národní
úložiště
šedé
literatury

Disproving the P-Matrix Property

Rohn, Jiří
2011
Dostupný z http://www.nusl.cz/ntk/nusl-42461

Dílo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národního úložiště šedé literatury (NUŠL).
Datum stažení: 23.04.2024
Další dokumenty můžete najít prostřednictvím vyhledávacího rozhraní nusl.cz .

Institute of Computer Science Academy of Sciences of the Czech Republic

Disproving the P-Matrix Property

Jiří Rohn
Technical report No. V-1111
21.01.2011

Institute of Computer Science

 Academy of Sciences of the Czech Republic
Disproving the P-Matrix Property

Jirí Rohn ${ }^{11}$
Technical report No. V-1111

21.01.2011

Abstract

: We describe an algorithm which for each square matrix A satisfying $\left|(A-I)^{-1}(A+I) x\right| \leq|x|$ for some $x \neq 0$ finds in polynomial time a nonpositive principal minor of A, thus disproving its P-property. Such an x exists whenever A is not a P-matrix and $A-I$ is nonsingular, but its construction in full generality is not given here; we only show that if $\left|\left((A+I)^{-1}(A-I)\right)_{j j}\right| \geq 1$ for some j (a situation frequently encountered with randomly generated matrices), then x can be taken as $x=\left((A+I)^{-1}(A-I)\right)_{\bullet j}$.

Keywords:

Not- P-matrix, nonpositive principal minor, algorithm.

[^0]
1 Introduction

Given an $n \times n$ matrix A and a subset $J \subseteq\{1, \ldots, n\}$, denote by $A[J]$ the submatrix of A consisting of rows and columns whose indices belong to J. In case of $J=\emptyset$ we define $A[\emptyset]$ to be the empty matrix, and we set $\operatorname{det}(A[\emptyset])=1$.

Submatrices of the form $A[J], J \neq \emptyset$ are called principal submatrices, and A is said to be a P-matrix (or, to possess the P-property) if determinants of all the principal submatrices (also called principal minors) are positive. Since there are $2^{n}-1$ principal minors, the problem of verifying the P-property can be seen computationally difficult directly from the definition, and this intuitive view was confirmed in 1994 by Coxson's result [2] saying that checking the P-property is a co-NP-complete problem.

In this paper we focus on the task of disproving the P-property, i.e., of finding a subset J for which $\operatorname{det}(A[J]) \leq 0$. As far as we know, this problem has not been tackled in full generality as yet. Our main tool throughout the paper will be the function

$$
\begin{equation*}
f(t)=\operatorname{det}(A-I) \operatorname{det}(C-\operatorname{diag}(t)), \quad t \in \mathbb{R}^{n}, \tag{1.1}
\end{equation*}
$$

where

$$
C=(A-I)^{-1}(A+I)
$$

(thus assuming that $A-I$ is nonsingular), and $\operatorname{diag}(t)$ is a diagonal matrix with diagonal vector t. We shall later essentially use the fact that f is linear in each t_{i} (because the variable t_{i} appears in the matrix $C-\operatorname{diag}(t)$ only once, namely in the $i i$ th position). In [6] we proved that for each $y \in\{-1,1\}^{n}$ there holds

$$
\begin{equation*}
f(y)=2^{n} \operatorname{det}(A[J(y)]), \tag{1.2}
\end{equation*}
$$

where

$$
J(y)=\left\{j \mid y_{j}=-1\right\} .
$$

Thus, the task of finding a nonpositive minor reduces to that of finding a $y \in\{-1,1\}^{n}$ such that

$$
f(y) \leq 0
$$

holds. To do this, we proceed in two steps.
First, we show that if

$$
\begin{equation*}
|C x| \leq|x|, \quad x \neq 0 \tag{1.3}
\end{equation*}
$$

holds for some x, then directly from C and x we can easily compute a vector $y \in[-1,1]^{n}$ such that

$$
f(y)=0 .
$$

This already finds a nonpositive value of f, but still $y \in[-1,1]^{n}$, whereas we need $y \in$ $\{-1,1\}^{n}$. Therefore in the second step, using the above-mentioned linearity of $f(t)$ in each t_{i}, we move the y_{i} 's towards the endpoints of the interval $[-1,1]$ so that the nonpositiveness of f keeps to be preserved. In this way, after a finite number of steps, we find a $y \in\{-1,1\}^{n}$ for which $f(y) \leq 0$ so that for $J=\left\{j \mid y_{j}=-1\right\}$ we have $\operatorname{det}(A[J]) \leq 0$ and our problem is solved. This approach is formalized in the algorithm description in Fig. [2.1.

