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Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-42431
http://www.nusl.cz
http://www.nusl.cz


Institute of Computer Science
Academy of Sciences of the Czech Republic

Statistical estimations of
lattice-valued possibilistic
distributions

Ivan Kramosil, Milan Daniel

Technical report No. 1086

December 2010
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Abstract:

The most often applied non-numerical uncertainty degrees are those taking their values in complete lattices,
but also their weakened versions may be of interest. In what follows, we introduce and analyze possibilistic
distributions and measures taking values in finite upper-valued possibilistic lattices, so that only for finite
sets of such values their supremum is defined. For infinite sets of values of the finite lattice in question
we apply the idea of the so called Monte-Carlo method: sample at random and under certain conditions
a large enough finite subset of the infinite set in question, and take the supremum over this finite sample
set as a “good enough” estimation of the undefined supremum of the infinite set. A number of more or
less easy to prove assertions demonstrate the conditions when and in which sense the quality of the results
obtained by replacing non-existing or non-accessible supremum values by their random estimations tend
to the optimum results supposing that the probabilistic qualities of the statistical estimations increases as
demanded by Monte-Carlo methods.
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1 Introduction

As soon as two years after publication of the Zadeh’s pioneering paper on real-valued fuzzy sets [16], J.
A. Goguen applied the basic ideas of fuzziness to partially ordered sets with non-numerical values, so
arriving at complete lattices as the most often used support set for non-numerically valued fuzziness
degrees [8]. As excellent theoretical survey of complete lattice-valued fuzzy sets can be found in [2].
The reader is supposed to be familiar with the basic ideas and results of the papers [3] and [14] and
with the most elementary stones of the formalized constructions from [11].

Shifting the fuzziness degrees from the real numbers in [0, 1] to elements of a complete lattice
we make these degrees much more freely defined and much more vaguously relating these degrees
to corresponding non-numerical structures. But, at the same time, the space with this weakened
assumptions becomes much more open for applications than that with the real-valued fuzziness degrees.

In this paper, we will go on with this paradigma when still more weakening the conditions imposed
on the structure from which fuzziness takes its degrees, namely, instead complete lattice we will define
that structure by an upper semilattice. Let us recall that a partially ordered set T = 〈T,≤T 〉 defines
an upper semilattice, if for each finite set A ⊂ T the supremum

∨T
A (w.r.to ≤T ) is defined. If

T = 〈T,≤T 〉 were a complete lattice (e.g., the standard unit interval 〈[0, 1],≤〉), then each mapping
π : Ω → T defined on a nonempty set Ω for each ω ∈ Ω, defines a total set function Π : P(Ω) → T.
In other terms, the mapping π may be taken as a fuzzy or possibilistic distribution on the space Ω,
implying uniquely the total fuzzy or possibilitic measure (set function) Π ascribing to each A ⊂ Ω the
value

∨T
ω∈A π(ω) ∈ T. When replacing real-valued or complete lattice-valued structure T by upper

semilattice T = 〈T,≤T 〉, the set function Π will be defined only for finite (or π-finite, if elements ω ∈ Ω
with identical values π(ω) are also taken as identical) subsets of Ω, hence, if Ω is infinite, Π : P(Ω) → T
will be a partial mapping. So, when A ⊂ Ω is an infinite set and

∨
ω∈A π(ω) is not defined, we would

like to find a finite sequence ω1, ω2, . . . , ωN of elements of A such that the finite (hence, defined)
supremum

∨N
i=1 π(ωi) would replace or approximate, in a reasonable sense, the undefined value Π(A).

However, such approximations are offered and reasonably founded and processed by probability theory
and mathematical statistics, taking finite random samples as elements from A.

