
An Algorithm for Solving the Absolute Value Inequality

Rohn, Jiřı́
2011

Dostupný z http://www.nusl.cz/ntk/nusl-42774

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 04.05.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-42774
http://www.nusl.cz
http://www.nusl.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

An Algorithm for Solving the
Absolute Value Inequality

Jǐŕı Rohn

Technical report No. V-1107

21.04.2011

Pod Vodárenskou věž́ı 2, 182 07 Prague 8, phone: +420 266 051 111, fax: +420 286 585 789,
e-mail:rohn@cs.cas.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

An Algorithm for Solving the
Absolute Value Inequality

Jǐŕı Rohn1

Technical report No. V-1107

21.04.2011

Abstract:

Described is a not-a-priori-exponential algorithm which in a finite number of steps either finds a
nontrivial solution of the inequality |Ax| ≤ |B||x|, or states that no such solution exists.

Keywords:
Absolute value inequality, solution, algorithm.2

1This work was supported by the Institutional Research Plan AV0Z10300504.
2Above: logo of interval computations and related areas (depiction of the solution set of the system

[2, 4]x1 + [−2, 1]x2 = [−2, 2], [−1, 2]x1 + [2, 4]x2 = [−2, 2] (Barth and Nuding [1])).

1 Introduction

We are interested here in finding a nontrivial solution of the inequality

|Ax| ≤ |B||x| (1.1)

where A,B ∈ Rn×n and both the inequality as well as the absolute value are understood
entrywise. As evidenced in the software package VERSOFT [4], this inequality, called an
absolute value inequality, has numerous applications due to the following fundamental result:

Proposition 1. A vector x 6= 0 solves (1.1) if and only if it is a null vector of some
singular matrix S satisfying

|S −A| ≤ |B|. (1.2)

Thus, for instance, an interval matrix [Ac−∆, Ac +∆] is singular if and only if the inequality
|Acx| ≤ ∆|x| has a nontrivial solution. Since the problem of checking singularity of interval
matrices is NP-complete [2], it follows that the problem of checking existence of a nontrivial
solution of (1.1) is NP-complete as well.

In this report we bring a rather complicated algorithm for finding a nontrivial solution
of (1.1), which has two basic advantages. First, it is not-a-priori-exponential; in fact, it is
capable of solving even problems with large matrices in acceptable time, depending on the
data structure. Second, in infinite precision arithmetic it always produces full answer: it
either finds a nontrivial solution to (1.1), or it proves that no such solution exists.

The algorithm is presented in self-contained form (i.e., with all its subalgorithms) in
Section 3.3 In Section 2 we give its overall description and we prove a finite termination
theorem.

2 Description

Full description of the algorithm appears in Section 3 (Figs. 3.1 through 3.4). In fact, it is
a hierarchy of algorithms working in this way:
absvalineq calls singreg,
singreg calls intervalhull,
intervalhull calls qzmatrix and absvaleqn.
The algorithm singreg is described in [6], intervalhull and qzmatrix in [5], and absvaleqn
in [3], [7]. Hence we are left with explanation of the behavior of the main algorithm absval-
ineq (Fig. 3.1).

Theorem 2. For any pair of matrices A,B ∈ Rn×n the algorithm absvalineq (Fig. 3.1)
in a finite, but not-a-priori-exponential number of steps either finds a nontrivial solution of
the inequality |Ax| ≤ |B||x| (the case of x 6= []), or states that no such solution exists (the
case of x = []).

3It is placed at the rear of the paper in order not to be intertwined with the text.

2

Proof. As it can be seen from Fig. 3.1, line (04), the function absvalineq applies the
subfunction singreg to the interval matrix [A− |B|, A + |B|]. According to the main result
in [6], this subfunction in a finite, but not-a-priori-exponential number of steps either finds
a singular matrix S satisfying (1.2) (the case of S 6= []), or proves that no such matrix exists
(the case of S = []). The rest follows from Proposition 1.

Example. Consider an example with two 500 × 500 matrices (computation has been
performed on a relatively slow netbook):

>> tic, n=500; rand(’state’,1); A=2*rand(n,n)-1; B=2*rand(n,n)-1;
>> x=absvalineq(A,B); toc

Elapsed time is 16.832303 seconds.

>> isempty(x)
ans =

0

Nonemptiness of x (which is too long to be displayed here) indicates that a solution has been
found.

>> min(abs(B)*abs(x)-abs(A*x))
ans =

8.0415

Positiveness of this number confirms that the vector |B||x|−|Ax| is indeed nonnegative (even
positive).

3 Algorithm

(01) function x = absvalineq (A,B)
(02) % x 6= []: x solves |Ax| ≤ |B||x|, x 6= 0.
(03) % x = []: |Ax| ≤ |B||x|, x 6= 0 has no solution.
(04) S = singreg ([A− |B|, A + |B|]);
(05) if S 6= []
(06) find an x 6= 0 satisfying Sx = 0;
(07) else
(08) x = [];
(09) end

Figure 3.1: An algorithm for solving an absolute value inequality.

