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Abstract

The voltage-step transient experiment can provide, via the well-known Cottrell asymptote,
data on bulk concentration and diffusion coefficient of working depolarizer, essential in the
liming-current techniques. However, the Cottrell asymptote cannot be directly applied in an early
stage of the voltage-step transient process. There are three additional transport resistances that
cannot be neglected at extremely high initial currents: Faradaic resistance at surface of working
electrode, Ohmic losses in the electrolytic, and the galvanometric constraint in the outer circuit
(galvanometer, current follower, potentiostat).

Non-linear effect of these additional transport resistances on the transient current for a finite
voltage step is analyzed in a 1D approximation, i.e. assuming uniform accessibility of the
working electrode. The Faradaic resistance is considered assuming reversible behavior of a redox
couple O + ne = R according to Butler-Volmer kinetics. The concept of galvanometric constraint
is introduced and analyzed probably for the first time.

Vyuzitim obecn& znamé Cottrellovy asymptoty miZe potenciostaticky pfechodovy experiment poskytnout data
o koncentraci a difuzivit® pracovniho depolarizitoru, které jsou podstatné v experimentech zaloZenych na reZimu
limitnich difuznich proudi. Nicmén&, Cottrellova asymptota neni pfimo pouZitelnd v rané fazi prechodového
experimentu, Tam se uplatiiuji pfidavné transportni odpory, které nelze zanedbat pfi extrémné vysokych proudovych
hustotach: Faradaicky odpor pfl povrchu pracovni elektrody, Ohmické ziraty v jeji bezprostfedni blizkosti, jakoZ i
galvanometrické omezeni (galvanometr, sledovad proudu, potenciostat} ve vné&j3im obvodu elektrochemické cely.

Viiv t&chto ptidavnych transportnich odpordi na pfechodovy priibéh proudii pfi vét§im celkovém konstantnim
prepéti je poditan v ramei nelinearni 1D aproximace (zjednodudujici pfedpoklad rovnodostupnosti povrchu elektrody
jako v plivodnim Nernstové modelu). Faradaicky odpor je uvaZovan pro vratnou redox dvojici podle Butler-
Volmerovy kinetiky. Pojem galvanometrického omezeni je pouZit a analyzovan pravdépodobne viibec poprvé.
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Nomenclature

A Electrode area, m*

ac Cottrell coefficient, Eq. (12)

B = D)'*ck D)}, transport parameter of the Cottrell asymptote

by s coefficients in long-time asymptote, Eqs. (40ab)

N cg;;!’ molar concentration of depolarizers; specific boundary values

D; D,, coefficient of diffusion; values for the components

d;" semiintegral, Eq. (3)

E Ep f[N] = Expl[Pl, Exp[PA1-uN)], Exp[-P(1-B)(1-uN)]
Ine =(E-1)/(E+B)

G = isfi, normalized galvanometric constraint

I electric current, A

I = +U//R., Ohmic current in the cell, A

Is galvanometric threshold, A

i = J/4, current density, A m™

iy exchange current density in Butler-Volmer kinetics of charge transfer, Egs. (4, 5), A m™
ig = pic={u M) igy, starting current density, Eqs. (16, 18), A m?

kay rate constant in Butler-Volmer kinetics of charge transfer, Eq. (5)

Le equivalent resistor length, Eq. (6)

M = IC/ i BV

n number of electrons in the charge transfer per 1 mole of the working depolarizer
N = i/is, normalized flux, Eq. (19)

N, solution to the linearized transport equation, Eq. (28)

Ny = N, [y 8), value of N(wT) in the diving point 8= =/4

Ng Galvanometric constraint

O R Oxy- and Red- forms of a redox couple, O+ ne’ = R

P = -U nF/RT, normalized overvoltage; F=95608 C mol ! Faraday constant;

R = 8313 J K mol”, universal gas constant; T - absolute temperature, K

R Ohmic resistance of the cetl

T time from the initial voltage step

tg = (ar /igf, lag time, s

T = 1/t,, normalized time, Eq.(17)

U constant overvoltage

Y coefficient in long-time asymptote, Eqs. (33, 34)