The values π(ω) ascribed to elements of the space Ω may be seen from two points of view: as the
degrees of fuzziness or possibility degrees defined on the support set Ω of a fuzzy set or possibilistic
distribution π, but also as a T -valued function π : Ω → T. Supposing that Ω is completed to a
probability space 〈Ω,A, P 〉, π may be taken as T -valued random variable. So, the value

∨T
ω∈A may be

approximated (if it is defined) or extended (if not defined) by the value approximating or extending the
expected value Π(A) of the probability density {π(η(ω)) : ω ∈ Ω} defined on A. Such a model enables
to define the notions like statistical estimations related to the density π(η(·)), namely, statistical
estimations which may be, within the framework of T -valued possibilistic distributions, taken as
reasonable approximations and completions of the values related to T -distributions.

Even if the extent of this contribution is rather limited, all the section 2 is devoted to a formalized
definition of statistical estimation of values of upper semilattice-valued measures in order to prove that
this notion can be completely defined and processed within the standard framework of the axiomatic
probability theory. Section 3 shows that statistical estimation of possibilistic distributions meets the
basic paradigmatic property of standard statistical estimations according to which reasonably defined
qualities of such estimations improve with their size increasing. Finally, Section 4 offers the notion of
π-quasi-supremum as a useful, even if not generally acceptable substitution of the notion of supremum
at least in some particular cases of incomplete upper semilattices.

2 Statistical Estimations of Lattice-Valued Possibility Degrees – a Formal-
ized Model

Let T be a nonempty set, let ≤T be a partial ordering relation on T , so that T = 〈T,≤T 〉 defines a
p.o.set. Suppose, moreover, that T meets the conditions imposed on upper semilattice, so that, for
each finite set A0 ⊂ T the supremum

∨T
t∈A0

t (
∨T

A0 abbreviately) is defined. As the empty subset
of T is also finite,

∨T
t∈∅ =

∨T ∅ is defined and denoted by 0T as it obviously plays the role of the

1



minimum or zero element of T (obviously, if T is infinite, the supremum element
∨T

t∈T =
∨T

T need
not be defined).

Let Σ be a nonempty set, the elements of Σ will be denoted as η, η∗, ηi, and similarly. A mapping
π : Σ → T is called a T -(valued possibilistic) distribution on Σ, if

∨T
T (denoted also by 1T ) is defined

and if
∨T

t∈Σ π(η) = 1T holds. This is the case if the space Σ is π-finite, i.e., if card {π(η) : η ∈ Σ} < ∞
holds and in this case all subsets of Σ are π-finite, hence, the possibilistic measure Π(A) =

∨T
η∈A π(η)

is defined for each A ⊂ Σ.
Our aim will be to replace or to extend the value

∨T
η∈A π(η) by the value

∨T ,N
i=1 π(η∗i ), (an abbrevi-

ation for (
∨T

n∗i
)N
i=1π(η∗i )), where η∗1 , η∗2 , . . . η∗N are “appropriately at random sampled” elements of the

space Σ. The first formal notion needed in order to build the necessary mathematical construction is
that of probability space.

Let Ω be a nonempty set, the elements of which are denoted by ω and are called elementary random
events. Let A ⊂ P(Ω) be a non-empty system of subsets of Ω which defines a σ-field, so that, for
each E1, E2, · · · ∈ A also the sets Ω − Ei and

⋃∞
i=1 Ei are in A. Let P : A → [0, 1] be a mapping

(set function on A, as a matter of fact) such that P (Ω) = 1 and P (
⋃∞

i=1 Ei) = Σ∞i=1P (Ei) for each
sequence of mutually disjoint sets E1, E2, . . . from A, i.e., Ei ∩ Ej = ∅ for each i 6= j. Such a set
function P is called σ-additive probability measure defined on measurable space 〈Ω,A〉 and the ordered
triple 〈Ω,A, P 〉 is called probability space.

