 := β/α.

Consequently, the PSF model has the following form:

ẏ =
[
A+ u(t)B

]
y , (5)

A = q4

 0 q2(1 + q5)
q5

q2(1+q5)

0 −q2(1 + q5) 0
0 0 − q5

q2(1+q5)

 , B = q4

 −1 0 0
1 −q5 0
0 q5 0

 . (6)

The single scalar input u(t), representing the dimensionless irradiance in the culture,
is defined as u := I/q1, where I is the non-scaled irradiance (units: µE m−2 s−1). It is
assumed that u(t) is at least piecewise continuous. In other words, the PSF model is the so-
called bilinear controlled system whose inherent property is the so-called light integration
capacity [13], i.e. due to the Lipschitz dependence of trajectories on control, cf. [1] and
references within there, as the frequency of fluctuating light is going to infinity, the value
of resulting production rate (specific growth rate µ) goes to a certain limit value, which
depends on the average irradiance only [14].

Let us see that q1 = Iopt (Iopt maximizes µ, see Fig. 1 and Remark 1), q2, q5 are
dimensionless, q3, q4 are in s−1. The reasoning for such choices arises from the utility to
separate the steady state PSF model behavior (parameters q1, q2, q3) from the PSF model
dynamics (the fast rate q4 := αIopt and the slow rate q4q5 := βIopt), for more details cf.
[17, 16].

For the constant input signal (irradiance u ≥ 0) the ODE system (5) is linear and
its system matrix A + uB has three distinct eigenvalues. Two eigenvalues are negative
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(λF , λS), and the third is zero (its corresponding eigenvector is the globally stable steady
state solution of (5)). In the sequel, we will need the steady state values of states yA and
yB:

yAss(u) =
u

q2(1 + q5)(u2 + u/q2 + 1)
, (7)

yBss(u) =
u2

u2 + u/q2 + 1
. (8)

Remark 1: Notice that the parameter q5 quantifies the separation between the fast and
slow dynamic; q5 ≈ 10−4, based on [22].4 Moreover, the PSF model steady state behav-
ior corresponds to Haldane type kinetics (or so-called Substrate inhibition kinetics), see
Fig. 1: µ = µ∗ S

KS+S+S2/KI
, where S is irradiance, i.e. limiting substrate for photosynthetic

microorganism, and µ∗, KS, KI are model constants. The connection between PSF model
and Haldane kinetics could be described as follows: µ∗ = q2q3, KS = q1q2, and KI = q1

q2
.

For the constant value of irradiance which maximizes the steady-state growth rate, i.e.
Iopt := q1 =

√
KSKI , we have µ(Iopt) := µmax = µ∗

2
√

KS/KI+1
= q2q3

2q2+1
.

2.3 Slow reduction of the ODE system (5)

As stated above, the PSF model operates in three time scales. In the slowest time-scale,
for the cell growth, the governing equation is (3), resp. (4). Two other time-scales are
comprised in the system (5). Taking into account the condition (1), and preferring the
states yA, yB (due to their measurability5), we further analyze only two following differential
equations:

d

dt
yA = q4 [−q2(1 + q5)yA + u (1− (1 + q5)yA − yB)] , (9)

d

dt
yB = q4 q5

[
− yB
q2(1 + q5)

+ uyA

]
. (10)

Now wee see that the above equation (9) contains coefficients that are two order higher
than those of (10). To make advantage of that, one can reduce the dynamics to the
one dimensional one using the singular perturbation approach with respect to the small
parameter q5 ≈ 10−4 [20]. This is done in the following way. First, introduce a new ”faster”
time scale τ = q−1

5 t, so that the system (5) takes the form

q5
q4

d

dτ

[
yA
yB

]
=

[
−q2(1 + q5) 0

0 − q5
q2(1+q5)

] [
yA
yB

]
+ u

[
−(1 + q5) −1

q5 0

] [
yA
yB

]
+ u

[
1
0

]
. (11)

4For the microalga Porphyridium sp., on basis of parameters α, β, γ, δ, κ, cf. [22], we have calculated:
q1 = 250.106 µE m−2, q2 = 0.301591, q3 = 0.176498e− 3 s−1, q4 = 0.483955 s−1, q5 = 0.298966e− 3.