3

(01) function S = singreg (A)
(02) % S 6= []: S is a singular matrix in A.
(03) % S = []: no singular matrix in A exists.
(04) S = []; n = size(A, 1); e = (1, . . . , 1)T ∈ Rn;
(05) if Ac is singular, S = Ac; return, end
(06) R = A−1

c ; D = ∆|R|;
(07) if Dkk = maxj Djj ≥ 1
(08) x = R•k;
(09) for i = 1 : n
(10) if (∆|x|)i > 0, yi = (Acx)i/(∆|x|)i; else yi = 1; end
(11) if xi ≥ 0, zi = 1; else zi = −1; end
(12) end
(13) S = Ac − Ty∆Tz; return
(14) end
(15) if %(D) < 1, return, end
(16) b = e;
(17) x = Rb; γ = mink |xk|;
(18) for i = 1 : n
(19) for j = 1 : n
(20) x′ = x− 2bjR•j ;
(21) if mink |x′k| > γ, γ = mink |x′k|; x = x′; bj = −bj ; end
(22) end
(23) end
(24) [x, S] = intervalhull (A, [b, b]);

Figure 3.2: An algorithm for finding a singular matrix in an interval matrix.

4

(01) function [x, S] = intervalhull (A,b)
(02) % Computes either the interval hull x
(03) % of the solution set of Ax = b,
(04) % or a singular matrix S ∈ A.
(05) x = []; S = [];
(06) if Ac is singular, S = Ac; return, end
(07) xc = A−1

c bc; z = sgn(xc); x = xc; x = xc;
(08) Z = {z}; D = ∅;
(09) while Z 6= ∅
(10) select z ∈ Z; Z = Z − {z}; D = D ∪ {z};
(11) [Qz, S] = qzmatrix (A, z);
(12) if S 6= [], x = []; return, end
(13) [Q−z, S] = qzmatrix (A,−z);
(14) if S 6= [], x = []; return, end
(15) xz = Qzbc + |Qz|δ;
(16) xz = Q−zbc − |Q−z|δ;
(17) if xz ≤ xz

(18) x = min(x, xz); x = max(x, xz);
(19) for j = 1 : n
(20) z′ = z; z′j = −z′j ;
(21) if ((xz)j(xz)j ≤ 0 and z′ /∈ Z ∪D)
(22) Z = Z ∪ {z′};
(23) end
(24) end
(25) end
(26) end
(27) x = [x, x];
(01) function [Qz, S] = qzmatrix (A, z)
(02) % Computes either a solution Qz

(03) % of the equation QAc − |Q|∆Tz = I,
(04) % or a singular matrix S ∈ A.
(05) for i = 1 : n
(06) [x, S] = absvaleqn (AT

c ,−Tz∆
T , ei);

(07) if S 6= [], S = ST ; Qz = []; return
(08) end
(09) (Qz)i• = xT ;
(10) end
(11) S = [];

Figure 3.3: An algorithm for computing the interval hull.

5

(01) function [x, S] = absvaleqn (A,B, b)
(02) % Finds either a solution x to Ax + B|x| = b, or
(03) % a singular matrix S satisfying |S −A| ≤ |B|.
(04) x = []; S = []; i = 0; r = 0 ∈ Rn; X = 0 ∈ Rn×n;
(05) if A is singular, S = A; return, end
(06) z = sgn(A−1b);
(07) if A + BTz is singular, S = A + BTz; return, end
(08) x = (A + BTz)

−1b;
(09) C = −(A + BTz)

−1B;
(10) while zjxj < 0 for some j
(11) i = i + 1;
(12) k = min{j | zjxj < 0};
(13) if 1 + 2zkCkk ≤ 0
(14) S = A + B(Tz + (1/Ckk)eke

T
k);

(15) x = []; return
(16) end
(17) if ((k < n and rk > max

k<j
rj) or (k = n and rn > 0))

(18) x = x−X•k;
(19) for j = 1 : n
(20) if (|B||x|)j > 0, yj = (Ax)j/(|B||x|)j ; else yj = 1; end
(21) end
(22) z = sgn(x);
(23) S = A− Ty|B|Tz;
(24) x = []; return
(25) end
(26) rk = i;
(27) X•k = x;
(28) zk = −zk;
(29) α = 2zk/(1− 2zkCkk);
(30) x = x + αxkC•k;
(31) C = C + αC•kCk•;
(32) end

Figure 3.4: An algorithm for solving an absolute value equation.

6

Bibliography

[1] W. Barth and E. Nuding, Optimale Lösung von Intervallgleichungssystemen, Computing,
12 (1974), pp. 117–125. 1

[2] S. Poljak and J. Rohn, Checking robust nonsingularity is NP-hard, Mathematics of Con-
trol, Signals, and Systems, 6 (1993), pp. 1–9. 2

[3] J. Rohn, An algorithm for solving the absolute value equation,
Electronic Journal of Linear Algebra, 18 (2009), pp. 589–599.
http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol18 pp589-599.pdf.
2

[4] J. Rohn, VERSOFT: Verification software in MATLAB/INTLAB, 2009.
http://uivtx.cs.cas.cz/∼rohn/matlab. 2

[5] J. Rohn, An algorithm for computing the hull of the solution set of in-
terval linear equations, Technical Report 1074, Institute of Computer Sci-
ence, Academy of Sciences of the Czech Republic, Prague, April 2010.
http://uivtx.cs.cas.cz/∼rohn/publist/intervalhull.pdf. 2

[6] J. Rohn, An algorithm for finding a singular matrix in an interval matrix, Technical
Report 1087, Institute of Computer Science, Academy of Sciences of the Czech Republic,
Prague, November 2010. http://uivtx.cs.cas.cz/∼rohn/publist/singreg.pdf. 2,
3

[7] J. Rohn, An algorithm for solving the absolute value equation: An
improvement, Technical Report 1063, Institute of Computer Science,
Academy of Sciences of the Czech Republic, Prague, January 2010.
http://uivtx.cs.cas.cz/∼rohn/publist/absvaleqnreport.pdf. 2

7