Let 〈Ω,A, P 〉 be a probability space, let X = 〈X,S〉 be a measurable space, i.e., X is a nonempty set
and S is a nonempty σ-field of subsets of X. A mapping f : Ω → X is called random variable, defined
on the probability space 〈Ω,A, P 〉, if for each set S ⊂ X, S ∈ S, the relation {ω ∈ Ω : f(ω) ∈ S} ∈ A
holds, consequently, the probability P ({ω ∈ Ω : f(ω) ∈ S}) is defined. A sequence {f1, f2, . . . }∞i=1 of
random variables is called independent and identically distributed sequence of random variables (i.i.d.
sequence, abbreviately), if for each A ∈ S and each j = 1, 2, . . . the identity P ({ω ∈ Ω : fj(ω) ∈
A}) = P ({ω ∈ Ω : f1(ω) ∈ A}) holds and, moreover, if for each 1 ≤ i, i 6= j, and each Si, Sj ∈ S, the
relation

P ({ω∈Ω : fi(ω)∈Si, fj(ω)∈Sj}) = P ({ω∈Ω : fi(ω)∈Si}) · P ({ω∈Ω : fj(ω)∈Sj}) (2.1)

is valid.
Take the space Σ of elementary possibilistic events, take a nonempty σ-field E of subsets of Σ so

that the pair 〈Σ, E〉 defines a measurable space, take a probability space 〈Ω,A, P 〉. Let η∗ : Ω → Σ
be a mapping such that, for each E ∈ E , {ω ∈ Ω : η∗(ω) ∈ E} ⊂ A holds, so that the probability
P ({ω ∈ Ω : η∗(ω) ∈ E}) is defined. Hence, η∗(ω) ∈ Σ is an at random sampled element of the
elementary possibilistic space Σ. Combining the mapping η∗ with the mapping π : Σ → T we obtain
the mapping π(η∗(·)) : Ω → T. Supposing that F ⊂ P(T ) is a σ-field of subsets of T and that
{ω ∈ Ω : π(η∗(ω)) ∈ F} ∈ A holds for each F ∈ F , the mapping π(η∗(·)) : Ω → T defines a
random variable on the probability space 〈Ω,A, P 〉 which takes its values in the measurable space
〈T,F〉. Informally defined, π(η∗(ω)) is the possibility degree ascribed by the mapping (possibilistic
distribution on Σ, if it is the case) π to the at random sampled element η∗(ω) of the space Σ of
elementary possibilistic events.

Let A ⊂ Σ be given, let η∗1 , η∗2 , . . . be an infinite sequence of statistically independent and iden-
tically distributed random variables defined on the probability space 〈Ω,A, P 〉, taking values in the
measurable space 〈Σ, E〉 and such that, for each ω ∈ Ω and each i = 1, 2, . . . , η∗i (ω) ∈ A ⊂ Σ holds.
Hence, for each integer N ≥ 1, 〈η∗1(ω), η∗2(ω), . . . η∗N (ω)〉 is a finite sequence of elements of A and
〈π(η∗1(ω)), π(η∗2(ω)), . . . , π(η∗N (ω))〉 is the corresponding sequence of their possibility degrees defined
by the mapping π : Σ → T, T = 〈T,≤T 〉. Obviously, each π(η∗i (ω)), i = 1, 2, . . . , ω ∈ Ω, is an element
of the upper semilattice T = 〈T,≤T 〉, consequently, the value

∨T ,N
i=1 π(η∗i (ω)) is defined and belongs

to T.
Supposing that

∨T ,N
i=1 π(η∗i (·)) : Ω → T defines a random variable which takes the probability

space 〈Ω,A, P 〉 into the measurable space 〈T,F〉, i.e., if for each F ∈ F the relation {ω ∈ Ω :∨T ,N
i=1 π(η∗i (ω)) ∈ F} ∈ A holds, the mapping

∨T,N
i=1 π(η∗i (ω)) : Ω → T is called the statistical estima-

tion (if
∨T

η∈A π(η) is defined) or the statistical extension (if
∨T

η∈A π(η) is not defined) of the value of
the partial T -valued possibilistic measure Π, induced by π, to the set A ⊂ Σ, let us denote it by Π(A).
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Before going on with the mathematical considerations, some comments may be of use, let us begin
with the terms statistical estimations and statistical extension. As a rule, the term estimation is used
when some value is correctly and precisely defined, but for some reasons this value cannot be explicitly
specified. E.g., the expected value of a random variable may be defined as a function of empirical
values, but in practice only more or less good averages of a series of values taken from repeated
random samples may be used as a statistical estimation of the expected value in question. When
modifying the definition of expected value in such a way that expected value of an integer-valued
random variable must be also defined by an integer, then the expected number of points occurring on
dice when tossing is not defined and the value 3.5 may be taken as extension, but not as the expected
value of the number of points on the tossed dice.