W normalized concentration driving force, Eq. (15)

-4 normal distance to the working electrode

B symmetry coefficient in Butler-Volmer kinetics of charge transfer, Egs. (4), (5)
A[N] local equilibrium term in the normalized BV equation (24)

& partial derivative with respectto T

Ji! = idip

7 overpotential, [V], Eq. (6)

K specific conductivity of the bulk solution, [Q'm™]

v coefficient in short-time asymptote, Eqs. (30, 31)

BV Butler-Volmer {charge-transfer kinetics)

NP Nernst-Petersen (concentration overpotential)

VST Voltage-step transient

W compositions of the solution at Bulk, Wall

o R Oxy-, Red- forms of the redox couple

s starting value

CsG Ohmic cell resistance, Galvanic constraint
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1. Introduction

The transient process, which takes place after switching on an electrochemical cell with a
non-moving electrolyte solution, can be of some interest both for studying kinetics of electrode
reactions [1-3] and for measuring the diffusion coefficients of the depolarizers [4-5]. Such a
process is commonly taken as a potentiostatic one, i.e. with neglected additional transport
resistances in the electrochemical cell and outer circuits. Such an assumption cannot be strictly
right [1, 6-7], as it tacitly assumes infinite current at the start. In other words, other transport
mechanisms should play dominating role in an early stage of the voltage-step (VS) process.

There are several transport mechanisms that can control the transient current at a given
overvoltage, even with neglected transport resistances at the counter electrode and in bulk
solution of the cell:

»  Cottrellian transient diffusion, which includes equilibrium at the working electrode
e  Ohmic losses in an intimate neighborhood of working electrode

¢ Faradaic losses on working electrode due to electrode kinetic limitations

¢  Galvanometric constraint due to limitations in the supplying outer circuit

In the present work, all these simultaneous transport resistances are accounted for, with an
arbitrary constant overvoltage U between the working and counter electrode.

2. Problem statement

Transient diffusion of a species in a motionless solution at a constant concentration ¢” in the
bulk, i.e. at a large distance {(z — o) from the transport-active surface, can be described using
either the Fick law in its differential form (so called 2™ Fick law), d¢ = Dd-c, with
corresponding initial and boundary conditions, or the semiintegral equation [8], which
interrelates the diffusion flux with the wall concentration cW_

2.1.Transport equations

In particular, for a couple of the redox depolarizers O, R with the diffusion fluxes linked
through the stoichiometry of electrode reaction, O + ne” = R, i.e. according to the Faraday law,

i/nF = Dg 0:cq|-=0 = -Dg O-Cg|-=0, (1ab)
the corresponding semiintegral formulation [8] can written as
d;"i(t)/ nF = D’ (cg —co (1) ==Dy " (cp —¢x (1)), (2ab)
where
& F(@) =2 [ (1) Fs)ds. (3)

It should be noted that the electrochemical system is kept, until the start at #=0, in the
equilibrium state, i = 0, cg R = cg,R. To a given problem with three unknown fields i(?), cg <)

and a given course of the electrode overpotential, 77 = (¢}, the closing constraints follow from
kinetic equations of the charge transfer at surface of the working electrode. In particular, for the
Butler-Volmer kinetics:

m¥F Ipy

) p k@) @,6)

mF
RT

i e
— =—5 Exp[-f

By a

1-Z£ Exp[(1- )
Cr

4
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For including the effect of Ohmic losses let us assume the Ohmic resistance of the cell is
constant and given by an effective thickness L and electric conductivity x of the solution in
bulk. If the electrodes (working, counter, and eventually reference one) are made from the same
material (i = 0 and n =0 at [/ = 0), then the effect of Ohmic losses on 7 can be expressed as

n=-U+iLc/k=-U+iRc=-U(~-ilic). (6)

With neglected Ohmic losses, the cell voltage is equal to overpotential of the working
electrode, 7 = -U. At constant 7, the voltage-step transient problem simplifies to the
potentiostatic one. If, in addition, also Faradaic resistance is negligible, isy — o, the transient
process is controiled only by the transient diffusion of the depolarizers under the Nernst-Petersen
equilibrium boundary conditions at surface of the working electrode. The corresponding
simplified linear theory provides a well-known Cottrell solution [2].

