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Abstract:

We describe an algorithm which for each square matrix A satisfying |(A− I)−1(A + I)x| ≤ |x|
for some x 6= 0 finds in polynomial time a nonpositive principal minor of A, thus disproving its
P -property. Such an x exists whenever A is not a P -matrix and A − I is nonsingular, but its
construction in full generality is not given here; we only show that if |((A + I)−1(A− I))jj | ≥ 1
for some j (a situation frequently encountered with randomly generated matrices), then x can
be taken as x = ((A + I)−1(A− I))•j .
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1 Introduction

Given an n × n matrix A and a subset J ⊆ {1, . . . , n}, denote by A[J ] the submatrix of A
consisting of rows and columns whose indices belong to J . In case of J = ∅ we define A[∅]
to be the empty matrix, and we set det(A[∅]) = 1.

Submatrices of the form A[J ], J 6= ∅ are called principal submatrices, and A is said to be
a P -matrix (or, to possess the P -property) if determinants of all the principal submatrices
(also called principal minors) are positive. Since there are 2n − 1 principal minors, the
problem of verifying the P -property can be seen computationally difficult directly from the
definition, and this intuitive view was confirmed in 1994 by Coxson’s result [2] saying that
checking the P -property is a co-NP-complete problem.

In this paper we focus on the task of disproving the P -property, i.e., of finding a subset
J for which det(A[J ]) ≤ 0. As far as we know, this problem has not been tackled in full
generality as yet. Our main tool throughout the paper will be the function

f(t) = det(A− I) det(C − diag(t)), t ∈ Rn, (1.1)

where
C = (A− I)−1(A + I)

(thus assuming that A − I is nonsingular), and diag(t) is a diagonal matrix with diagonal
vector t. We shall later essentially use the fact that f is linear in each ti (because the variable
ti appears in the matrix C−diag(t) only once, namely in the iith position). In [6] we proved
that for each y ∈ {−1, 1}n there holds

f(y) = 2n det(A[J(y)]), (1.2)

where
J(y) = { j | yj = −1 }.

Thus, the task of finding a nonpositive minor reduces to that of finding a y ∈ {−1, 1}n such
that

f(y) ≤ 0

holds. To do this, we proceed in two steps.
First, we show that if

|Cx| ≤ |x|, x 6= 0 (1.3)

holds for some x, then directly from C and x we can easily compute a vector y ∈ [−1, 1]n

such that
f(y) = 0.

This already finds a nonpositive value of f , but still y ∈ [−1, 1]n, whereas we need y ∈
{−1, 1}n. Therefore in the second step, using the above-mentioned linearity of f(t) in each
ti, we move the yi’s towards the endpoints of the interval [−1, 1] so that the nonpositiveness
of f keeps to be preserved. In this way, after a finite number of steps, we find a y ∈ {−1, 1}n

for which f(y) ≤ 0 so that for J = { j | yj = −1 } we have det(A[J ]) ≤ 0 and our problem is
solved. This approach is formalized in the algorithm description in Fig. 2.1.

This brings us again to the beginning, namely to finding an x satisfying (1.3). We do not
solve the problem in full generality here, postponing its solution to a forthcoming paper. It is
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sufficient to mention here that if A−I is nonsingular, then A is NOT a P -matrix if and only
if such an x exists (Rump [7], Rohn [4]), and it can be found by a not-a-priori exponential
algorithm (Rohn [5]). In the present paper we shall only show a special case in which such
an x can be found easily, but this special case, as far as our numerical experiments show,
occurs “almost always” for randomly generated examples: if

|(C−1)jj | ≥ 1 (1.4)

for some j, then
x = (C−1)•j (1.5)

is nontrivial and satisfies (1.3) (thus adding implicitly nonsingularity of A + I to our
assumptions). Indeed, we have |Cx| = I•j ≤ |x| because of (1.4).

2 The algorithm

Our algorithm is formulated as follows:

(01) function J = vec2min (A, x)
(02) % VECtor TO MINor.
(03) % Input: A, x 6= 0 with |(A− I)−1(A + I)x| ≤ |x|.
(04) % Output: J with det(A[J ]) ≤ 0.
(05) n = length(x); I = eye(n);
(06) C = (A− I)−1(A + I);
(07) for i = 1 : n
(08) if xi 6= 0, yi = (Cx)i/xi; else yi = 1; end
(09) end
(10) d = det(A− I);
(11) for i = 1 : n
(12) if yi 6= −1 and yi 6= 1
(13) yi = 1;
(14) if d · det(C − diag(y)) > 0, yi = −1; end
(15) end
(16) end
(17) J = { i | yi = −1 };

Figure 2.1: An algorithm for finding a nonpositive minor.

The algorithm is substantiated by the following theorem.
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Theorem 1. For each square matrix A and x specified in line (03) the algorithm vec2min
(Fig. 2.1) produces in polynomial time a subset J for which det(A[J ]) ≤ 0.

Proof. We shall use the function

f(t) = det(A− I) det(C − diag(t)), t ∈ Rn

introduced in (1.1). As explained in Section 1, f is linear in each ti. First we show that the
vector y computed in lines (07)-(09) satisfies

f(y) = 0.