The difference between the two notions is obvious when considering the problem how to measure
the quality of statistical estimations and extensions. For estimations, the closer is the estimation to
the estimated value, or the closer to 1 is the probability, that these values are identical or sufficiently
close to each other, the better is the estimation. For extensions the situation is more difficult. If
Π(A) =

∨T
η∈A π(η) is defined, then the statistical estimation

∨T ,N
i=1 π(η∗i (ω)) is the best possible, if

both the values are identical and in this case, with the probability one, the equality
∨T ,N

i=1 π(η∗i (ω)) =∨T ,N+1
i=1 π(η∗i (ω)) holds. If

∨T
η∈A π(η) is not defined, we may (and will) measure the quality of the

extension Π(A) =
∨T ,N

i=1 π(η∗i (ω)) by the criterion according to which the probability

P

({
ω ∈ Ω :

T ,N+1∨

i=1

π(η∗i (ω)) >

T ,N∨

i=1

π(η∗i (ω))

})
, (2.2)

i.e., the probability that the value of the “supremum” of the values π(η), η ∈ A, will increase when,
taking into consideration one more sample from A ⊂ Σ should be either 0 or as close to 0 as possible.

We have purposedly formalized the notions of statistical estimation and extension at a rather
general and abstract level with the aim to demonstrate that this problem can be defined and solved at
the same level of description and processing as it is common in standard works on probability theory.
However, in order to arrive at some more explicit results, let us assume the following simplifying
conditions to hold. The space Σ is supposed to be infinite and countable, and the σ-field E of
measurable subsets of Σ is defined by the power-set P(Σ). So, random variables η∗ are defined on
〈Ω,A, P 〉 as mapping ascribing to each ω ∈ Ω the value η∗(ω). For each η ∈ Σ the value P ({ω ∈
Ω : η∗(ω) = η}) is defined (and denoted, if no misunderstanding menaces) by p(ω). Consequently, for
each A ⊂ Σ, the value Pr(A) is defined by Pr(A) = Ση∈Ap(η).

3 Asymptotic Properties of Statistical Estimations of Upper-Semilattice-
Valued Possibilistic Degrees

Let 〈n∗1, n∗2, . . . 〉 be an infinite sequence of statistically independent random variables distributed
identically with η∗, let N = 1, 2, . . . , let η∗(ω) ∈ A for each ω ∈ Ω hold. Define

ΠN (η∗, ω) =
T ,N∨

i=1

π(η∗i (ω)). (3.1)

The last supremum, hence, also the value ΠN (η∗, ω) is always defined. If Π(A) is defined, then
ΠN (η∗, ω) is called the statistical estimation of Π(A), if Π(A) is not defined, then ΠN (η∗, ω) is called
the statistical extension of Π to A. In order to simplify our notation, we will use the term “statistical
estimation of Π(A)” in both the cases, carefully keeping in mind the important differences staying
behind both these approaches.

Lemma 3.1 For each A ⊂ Σ, each N = 1, 2, . . . and each ω ∈ Ω the inequality ΠN (η∗, ω) ≤T
ΠN+1(η∗, ω) holds.

If Π(A) =
∨T

η∈A π(η) is defined, i.e., if A is a π-finite subset of Σ, then for each N = 1, 2, . . . , and
each ω ∈ Ω the relation ΠN (η∗, ω) ≤T Π(A) holds.
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Proof: Obvious. 2

Definition 3.1 Statistical estimation ΠN (η∗, ω) of the value Π(A) for A ⊂ Σ is statistically optimal,
if

P ({ω ∈ Ω : ΠN+1(η∗, ω) = ΠN (η∗, ω)}) = 1 (3.2)

holds.