In the present work, the transient process is analyzed by considering all the four transport
resistances at a finite overvoltage, including the limiting diffusion current conditions, |U] — .
In such cases, the Ohmic loss introduces into Eq. (4) a substantial non-linearity, which has been
analyzed for very small overvoltage [1, 2], or for negligible Faradaic losses, i/izy — 0, see [6].
Our results about the combined Ohmic and Faradaic resistances, published in Russian [7],
provide only qualitative estimates of limited relevance. The effect of additional resistance in the
outer circuit is analyzed here for the first time.

2.2. Cottrell asymptote

With negligible Ohmic and Faradaic losses, i/iyy— 0, i/ic— 0, the transient process is driven
only by the concentration overpotential n = -U, with the diffusion resistance according to Eq.
(2) under local equilibrium at the electrode interface (Nernst-Petersen),

0=E(c /cd)-(cl ic), E =Exp[P], P=-UnFIRT, (D), (8),(9)
which follows from Eq. (4) in an obvious way.

Solution of this simplified problem according to Eqs. (2), (7) with constant c;V, cg . known
as the Cottrell problem, see [1], can be written down as

ity=ac(zy"?,  DY*(ch—c¥)=-D;*(cp —cy)=a./nF. (10), (11)
The Cottrell coefficient a. depends both on the overvoltage U and solution properties
acInF = fy, Dclszcg =B fy D:efchgs (12)
E-1 E" -1 D}*es
- - _B" . B=20 ‘o 13),( 14
Fur E+B E1+B" DY’ck (131014

In the cases |P| — o, a cathodic (P — o, E— o) or anodic (P —» -0, ' «0) regime of
limiting diffusion currents is achieved. These asymptotes are fully controlled by transient
diffusion of the working depolarizer to surface of working electrode. For cathodic reduction, it is

fir=1, cb=0, ¥ /cB=1+B". For anodic oxidation, it is fir = - B, ¢y = 0, ¢}, /c;= 1+B. With
a normalized concentration driving force of the process,

W= (-c? 1c2) fop = —(=c [2Y(BS,p). (15)

the Cottrell asymptote can be characterized simply as W = 1. Effect of the other transport
resistances decreases W (it is always 0 < W< 1).



ICPF ResRep 2010/6 March 29, 201 1

2.3.Normalization to the problem
The normalized flux N and normalized time 7 are introduced in such a way, that
(i) the starting value of N (diffusion resistance negligible) is the unit, N - 1 for T — 0,
(ii) the long-time asymptote is in the common Cottrell form, N — (#7)"* for T — .
Such a specification is fulfilled by the settings:
N=ilis, T=t/ts, 1s = (ac /is)’, (16, 17, 18)

where is stands for an unknown starting current density. The analyzed problem can be now
formulated in the following form of a single non-linear integro-differential equation for unknown
transient course of N = N(T):

d;"2N(T) =W (T) = AIN(T)], (19)
_ EO[N],_ ER[N]—HMN _ Eﬂ(l-uN) _E(ﬂ—l)(l-uN) _(Eﬂ(l"ﬂ) _E(ﬂ'l)(l‘ﬂ))N

A[N]= Fur(E[N]+B E,[N]) Fop (BP0 EDIa) . (20ab)

Eo[N]) = Exp[PB(1-uN)) = EA,  Eg[N} = Exp[-P(1-8 )(1-uN)} = E# /9 (21ab)

1= idic, M= iclig. (22, 23)

2.4, Starting current density

Immediately after switching on the cell, the diffusion resistance is always negligible in
comparing with the other transport resistances, i.e. cg R c‘,i r and W — 0. In such the case, the

starting current, { — is= u ic for t — 0, is given by solving the system of Egs. (4), (6), (7), which
can be expressed as 0 = W(7=0) = A[1], or:

uM =Eo[1] -Eg[1} = EPU# . p~-AXL-a) (24ab)

For negligible Faradaic resistance in comparison with Ohmic one, M = 0, it is 4 = 1, in the
opposite case, M=o, itis g=0 but g M =isiz = E? -EUP_1n all other cases it is 0 < a<l.