5Equation (3) describes the connection of yA with µ a measurable quantity; yB can be estimated via
chlorophyll fluorescence measurement, cf. [11, 22].
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Now, after dividing the second equation by q5 one obtains the standard form of the singu-
larly perturbed system [7] with respect to the small parameter q5:

q5
d

dτ
yA = g(yA, yB, u(t), q5) , (12)

d

dτ
yB = f(yA, yB, u(t), q5) , (13)

where q5 is further allowed to be decreasing until zero, and

g(yA, yB, u(t), q5) := q4 [− (u+ q2) (1 + q5)yA + u (1− yB)] ,

f(yA, yB, u(t), q5) := q4

[
− yB
q2(1 + q5)

+ uyA

]
.

This system thanks to the properties of its right hand side clearly satisfies the sufficient
condition for the convergence of the singular perturbation6 [7, 20]. One can therefore take
the limit q5 → 0 in (11) to obtain

yA
S = (1− yB

S)
u

u+ q2
, (14)

d

dτ
yB

S = q4
u2

u+ q2

[
1− yB

S

yBss(u)

]
, (15)

where the upper index ”S” aims to avoid confusion with notation for the non-reduced
system (5). The above relation (14), no matter what the initial conditions are, is quickly
satisfied with great precision. Further convergence to the steady state along the dynamics
(15) without breaking the relation (14) is then much slower. The set of all states satisfying
(14) is called the slow manifold while the relation (15) is called the slow dynamics.
Often, for simplicity, these relations are called the slow reduction.

2.4 Complementary reduction of the ODE system (5)

Notice, that there are basically two options, how to reduce the ODE system (5). The first
one, the slow reduction, was considered in the previous subsection. Nevertheless, in the
presence of high-frequency inputs, this approach leads to unsatisfactorily results, cf. Fig. 4.

Therefore, the following complementary approach is further developed, cf. [5]. Let us
change the variable yA as follows:

yD := yA − (1− yB)
u

u+ q2
. (16)

6Recall, that this condition geometrically means that the slow manifold given by (14) satisfies certain
stability properties, namely, ẏA < 0 for yA > (1− yB)

u
u+q2

and ẏA > 0 for yA < (1− yB)
u

u+q2
, which

is indeed obviously the case here.
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The slow manifold can now be identified as the set of pairs (yD, yB) such that yD = 0. In
the new variables, (12, 13) are represented by the system

q5
d

dτ
yD = g◦(yD, yB, u(t), q5) , (17)

d

dτ
yB = f◦(yD, yB, u(t), q5) , (18)

where

g◦ := q4 [−(1 + q5) (u+ q2) yD + q5u (1− yB)] + q5
u

u+ q2
f◦ ,

f◦ := q4

[
− yB
q2(1 + q5)

+ uyD +
u2

u+ q2
(1− yB)

]
.

Let us change the time scale back to the real ”slow” time variable t:

d

dt
yD = g◦(yD, yB, u(t), q5) , (19)

d

dt
yB = q5 f◦(yD, yB, u(t), q5) . (20)

The above ODE system (19, 20) has an equilibrium point for yD = 0 and q5 = 0. Fur-
thermore, the behavior of the system (19, 20) at q5 = 0 is characterized by the only one
ODE

d

dt
yD = g◦(yD, yB, u(t), 0) = −q4 (u+ q2) yD , (21)

and the ”slow” variable yB can be regarded as a constant.
The two systems (14, 15) and (21), which are defined on two different time axis, repre-

sent two limit behaviors of the original system (5). The purpose of the singular perturbation
approach is to infer the asymptotic properties of the non-reduce system from the solution of
both complementary reduced systems (14, 15) and (21). To illustrate this fact, we present
a case study in the following section.

3 Case study

Two complementary reductions to both slow and fast dynamics were presented in the
preceding section. In the sequel, for the special although common conditions of the periodic
intermittent input, see Fig. 2, the state trajectories will be calculated in the explicit form
for each of the three PSF model formulations. Let us remark that the periodic input is
very common in biological systems. It causes the periodic or cyclic behavior. The proof
that there exists a unique periodic solution is performed in detail in [10] for the continuous
periodic inputs, and in our work [14] for the periodic piecewise constant input signal u(t),
where during time period ha the irradiance is ua, and ub is irradiance level during period
hb, see Fig. 2. Total cycle period is then h = ha + hb.
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From the biotechnological point of view, the long term cultivation of microalgae culture
in continuous mode is of utmost importance. Hence, we supposed that the quasi-steady
state is reached, and as the most important measure of productivity the specific growth
rate µ is chosen. Consequently, according to (4), we calculate the integral average of the
activated state of PSF model over one period h, being the performance index J . Afterwards,
for a periodic piecewise constant input, J is calculated in the explicit form for:

• non-reduced PSF model (5) – JNR,

• slow reduction of PSF model (14, 15) – JSR,

• ”fast” reduction of PSF model derived further from (21) – JFR.