This brings us again to the beginning, namely to finding an x satisfying (1.3). We do not solve the problem in full generality here, postponing its solution to a forthcoming paper. It is
sufficient to mention here that if $A-I$ is nonsingular, then A is NOT a P-matrix if and only if such an x exists (Rump [7], Rohn [4]), and it can be found by a not-a-priori exponential algorithm (Rohn [5]). In the present paper we shall only show a special case in which such an x can be found easily, but this special case, as far as our numerical experiments show, occurs "almost always" for randomly generated examples: if

$$
\begin{equation*}
\left|\left(C^{-1}\right)_{j j}\right| \geq 1 \tag{1.4}
\end{equation*}
$$

for some j, then

$$
\begin{equation*}
x=\left(C^{-1}\right) \bullet j \tag{1.5}
\end{equation*}
$$

is nontrivial and satisfies (1.3) (thus adding implicitly nonsingularity of $A+I$ to our assumptions). Indeed, we have $|C x|=I_{\bullet j} \leq|x|$ because of (1.4).

2 The algorithm

Our algorithm is formulated as follows:

```
(01) function \(J=\operatorname{vec} 2 \min (A, x)\)
(02) \% VECtor TO MINor.
(03) \% Input: \(A, x \neq 0\) with \(\left|(A-I)^{-1}(A+I) x\right| \leq|x|\).
(04) \% Output: \(J\) with \(\operatorname{det}(A[J]) \leq 0\).
(05) \(n=\operatorname{length}(x) ; I=\operatorname{eye}(n)\);
(06) \(C=(A-I)^{-1}(A+I)\);
(07) for \(i=1: n\)
(08) if \(x_{i} \neq 0, y_{i}=(C x)_{i} / x_{i}\); else \(y_{i}=1\); end
(09) end
(10) \(d=\operatorname{det}(A-I)\);
(11) for \(i=1: n\)
(12) if \(y_{i} \neq-1\) and \(y_{i} \neq 1\)
(13) \(\quad y_{i}=1\);
(14) \(\quad\) if \(d \cdot \operatorname{det}(C-\operatorname{diag}(y))>0, y_{i}=-1\); end
(15) end
(16) end
(17) \(J=\left\{i \mid y_{i}=-1\right\}\)
```

Figure 2.1: An algorithm for finding a nonpositive minor.
The algorithm is substantiated by the following theorem.

Theorem 1. For each square matrix A and x specified in line (03) the algorithm vec2min (Fig. 2.1) produces in polynomial time a subset J for which $\operatorname{det}(A[J]) \leq 0$.

Proof. We shall use the function

$$
f(t)=\operatorname{det}(A-I) \operatorname{det}(C-\operatorname{diag}(t)), \quad t \in \mathbb{R}^{n}
$$

introduced in (1.1). As explained in Section 1, f is linear in each t_{i}. First we show that the vector y computed in lines (07)-(09) satisfies

$$
f(y)=0 .
$$

By assumption, $|C x| \leq|x|$; in particular, for each $i, x_{i}=0$ implies $(C x)_{i}=0$. Thus the vector y constructed in lines (07)-(09) satisfies $\left|y_{i}\right| \leq 1$ and $(C x)_{i}=y_{i} x_{i}$ for each i, hence $C x=\operatorname{diag}(y) x$, which gives that $(C-\operatorname{diag}(y)) x=0$, where $x \neq 0$, so that $\operatorname{det}(C-\operatorname{diag}(y))=$ 0 , implying $f(y)=0$.

Next we prove by induction on $i=0,1, \ldots, n$ that the vector y obtained after completing line (15) satisfies

$$
\begin{equation*}
y_{j}= \pm 1 \quad(j=1, \ldots, i) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f(y) \leq 0 . \tag{2.2}
\end{equation*}
$$

This is obviously so for $i=0$. Thus assume that the induction hypothesis holds for some $i-1 \geq 0$. At that moment,

$$
f\left(y_{1}, \ldots, y_{i-1}, y_{i}, \ldots, y_{n}\right) \leq 0
$$

for some $y_{i} \in[-1,1]$. If $y_{i}=-1$ or $y_{i}=1$, then we are done (line (12)). Thus assume that $y_{i} \in(-1,1)$. If

$$
f\left(y_{1}, \ldots, y_{i-1}, 1, \ldots, y_{n}\right) \leq 0,
$$

then y_{i} is set to 1 and (2.1), (2.2) are satisfied. If

$$
f\left(y_{1}, \ldots, y_{i-1}, 1, \ldots, y_{n}\right)>0
$$

then the function of one variable t_{i}

$$
f\left(y_{1}, \ldots, y_{i-1}, t_{i}, \ldots, y_{n}\right)
$$

is linear (as emphasized above), is positive at $t_{i}=1$ and nonpositive at $t_{i}=y_{i} \in(-1,1)$, hence it is increasing in $[-1,1]$, which means that it is negative at -1 . In this case y_{i} is set to -1 (line (14)) and the induction hypothesis (2.1), (2.2) is proved.