Under some circumstances, in particular for automated electrochemical instrumentations
with a current follower in outer circuit, there is a threshold of current that cannot be passed over.
In such the case, the early stage of transient process constant current (i.e. of galvanostatic nature)
is accompanied with concentration changes at the electrode surface. On contrary to common
potentiometric methods [2], these changes cannot be monitored in the two-electrode cells (no
reference electrode), but they strongly affect the currents below the threshold in later stages of
the transient process.

2.5. Useful symmetry

Within the normalized formulation, there are four independent parameters {P, B, 8, M} to the
problem. For a given electrodes an a given solution, only the normalized overvoltage is variable,
P & (-0; +). The transformation

(P>-P,B>B,B>1-5M-> M, (25)

which physicaily corresponds to the change from a cathodic to anodic polarization in a given
electrolytic cell, guarantees that any actual case can be studied with a positive P. In particular,
for the special symmetry case {B =1, #= (1-f) = 0.5}, the problem is invariant with respect to
polarity change, P — -P.
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3. Analytic approximations

3.1. Special cases and asymptotes in the space {P, M}

At the start of the VST, the diffusion resistance is negligible in comparison with Ohmic
and/or Faradaic ones. At large time the Cottrellian diffusion resistance dominates. The
asymptotic solution at T — oc is known as the Cottrell asymptote,

ND=(zT)". (26)

At negligible Ohmic loss, {M — «, y— 0, uM = EP -E0"P% | the boundary-value constraint
(20) simplifies to

A[Nl=1-N. (27)
There is a known analytic solution for this special case:
M(T) = Ni[T] = Exp[T] Erfc[T""], (28)
NT)= {I—Z(T/;'r)”z(l +2T+. . )+(T+4T*+.); T—>0
(RTY"2(A-4T" +3T* T 4.y, T (292b)

At small overvoltage [1, 2], P — 0, and a fixed M, the initial condition (24) simplifies to
4 —> 0 and the constraint (24) can be again linearized to the form (27) with the corresponding
result (28).

Assumption of negligible Faradaic resistance {M — 0, u — 1, uM — 0} does not provide
an analytic solution for N(7).

At small voltage, P — 0, the constraint (29) simplifies again to (27), A[N]~1-N.

At large voltage, P — «, there is a finite lag-time period, 0 < T < 8, with negligible diffusion
resistance, W = A[1] = 0, and constant starting current, N= 1. The P — « asymptote on the other
hand gives W = A[N] =1 for any finite (1-N). There is another analytic solution to this singular
case, the extended Cottrell asymptote, see Eq. (42) in Chapter 3.4. A survey of all asymptotic
sub-cases is given in the following Table 1, see also Fig. 1.

Table 1, Asymptotic sub- cases: starting conditions

Case P M £—>0 7 NT)
0 |aCot Finite o - 0 Cottrell
1 LowU A i + Li
aLow -0 ny M+ P-M(PB-1) 0+¢ inear
M Num
2 | aNoFar Any -0 P+ M1+ PB-1) 1-¢ Eq. (29)
Ln{M) ExtCott
HghU 1 <M<<E —— 1-
s - P +1 * | Ea.@2)
P Ef _ g1
h 0+ Linear
4 | aNoOhm | 1 < << M —> © M+ P(RE” +(1- B)E™™) €
5 | aNum Finite Finite Numerical 0<u<l1l| Num
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P L) WL ' r
*‘ 3
, /
osk Linear asymptote: |
| | P>0orMo>wx ////
Extended Cottrell asymptote: p
| | P> worM—0 /
Cottrell asymptote: 1
02k any P, Mand 7' — | |
€3 T E—
T

Fig. 1. Global asymptotes in the {M, P} space.

