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Abstract:

Described is a not-a-priori-exponential algorithm which in a finite number of steps either finds a
nontrivial solution of the inequality |Ax| ≤ |B||x|, or states that no such solution exists.
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1 Introduction

We are interested here in finding a nontrivial solution of the inequality

|Ax| ≤ |B||x| (1.1)

where A,B ∈ Rn×n and both the inequality as well as the absolute value are understood
entrywise. As evidenced in the software package VERSOFT [4], this inequality, called an
absolute value inequality, has numerous applications due to the following fundamental result:

Proposition 1. A vector x 6= 0 solves (1.1) if and only if it is a null vector of some
singular matrix S satisfying

|S −A| ≤ |B|. (1.2)

Thus, for instance, an interval matrix [Ac−∆, Ac +∆] is singular if and only if the inequality
|Acx| ≤ ∆|x| has a nontrivial solution. Since the problem of checking singularity of interval
matrices is NP-complete [2], it follows that the problem of checking existence of a nontrivial
solution of (1.1) is NP-complete as well.

In this report we bring a rather complicated algorithm for finding a nontrivial solution
of (1.1), which has two basic advantages. First, it is not-a-priori-exponential; in fact, it is
capable of solving even problems with large matrices in acceptable time, depending on the
data structure. Second, in infinite precision arithmetic it always produces full answer: it
either finds a nontrivial solution to (1.1), or it proves that no such solution exists.

The algorithm is presented in self-contained form (i.e., with all its subalgorithms) in
Section 3.3 In Section 2 we give its overall description and we prove a finite termination
theorem.

2 Description

Full description of the algorithm appears in Section 3 (Figs. 3.1 through 3.4). In fact, it is
a hierarchy of algorithms working in this way:
absvalineq calls singreg,
singreg calls intervalhull,
intervalhull calls qzmatrix and absvaleqn.
The algorithm singreg is described in [6], intervalhull and qzmatrix in [5], and absvaleqn
in [3], [7]. Hence we are left with explanation of the behavior of the main algorithm absval-
ineq (Fig. 3.1).

Theorem 2. For any pair of matrices A,B ∈ Rn×n the algorithm absvalineq (Fig. 3.1)
in a finite, but not-a-priori-exponential number of steps either finds a nontrivial solution of
the inequality |Ax| ≤ |B||x| (the case of x 6= [ ]), or states that no such solution exists (the
case of x = [ ]).

3It is placed at the rear of the paper in order not to be intertwined with the text.
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Proof. As it can be seen from Fig. 3.1, line (04), the function absvalineq applies the
subfunction singreg to the interval matrix [A− |B|, A + |B|]. According to the main result
in [6], this subfunction in a finite, but not-a-priori-exponential number of steps either finds
a singular matrix S satisfying (1.2) (the case of S 6= [ ]), or proves that no such matrix exists
(the case of S = [ ]). The rest follows from Proposition 1.

Example. Consider an example with two 500 × 500 matrices (computation has been
performed on a relatively slow netbook):

>> tic, n=500; rand(’state’,1); A=2*rand(n,n)-1; B=2*rand(n,n)-1;
>> x=absvalineq(A,B); toc

Elapsed time is 16.832303 seconds.

>> isempty(x)
ans =

0

Nonemptiness of x (which is too long to be displayed here) indicates that a solution has been
found.

>> min(abs(B)*abs(x)-abs(A*x))
ans =

8.0415

Positiveness of this number confirms that the vector |B||x|−|Ax| is indeed nonnegative (even
positive).

3 Algorithm

(01) function x = absvalineq (A,B)
(02) % x 6= [ ]: x solves |Ax| ≤ |B||x|, x 6= 0.
(03) % x = [ ]: |Ax| ≤ |B||x|, x 6= 0 has no solution.
(04) S = singreg ([A− |B|, A + |B|]);
(05) if S 6= [ ]
(06) find an x 6= 0 satisfying Sx = 0;
(07) else
(08) x = [ ];
(09) end