Let us denote the average irradiance as uav := 1
h

∫ h

0
u(t)dt. Then the ”fast” reduction

of the ODE system (5) in terms of states yA and yB has finally the following form

ẏA
F = −q4 [u(t) + q2] yA

F + q4u(t) [1− yBss(uav)] , (22)

where the upper index ”F” aims to avoid confusion with notation for the non-reduced
model (5), and as the constant value of the ”slow” state variables yBss(uav) was taken.

Remark 2: Roughly speaking, we have just applied the theorem of Lipschitz depen-
dence of trajectories on control [1, 14, 16] supposing that the period of light cycles h is
”sufficiently small” for ”averaging” of yB but not so small for averaging yA.

3.1 Simulation results

Computer simulations were performed within MAPLE. Two most relevant results are
shown in Fig. 4 and Fig. 5. In the y-axis of both figures is the integral average of the
activated state of PSF model over one period h. In the x-axis is the natural logarithm of
the cycle period h. The irradiance level ua was set to 0 and ha = hb. The average value
of irradiance was uav = 1, i.e. ub = 2. Such an excitation is in biotechnological literature
called as light/dark cycles with light-to-dark ratio 1 : 1, cf. [13].

Remark 3: Recall, that a constant control u ≡ 1 is optimal among all possible constant
controls in the following sense. The PSF model is for any constant fixed input a linear
system having constant coefficients and constant non-homogeneity. Moreover, it can be
easily shown to be asymptotically stable. In the re-parametrization introduced in this
paper, u ≡ 1 maximizes the value of the steady state of yA, thereby maximizing also its
integral being the value yAss(1) :=

1
2q2+1

≈ 0.62.
One can observe in Figure 4 that h is the lower curve for the long periods, corresponding

to the result based on slow reduction of PSF model (14, 15), close to the exact solution
(upper bold curve).

Simulations based on ”fast” reduction of PSF model derived from (21) are shown on
Figure 5. There is the left range of periods h, where we can see the curve corresponding
to the reduced system close to the exact solution (lower bold curve). Consequently, its use
is justified for the ”short” light-dark cycles.
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Further numerous simulations were performed, for various light-to-dark ratio, average
irradiances and system parameters (even those biologically unrealistic). All simulations
confirm the general conclusions based on singular perturbation methods.

Figure 4: On the left: Integral average of the activated state yA depending on period h of light-
dark cycles (in logarithmic scale) for the slow reduction (in blue) and the exact solution (upper
bold curve).

Figure 5: On the right: Integral average of the activated state yA depending on period h of light-
dark cycles (in logarithmic scale) for the fast reduction (in red) and the exact solution (lower
bold curve).

4 Conclusion

The problem of the microalgal growth modelling using the dynamical model of photo-
synthetic factory (PSF model) was considered here and treated as singularly perturbed
problem by its reduction to both slow and fast dynamics. The biotechnological relevance
of the presented study is clear: in the presence of unmeasurable disturbances (either of
biological or external nature) the reduced model offers a viable mean of real time optimiza-
tion of operating conditions, while the off-line (or open-loop) optimal solution is useless.
In the special case of periodic intermittent control, both reduction were compared with
the exact solution of the non-reduced problem, showing their limits. Important lesson
here is that the fast dynamics phenomena are not negligible and may play important role.
This is in contradiction with a common intuition and deserves to be promoted. The out-
looks for future research reside in developing necessary conditions to achieve a satisfactory
approximation of the reduced solution.
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[16] Papáček Š., Čelikovský S., Rehák B., Štys D.: Experimental design for parameter es-
timation of two time-scale model of photosynthesis and photoinhibition in microalgae.
Math. Comput. Simul., vol. 80 (2010), 1302–1309.
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