By assumption, |Cx| ≤ |x|; in particular, for each i, xi = 0 implies (Cx)i = 0. Thus the
vector y constructed in lines (07)-(09) satisfies |yi| ≤ 1 and (Cx)i = yixi for each i, hence
Cx = diag(y)x, which gives that (C−diag(y))x = 0, where x 6= 0, so that det(C−diag(y)) =
0, implying f(y) = 0.

Next we prove by induction on i = 0, 1, . . . , n that the vector y obtained after completing
line (15) satisfies

yj = ±1 (j = 1, . . . , i) (2.1)

and
f(y) ≤ 0. (2.2)

This is obviously so for i = 0. Thus assume that the induction hypothesis holds for some
i− 1 ≥ 0. At that moment,

f(y1, . . . , yi−1, yi, . . . , yn) ≤ 0

for some yi ∈ [−1, 1]. If yi = −1 or yi = 1, then we are done (line (12)). Thus assume that
yi ∈ (−1, 1). If

f(y1, . . . , yi−1, 1, . . . , yn) ≤ 0,

then yi is set to 1 and (2.1), (2.2) are satisfied. If

f(y1, . . . , yi−1, 1, . . . , yn) > 0,

then the function of one variable ti

f(y1, . . . , yi−1, ti, . . . , yn)

is linear (as emphasized above), is positive at ti = 1 and nonpositive at ti = yi ∈ (−1, 1),
hence it is increasing in [−1, 1], which means that it is negative at −1. In this case yi is set
to −1 (line (14)) and the induction hypothesis (2.1), (2.2) is proved.

In this way, we obtain that the vector y constructed after completing the for-loop in lines
(11)-(16) is a ±1-vector satisfying

f(y) = det(A− I) det(C − diag(y)) ≤ 0.

Now from (1.2) we have
det(A[J ]) = 1

2n f(y) ≤ 0, (2.3)
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where
J = { j | yj = −1 }

(see line (17)), which shows that the principal minor det(A[J ]) is nonpositive (output de-
scription in line (04)).

Polynomiality of the algorithm follows from the Bareiss’ result [1] proving existence of a
polynomial-time algorithm for computing the determinant. This completes the proof. 2

3 Example

Using MATLAB, consider the 100× 100 randomly generated matrix

>> rand(’state’,1); A=rand(100,100);

which can be reproduced because of the use of rand(’state’,1). Here we have

(C−1)35,35 = 12.6592 > 1,

hence the vector x = (C−1)•35 satisfies (1.3) (see (1.4), (1.5)). We give here for space reasons
the vector x reshaped as a 20× 5 matrix to be read columnwise:

>> reshape(x,20,5)
ans =

4.4690 8.9095 -3.8182 -5.0737 -4.4761
1.6366 -8.4748 -7.3249 2.9782 -3.3127

-2.3315 9.0209 1.2753 -2.8727 -0.4856
-7.6401 -3.5210 -4.0098 9.4804 -2.7190
3.9239 -3.0288 4.6342 11.7851 -0.1305
2.1388 -2.5015 3.5267 -8.6483 -0.7691
8.3985 0.9246 2.7164 0.5026 -7.0660

12.2784 -7.2008 2.3232 4.2166 -1.7433
4.0095 5.0032 -0.3533 2.5050 2.0941

-0.4785 -2.9658 10.6911 -5.8337 -1.5813
-8.3985 -4.6726 -1.8939 -8.0005 -10.7130
1.6613 3.4313 -4.2710 5.4276 3.7095

-1.7192 9.5956 -4.8951 -12.5372 -0.4862
2.4016 7.8701 -0.7614 -0.2599 -12.0846

15.1720 12.6592 5.4886 -2.2354 -2.5968
10.9240 -10.0155 3.4556 -0.1458 7.0576
-2.2835 2.3146 -5.8519 -11.0918 2.7710
14.4889 -10.6511 6.5952 4.3883 -11.4782
-10.7842 -7.1126 -7.5142 -1.4689 7.1920
3.5978 -2.2741 -2.2772 -3.5726 8.7554

Now, applying the algorithm vec2min, we get a 30×30 principal submatrix having a negative
determinant:

5



>> tic, J=vec2min(A,x); J, det(A(J,J)), toc
J =
Columns 1 through 10
12 16 17 21 22 24 32 33 36 41

Columns 11 through 20
44 47 48 51 56 58 66 68 69 71

Columns 21 through 30
82 84 88 89 90 92 94 98 99 100

ans =
-13.6141

Elapsed time is 0.517556 seconds.

Due to the well-known fact that determinants of large-size matrices computed in floating
point may be afflicted with big roundoff errors, the result may be considered hardly con-
vincing. To remove this doubt, we may compute a verified determinant of A[J ] by means
of [3]:

>> format long, tic, dt=verdet(A(J,J)), toc
intval dt =
[ -13.61413607696574, -13.61413607695881]
Elapsed time is 3.701657 seconds.

This shows that the principal minor is verified negative. Notice that the verification lasted
seven times longer than the computation of the main result itself; this is due to the verification
procedures involved (the verified determinant is computed as product of verified eigenvalues).
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