Figure 3.1: An algorithm for solving an absolute value inequality.
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(01) function S = singreg (A)
(02) % S 6= [ ]: S is a singular matrix in A.
(03) % S = [ ]: no singular matrix in A exists.
(04) S = [ ]; n = size(A, 1); e = (1, . . . , 1)T ∈ Rn;
(05) if Ac is singular, S = Ac; return, end
(06) R = A−1

c ; D = ∆|R|;
(07) if Dkk = maxj Djj ≥ 1
(08) x = R•k;
(09) for i = 1 : n
(10) if (∆|x|)i > 0, yi = (Acx)i/(∆|x|)i; else yi = 1; end
(11) if xi ≥ 0, zi = 1; else zi = −1; end
(12) end
(13) S = Ac − Ty∆Tz; return
(14) end
(15) if %(D) < 1, return, end
(16) b = e;
(17) x = Rb; γ = mink |xk|;
(18) for i = 1 : n
(19) for j = 1 : n
(20) x′ = x− 2bjR•j ;
(21) if mink |x′k| > γ, γ = mink |x′k|; x = x′; bj = −bj ; end
(22) end
(23) end
(24) [x, S] = intervalhull (A, [b, b]);

Figure 3.2: An algorithm for finding a singular matrix in an interval matrix.
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(01) function [x, S] = intervalhull (A,b)
(02) % Computes either the interval hull x
(03) % of the solution set of Ax = b,
(04) % or a singular matrix S ∈ A.
(05) x = [ ]; S = [ ];
(06) if Ac is singular, S = Ac; return, end
(07) xc = A−1

c bc; z = sgn(xc); x = xc; x = xc;
(08) Z = {z}; D = ∅;
(09) while Z 6= ∅
(10) select z ∈ Z; Z = Z − {z}; D = D ∪ {z};
(11) [Qz, S] = qzmatrix (A, z);
(12) if S 6= [ ], x = [ ]; return, end
(13) [Q−z, S] = qzmatrix (A,−z);
(14) if S 6= [ ], x = [ ]; return, end
(15) xz = Qzbc + |Qz|δ;
(16) xz = Q−zbc − |Q−z|δ;
(17) if xz ≤ xz

(18) x = min(x, xz); x = max(x, xz);
(19) for j = 1 : n
(20) z′ = z; z′j = −z′j ;
(21) if ((xz)j(xz)j ≤ 0 and z′ /∈ Z ∪D)
(22) Z = Z ∪ {z′};
(23) end
(24) end
(25) end
(26) end
(27) x = [x, x];
(01) function [Qz, S] = qzmatrix (A, z)
(02) % Computes either a solution Qz

(03) % of the equation QAc − |Q|∆Tz = I,
(04) % or a singular matrix S ∈ A.
(05) for i = 1 : n
(06) [x, S] = absvaleqn (AT

c ,−Tz∆
T , ei);

(07) if S 6= [ ], S = ST ; Qz = [ ]; return
(08) end
(09) (Qz)i• = xT ;
(10) end
(11) S = [ ];

Figure 3.3: An algorithm for computing the interval hull.
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(01) function [x, S] = absvaleqn (A,B, b)
(02) % Finds either a solution x to Ax + B|x| = b, or
(03) % a singular matrix S satisfying |S −A| ≤ |B|.
(04) x = [ ]; S = [ ]; i = 0; r = 0 ∈ Rn; X = 0 ∈ Rn×n;
(05) if A is singular, S = A; return, end
(06) z = sgn(A−1b);
(07) if A + BTz is singular, S = A + BTz; return, end
(08) x = (A + BTz)

−1b;
(09) C = −(A + BTz)

−1B;
(10) while zjxj < 0 for some j
(11) i = i + 1;
(12) k = min{j | zjxj < 0};
(13) if 1 + 2zkCkk ≤ 0
(14) S = A + B(Tz + (1/Ckk)eke

T
k );

(15) x = [ ]; return
(16) end
(17) if ((k < n and rk > max

k<j
rj) or (k = n and rn > 0))

(18) x = x−X•k;
(19) for j = 1 : n
(20) if (|B||x|)j > 0, yj = (Ax)j/(|B||x|)j ; else yj = 1; end
(21) end
(22) z = sgn(x);
(23) S = A− Ty|B|Tz;
(24) x = [ ]; return
(25) end
(26) rk = i;
(27) X•k = x;
(28) zk = −zk;
(29) α = 2zk/(1− 2zkCkk);
(30) x = x + αxkC•k;
(31) C = C + αC•kCk•;
(32) end

Figure 3.4: An algorithm for solving an absolute value equation.
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