In a perhaps more intuitive setting, up to the cases with zero global probability P, the statistical
estimation

∨T ,N
i=1 π(η∗i (ω)) of Π(A) cannot be improved, i.e., enlarged w.r.to the partial ordering ≤T

on T, no matter how large finite number of samples made by random variables η∗i , i > N, may be
taken.

Lemma 3.2 Let Π(A) =
∨T

η∈A π(η) be defined, let ΠN (η∗, ω) = Π(A) hold. Then ΠN (η∗, ω) is
statistically optimal statistical estimation of the value Π(A).

Proof: Obvious. 2

Under some more conditions also an assertion inverse to that of Lemma 3.2 may be stated and
proved.

Theorem 3.1 Let A ⊂ Σ be π-finite, let Σ be an infinite countable set, let E = P(Σ), let η∗ :
〈Ω,A, P 〉 → 〈Σ, E〉 be such that p(η) = P ({ω ∈ Ω : η∗(ω) = η}) > 0 holds iff η ∈ A, let 〈η∗1 , η∗2 , . . . 〉 be
an infinite sequence of statistically independent and identically distributed copies of the random variable
η∗. Then the statistical estimation

∨T ,N
i=1 π(η∗i (ω)) of the value Π(A) =

∨T
η∈A π(η) is statistically

optimal iff the identity
∨T ,N

i=1 π(η∗i (ω)) = Π(A) holds.

Proof: Due to Lemma 3.2, the only we have to prove is that if
∨T ,N

i=1 π(η∗i (ω)) 6= Π(A), i.e., if∨T ,N
i=1 π(η∗i (ω)) <T Π(A) is the case, then

P

({
ω ∈ Ω :

T ,N+1∨

i=1

π(η∗i (ω)) >T
T ,N∨

i=1

π(η∗i (ω))

})
> 0 (3.3)

follows. Hence, we have to prove that if ΠN (η∗, ω) <T Π(A) holds, then with a positive probability
the statistical estimation ΠN (η∗, ω) of Π(A) can be improved when taken one more random sample
η∗N+1(ω) ∈ A.

As for each ω ∈ Ω and each i = 1, 2, . . . holds that η∗i (ω) ∈ A and {π(η∗i (ω)) : i = 1, 2, . . . } ⊂
{π(η) : η ∈ A}, both with the probability one, the inequality

∨T ,N
i=1 π(η∗i (ω)) <T Π(A) may happen

only when there exists η0 ∈ A such that η0 6= η∗i (ω), i = 1, 2, . . . , N, and
∨T ,N

i=1 π(η∗i (ω)) ∨ π(η0) >∨T ,N
i=1 π(η∗i (ω)) hold together. In other words,

∨T ,N
i=1 π(η∗i (ω)) < Π(A) yields that there exists an

element η0 ∈ A not sampled yet by the samples η∗1(ω), η∗2(ω), . . . , η∗N (ω) but such that the value π(η0)
augments the value ΠN (η∗, ω) =

∨T ,N
i=1 π(η∗i (ω)). However, with the positive probability p(η0) the

case η∗N+1(ω) = η0 occurs, so that ΠN+1(η∗, ω) > ΠN (η∗, ω) holds with probability p(η0) > 0. Hence,
ΠN (η∗, ω) is not statistically optimal statistical estimation of Π(A) and the assertion is proved. 2

Theorem 3.2 Let the notations and conditions of Theorem 3.1 hold with the only exception that the
set A need not be π-finite. Let A0 be finite subset of A ⊂ Σ such that, for each η? ∈ A, the relation

Π(A0) =
T∨

η∈A0

π(η) =
T∨

η∈A0∪{η?}
π(η) = Π((A0) ∪ {η?}) (3.4)

holds. Then ΠN (η∗, ω) tends to Π(A0) in probability P with N increasing, so that the relation

lim
N→∞

P ({ω ∈ Ω : ΠN (η∗, ω) = Π(A0)}) = 1 (3.5)

is valid.
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Proof: Let A0 = {η1, η2, . . . , ηK} ⊂ Σ. An easy combinatoric consideration yields that