3.2.Short-time asymptote

Immediately after the start, 7— 0, the flux is close to its starting value, N — 1. The related
concentration driving force W(T) = A[N(T)] according to Eq. (20) can be linearized:

W= AIN] = y (1-N) + O(1-NY,, (30)
_E+B E(1+ puP)-E"(1-(1- f)uP)
YTEQ E+BE* - @31
The corresponding solution to (19) has a simple analytic representation:
N(T) = Nifw 7). (32)

Survey of asymptotic sub-cases is given in the following Table 2.
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Table 2. Parameters of short-time and long-time asymptotes for w (Eq. 31) and ¥ (Eq. 34)

Case | P, M " 7
1 [alowU | P—>o0 — Pz((f:g;fm 1+ PZ((?.:g;JﬁB)
2 | aNoFar | M—0 -};—(%E)(HM(,B—ﬁ)) (f(’E- f))(l]-*;(r; :;3) +A;E_“l"
3 |aHght | P> oo fNP(f+B)(l SP(IHﬁ;HB)) ((1+JZ)(IB£E) +eE"P)
4 | aNoOhm | M— H?{é{fj?;ﬁ/}, 1+PEﬂ(1+f -E7'1-$)-B)
M+ PEP(E"'(1-B)- )

3.3.Long-time asymptote

Long time after start, 7 — o, the flux is small, ¥ — 0, merging to the Cottrell asymptote.
The related concentration driving force # according to Eq. (20) can be approximated as

W=A[N]~1-Y N +O(N), (33)
Y= ((E-E*) E? +yuPE(1+B)(E+B)) / (E-1). (34)

The corresponding approximation to the transport equation (19), however, must take account
also for the initial course of N(T) for T < 8, e.g. according to (32), MT) = N;(v°T), to calculate
a consistent approximation to the semi-integral for T — co:

- & N(S)dS T N(S)dS
dTlsz(T) & I 1."2(T_S)1/2 I@ ﬂllz(T"“S)”z ? (35)
¢ N, *85)ds 8/T _ - -
) ;rr”z((WT ;)”2 ‘j. N, w?T )(1+Lts+3s* Nds=(T) (e, +¢,T™), (36)
=y (1-y (1- N[y 6], (37ab)
e, =fmy G+ Ny ?201-dv’ -y (1- N, w761
Assuming the long-time approximation in the form

ND =D Q0 +0 T +b, TP+ b5 T°.), (38)

T N(S)YdS _ -
j'g Wznm TYVHC, +C,T™ +..), (39a)

2 _ 2

c - 160, +7rl22bl 3 48b, — 712k —x* (30bc)

k¥ 4

the solving of Eq. (19) with A[N] ~ 1 -¥ N and the choice = 74, Ny = N[y 26 gives:
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b z!,ffs(l—!//(l—l’\",i)Jr7?(9(1’—'#/2)—3(1—!#)+(‘-'"i/21\’,1)

) , (40a)
2(Y -2) 24(Y-2)
b x 3y (m—a¥ -2 )N, 3a(l-yl’ #*(4+6Y"-Y(9-6y +6y”)—y(4-3y))
2" 16(¥ - 2) 8(Y -2) 32(Y -2) ’
(40b)

The third coefficient is calculated to satisfy the condition of continuous matching the short-time
asymptote in the dividing point 7 = €. For the asymptotic cases, listed in Table 2, the values of
by, b, are given below:

Table 3. Asymptotic cases for the long- time expansion parameters

Case b b,
1 aLowU -1/2 +3/4
2 | aNoFar +nf24 +3 /640
3 | aHghU +724 +3 71640
4 aNoChm =12 +3/4

3.4. Galvanometric constraint

With a finite threshold i < (I/4) in the outer circuit, the initial current cannot overcome this
limit. As a result, normalized current in an early stage is constant, N(T) = G, G = (Ig/d)/is < 1,
and W(T) developing in the galvanostatic regime according to Eq. (19),

wW(T)=4d;""G=G2(xT)'"?, (41a)

This regime lasts until W(7) increases to the threshold value W;; at a time 7; according to the
constraints following from Eq. (19):

W, =W(T,)=G%(xT;)" = A[G], (41b)
After passing the singular point 7= Ty;, the transient process continues in a normal way,
according to Eq. (19).