In this way, we obtain that the vector y constructed after completing the for-loop in lines (11)-(16) is a ± 1-vector satisfying

$$
f(y)=\operatorname{det}(A-I) \operatorname{det}(C-\operatorname{diag}(y)) \leq 0 .
$$

Now from (1.2) we have

$$
\begin{equation*}
\operatorname{det}(A[J])=\frac{1}{2^{n}} f(y) \leq 0, \tag{2.3}
\end{equation*}
$$

where

$$
J=\left\{j \mid y_{j}=-1\right\}
$$

(see line (17)), which shows that the principal minor $\operatorname{det}(A[J])$ is nonpositive (output description in line (04)).

Polynomiality of the algorithm follows from the Bareiss' result [1] proving existence of a polynomial-time algorithm for computing the determinant. This completes the proof.

3 Example

Using MATLAB, consider the 100×100 randomly generated matrix

```
>> rand('state',1); A=rand(100,100);
```

which can be reproduced because of the use of rand('state',1). Here we have

$$
\left(C^{-1}\right)_{35,35}=12.6592>1,
$$

hence the vector $x=\left(C^{-1}\right)_{\bullet 35}$ satisfies (1.3) (see (1.4), (1.5)). We give here for space reasons the vector x reshaped as a 20×5 matrix to be read columnwise:

```
>> reshape(x,20,5)
ans =
    4.4690 8.9095 -3.8182 -5.0737 -4.4761
    1.6366 -8.4748 -7.3249 2.9782 -3.3127
    -2.3315 9.0209 1.2753 -2.8727 -0.4856
    -7.6401 -3.5210 -4.0098 9.4804 -2.7190
    3.9239 -3.0288 4.6342 11.7851 -0.1305
    2.1388 -2.5015 3.5267 -8.6483 -0.7691
    8.3985 0.9246 2.7164 0.5026 -7.0660
    12.2784 -7.2008 2.3232 4.2166 -1.7433
    4.0095 5.0032 -0.3533 2.5050 2.0941
    -0.4785 -2.9658 10.6911 -5.8337 -1.5813
    -8.3985 
    -1.7192 
    15.1720 12.6592 5.4886 -2.2354 -2.5968
    10.9240
    -2.2835 
    -10.7842 -7.1126 -7.5142 -1.4689 7.1920
    3.5978 -2.2741 -2.2772 -3.5726 8.7554
```

Now, applying the algorithm vec 2 min, we get a 30×30 principal submatrix having a negative determinant:

```
>> tic, J=vec2min(A,x); J, det(A(J,J)), toc
J =
    Columns 1 through 10
        12
    Columns 11 through 20
        44
    Columns 21 through 30
        82
ans =
    -13.6141
Elapsed time is 0.517556 seconds.
```

Due to the well-known fact that determinants of large-size matrices computed in floating point may be afflicted with big roundoff errors, the result may be considered hardly convincing. To remove this doubt, we may compute a verified determinant of $A[J]$ by means of [3]:

```
>> format long, tic, dt=verdet(A(J,J)), toc
intval dt =
[ -13.61413607696574, -13.61413607695881]
Elapsed time is 3.701657 seconds.
```

This shows that the principal minor is verified negative. Notice that the verification lasted seven times longer than the computation of the main result itself; this is due to the verification procedures involved (the verified determinant is computed as product of verified eigenvalues).

Bibliography

[1] E. F. Bareiss, Sylvester's identity and multistep integer-preserving Gaussian elimination, Mathematics of Computation, 103 (1968), pp. 565-578. 5]
[2] G. E. Coxson, The P-matrix problem is co-NP-complete, Mathematical Programming, 64 (1994), pp. 173-178. 2
[3] J. Rohn, VERDET: Verified determinant of a complex (or real) matrix, 2008. http://uivtx.cs.cas.cz/~rohn/matlab/verdet.html. 6]
[4] J. Rohn, An algorithm for solving the absolute value equation, Electronic Journal of Linear Algebra, 18 (2009), pp. 589-599. http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol18_pp589599.pdf. 3
[5] J. Rohn, An algorithm for finding a singular matrix in an interval matrix, Technical Report 1087, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, November 2010. http://uivtx.cs.cas.cz/~rohn/publist/singreg.pdf. 3
[6] J. Rohn, On Rump's characterization of P-matrices, Technical Report 1093, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, November 2010. http://uivtx.cs.cas.cz/~rohn/publist/rumppmat.pdf. 2]
[7] S. M. Rump, On P-matrices, Linear Algebra and Its Applications, 363 (2003), pp. 237250. 3

[^0]: ${ }^{1}$ This work was supported by the Czech Republic Grant Agency under grant 201/09/1957 and by the Institutional Research Plan AV0Z10300504.