If the Faradaic resistance and Ohmic loss are negligible at given galvanometric constraint,
i.e. G =1, there is a simple analytic solution to the problem with 7= 6:

I; T<8@8
N(T)z{%ArcCOt(\/TIB—l); T>0

Obviously, this solution provides a short-time extension to the long-time Cottrell asymptote. For
G = 1, the solution (42) represents the extended Cottrell asymptote, noted in Chapter 3.1.

(42)

3.5. Long-time asymptote under galvanometric constraint

Analysis of this asymptotic case is analogous to that in Chapter 3.3 but slightly simpler, as the
short-time increment for 7 < T; is known, N(7) = G. Trial form according to Eq. (38) results in:

y o7 LBV +15GT, —324T, /7 33)
~ 3
Pee 12 (Y - 4T;,)

10
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18Y +9G T, ~16./T, /x ~6Y(GT, +Y)/ T, fﬂ:
b, » T} 24T, (43b)

4. Numerical analysis
The applied numerical scheme is based on a discrete representation of the course N(T) with a
constant-step grid but differs from the older one [5] both in several aspects:
s Instead of R2 algorithm [3], the semi-integral is calculated using the new R3 algorithm
(an analogue to Simpson rule).
o Instead of its inverse form [5], the transport equation (19) is solved in its direct form,
d;" M(T) = A[N(T)].

» Instead of a relaxation procedure, the resulting non-linear problem is solved using the direct
Newton iteration.

4.1. An iterative solving of the NC equation

Semiintegral of a function F(T) can be transformed, using the linear transformation "= K AT,
5= i AT, to the form

-2 _ (T F(s)ds _ ve (K FIAT)di
dVFE(T) = L 5" =(AT/7) L K (44)
If the function F(T) is specified only in the discrete points of a homogeneous 1D grid, F; = F(T)),
T,=1i AT, i =[0..K]. Its semiintegral can be approximated by a suitable discrete linear formula:

d;’F(T) » (AT/m)"?Y | S¢.F . (45)

'

Starting with a known discrete representation N(T7) = N; for i < K, the discrete form of NC
equation for unknown N(Tx) = N can be written as

AT 173 Se N+ 8, (Ny)= AN ] (46)

This non-linear equation can be solved efficiently and with no trouble, e.g. by regula falsi
method using common first trial Ng = Ng.|.

4,2. R2-algorithm: the Trapezoidal rule

The coefficients Sk; in (42) can be constructed following various approximation schemes.
Oldham and Spannier [8] suggested the formula R2, based on a “ramp” local approximations of
F(TD), used also in [6, 7]. On a segment T, < T < T; with two dividing points {L, H} = { i-1, i},
and node values {F;, Fy} = {F.,, F3}, the linear interpolation, F(s) = ap + a s, is identified as

ay=F,, a=F,—F, 47

The contribution to overall semiintegral from a segment:

J; A = 0 s 0uF, “9)
0, =2(2(K-)H¥* =K +1-i 2K -2i+1)), (492)
0, =2(2K+1-)"* —JK—i (2K -2i+3)). (49b)

11
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The final coefficients, in agreement with [8]:
8, =4((K 1=y’ 2K -1y (K +1-0)"%), (50a)

Seo=42AK-D"?-QK-3)K)"?),  S,,0=%. (50bc)

4.3. R3-algorithm: the Simpson rule

Let us consider an improved approximation, based on local quadratic interpolation (like in
Simpson rule) of the function F(T).

On a full segment T, < T < T; with the dividing points {L, M, H} = {i-2, i-1, i}, and node
values {Fy, Fy, Fg} = {Fi.2, Fi1, Fi}, the parabolic interpolation, F(s) = ay + a1 5 + a2 sz, is
identified as
ay = (F,MH+F, LM -2F, LH),
a,=—L(F,(M+HY+ F,(L+ M)-4F /M), (51
a, =+(F, +F, -2F,)

Simpson-like contribution to overall semiintegral from a full or upper-half segment:

H (a,+a,i+a,i’ )di H (a,+ai+a,i)di
[t 1,50,

0, =L (—~K—i RK(4K+5)-2i(8K +5)+8i*)+V K +1-i 2K(4K +3)-2-2i(8K+3)+8i*)), (53a)
0, =(VK—i (8K (2K +5)-8i(4K+5)+167)—K+2—i (8K(2K+3)-16-8i(4K+3)+16%)),  (53b)
0, =1 (~K—i QK(4K+15)+30-2i(8K +15)+8i }+-/ K+2~i (2K (4K +1 )+12-2i8K +11)+8%)),
(53¢)
R, =L (~JK—i 2K(4K+5)-2iBK+5)+8i* )+ K+1-i RQK(4K+)+2-2i(8K+1)+8%)),  (54a)
R, =L(VK—i BK(2K+5)-8i(4K+5)+167)— K+1-i (16K(K+2)-14-32(K+1)+161%)),  (54b)
Ry, =2 (—~K—i QK(4K+15)+30-2i(8K +1 5)+8i2)+VK+1-i QK(4K+13)+18-2i(8K +13)+8i%)).

=R, F,+R, F, ,+R,F,, (52ab)

(54¢)
Note that these coefficients reduce, for K — o, to common ones for the Simpson rule,
VK{0,,0,,04} > 543 VKR,.R.LR,} - (3.3 (55ab)

The semiintegral is calculated as a sum of contributions from full segments, Eq. (52a). For
odd values of upper limit X is this sum completed by additional contribution from the upper-half
segment, Eq. (52b).

As shown in another report [9], the R3 algorithm can be easily programmed and provides
slightly better approximation than the R2 algorithm.

4.4. Simulation program

A computing program in Delphi-Pascal is available for numeric simulations. It calculates the
N(T) and W(T) courses for a set of basic parameters or {B, P, §, M, G}, see Nomenclature, where
M can be replaced with g, see Eq. (24). Some output data are available as tables in *.txt (Excel-
compatible) files or plots in *.emf files.

The program, with the source code written in an old Borland Object Pascal (Delphid), is free
availableat http://home.icpf.cas.gz/wein,  as VST2010.EXE file.

12
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5. Results

Normalized form of the VST problem in 1D approximation results in a non-linear semi-
integral equation with a local constraint, W = A[N], Egs. (19, 20). The courses of normalized
flux, MT), and driving force, W(7), depend on four parameters {B, f, P, M}. Additional
patameter G < 1 reflects possible galvanometric constraint. The simulation program
VST2010.EXE computes the N, W courses numerically, using an equidistant difference scheme.
Analytic asymptotes, mentioned in Chapter 3, are included in the text output, as well.

5.1.Cottrell asymptotes: diffusion resistance and Nernst equilibrium only

With negligible Faradaic resistance, M =0 (i.e. #= 1), the local constraint (20) reduces to the
Nernst-Petersen surface equilibrium condition (24), i.e. A[N] = 1, and the kinetic parameters 5,
kgv become irrelevant. The effect of Ohmic loss, under no galvanometric constraint, G = 1, is
included in the normalized formulation by a suitable choice of the normalizing parameter fs. In
particular, for a fixed finite Cottrell coefficient ac- and is = ic — o, it is 5 = (ac /ic)2 — 0 and,
hence, T — o for any non-zero fixed ¢. This case, known as the Cottrell asymptote, is not a
correct solution to a well-posed VST problem, but it yields just the asymptote, W(T) = 1,
M) ~ (217, discussed thoroughly in Chapter 2.2.

Galvanometric constraint provides the extended Cottrell asymptote, see Eq. (42), by
introducing a finite threshold for the transient currents, is — (Ig/4), ic — co. By including this
G-constraint, also the cases with negligible Ohmic loss can be treated in a regular way, over a
full span of normalized time 7. This asymptote corresponds to a plain constraint G = 1 in the
remaining 3-parametric space {B, P, G}. The extended Cottrell asymptote is compared with the
other important asymptotes in Fig.1.

13
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5.2.Effect of varying voltage (P)

A set of transient fluxes is shown in Fig. 2. for the transport symmetric case B=1, f#="% and
negligible Ohmic loss, M = 0. Remind that the parameter P is a normalized overvoltage. Remind
also that the value P = 50 under common laboratory conditions for a reversible redox couple of
depolarizers corresponds to [U] = 1250 mV, the value close to decomposition voltages for
aqueous solutions.

Thin dashed gray curves correspond to the Equilibrium, Cottrell, and Extended Cottrell
asymptotes, respectively, as suggested in the pilot Fig. 1. For P < 1, (U < 25 mV), the transient
courses are very close to the equilibrium asymptote, P = 0. The cases for P > 50 are very close to
the extended Cottrell asymptote.

— T —
«-d'—‘_’ 2 ——
; q
P=0
J5fF N

B=":
B=1
P=0-1-2-3-5-10~50
12+ M=0 \ -
1|E_.2. ...... . g ..“:l1 - R ‘| . 1‘E1
T

Fig. 2. Normalized transient currents for negligible Ohmic loss, effect of overvoltage .
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5.3. Effect of varying composition (B)

Even for the equimolar solutions, cg =c}, the value of B can slightly differ from 1 due to
different values of the diffusion coefficients of a given redox couple. For the ferri-/ferro-
cyanides couple, the diffusion coefficient of the R- form is by 20% lower. Anyway, the
normalized course M(T) deviates from the symmetric case B =1 only at very high B,
see Fig. 3.

H
0.6F
p=t% -
B=01-03-1-3 -10
P=10
| [ M=0 |
02f
i M bk hdheg) . N | N . .,...}:J
1E-2 = 1 1E+1
T

Fig. 3. Normalized transient currents for negligible Ohmic loss, effect of composition.
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5.4.Effect of simultaneous Faradaic and Ohmic resistance (M)

The relative importance of the Faradaic and Ohmic resistance is represented by the single
parameter M. Its effect is shown in Fig. 4a for a medium overvoltage, P = 10, and in Fig. 4b for
an extremely high overvoltage, P = 50, commonly applied in the limiting-diffusion
measurements.

[ —— M=0
uip “
ﬂ: 1/2 :.:\-‘?._‘- r
B=1 '
P=10
oo | M=10"-10°-10°-10-1-0 N
féﬁ M i i .4 ‘?EIJ i i & & oadod .‘i PRI WY T TN SO J:Ei:1
T
; i . “
» - M=
osf e .
M=0 |- "
| p= 2
B=1 K
P=50 3
oL M=0—10"-10° 10"~ 1-0 RN
], 1 ] .-\.k
1=2 ’ = .1.E-1 ' B .1 * = iE‘+1
T

Fig. 4. Normalized transient currents, effect of Ohmic and Faradaic resistance.
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5.5. Effect of galvanometric constraint (G)

With no galvanometric constraint, the default value is G = 1. For G < 1, the starting
normalized current N cannot be higher than 1, and the process is controlled galvanostatically.
The effect of this prehistory on the further course o M(T) is shown in Fig. 5 for the symmetric
case B=1, f#='%, and high overvoltage, P =50, assuming no additional Ohmic loss, M =,

1 T T N T T T T T T T T T

Lo}

o

0.2

o] ﬂzl/z,B=l,P=50,M=00
1 G=02-04-06-08-1.0

" ) T " . " " ) s ;
1E-2 1E1 1 1E+1 1E+2

Fig. 5. Normalized transient currents for negligible Ohmic and Faradaic loss, effect of
galvanometric constraint.

6. Conclusions

A computer program is available for numerical simulating the normalized VST curves M(T)
in a 1D approximation under a broad range of conditions, represented the by the set of five
normalized parameters {, B, P, M, G}, which correspond to :

» kinetics of electrode reaction, {kzy, 5}

e transport properties in a bulk of electrolyte solution {¢;,ch, Dy, Dy},

overvoltage P,
ED cell geometry {4, L.} and the bulk conductivity x,
e Galvanometric constraint of the outer circuit, 7.

While the numerical simulation of M(T) is accurate and fast enough, the suggested analytic
approximations over the multidimensional space {8, B, P, M, G; T}cover only narrow regions
with uncertain accuracy.

The report will be published in the Journal of Applied Electrochemistry during 2011.
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