P ({ω ∈ Ω : {η1, η2, . . . , ηK} 6⊂ {η∗1(ω), η∗2(ω), . . . , η∗N (ω)}})

= P




K⋃

j=1

({ω ∈ Ω : ηj 6∈ {η∗1(ω), . . . , η∗N (ω)}})

 ≤

≤
K∑

j=1

P ({ω ∈ Ω : ηj 6∈ {η∗1(ω), η∗2(ω), . . . , η∗N (ω)}}). (3.6)

For each j = 1, 2, . . . , K

P ({ω ∈ Ω : ηj 6∈ {η∗1(ω), η∗2(ω), . . . , η∗N (ω)}}) = (1− p(ηj))N → 0 (3.7)

with N →∞ holds. Hence, given E > 0, for each j = 1, 2, . . . , K there exists nj ∈ {1, 2, . . . } such that
for each N ≥ nj , P ({ω ∈ Ω : ηj 6∈ {η∗1(ω), . . . , η∗N (ω)}}) < E holds. Setting N0 ≥ max{nj : j ≤ K},
we obtain that P ({ω ∈ Ω : ηj 6∈ {η∗1(ω), . . . , η∗N (ω)}}) < E holds for each j ≤ K supposing that
N ≥ N0 is the case.

Consequently,

P ({ω ∈ Ω : {η1, . . . , ηK} 6⊆ {η∗1(ω), . . . , η∗N (ω)} ≤

≤
K∑

i=1

P ({ω ∈ Ω : ηj 6∈ {η∗1(ω), η∗2(ω), . . . , η∗N (ω}}) ≤ KE (3.8)

follows, if N ≥ N0 is the case. As E > 0 is arbitrary,

P ({ω ∈ Ω : {η1, . . . , ηL} 6⊂ {η∗1(ω), . . . , η∗N (ω)}}) → 0 (3.9)

holds for each fixed L with N →∞, hence,

P ({ω ∈ Ω : {η1, . . . , ηK} ⊂ {η∗1(ω), . . . , η∗N (ω)}}) → 1 (3.10)

holds with n →∞. As A0 = {η1, η2, . . . , ηK}, (3.10) yields that, for N increasing, with the probability
increasing to 1 the relation

ΠN (η∗, ω) =
T ,N∨

i=1

π(ηi(ω)) =



T ,K∨

j=1

π(ηj)


 ∨T

(T ,N∨

i=1

π(η∗i (ω))

)
=

= Π(A0) ∨T (π(η∗1(ω)) ∨T π(η∗2(ω)) ∨T · · · ∨T π(η∗N (ω))) = Π(A0), (3.11)

as Π(A0)∨T π(η?) = Π(A0) due to the assumptions imposed on A0 and the principle of finite mathe-
matical induction is applied. Hence, the relation

lim
N→∞

P ({ω ∈ Ω : ΠN (η∗, ω) = Π(A0)}) = 1 (3.12)

holds and the assertion is proved. 2

4 Quasi-Supremum for Upper Semilattice-Valued Lattices

Let us reconsider, once more, the conditions of Theorem 3.2. If there exists a finite subset A0 ⊂ A
meeting the condition (3.4), the value Π(A0) copies the properties of

∨T
A (if defined) at least in the

sense that no element of A, joined with A0, is able to make the value Π(A0) larger. The notion of
π-quasi-supremum of A tries to define this property explicitly.
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Definition 4.1 Under the notation introduced above, the value Π(A0) =
∨T

η∈A0
π(η) is called the

π-quasi-supremum of A and denoted by Qπ(A), if A0 is a finite subset of A ⊂ Σ such that, for each
η? ∈ A, Π(A0 ∪ {η?}) = Π(A0) holds. I.e., Π(A0) is the π-quasi supremum of A, if

T∨

η∈A0

π(η) =




T∨

η∈A0

π(η)


 ∨T π(η?) (4.1)

is valid for each η0 ∈ A (in other notation, if π(η?) ≤T Π(A0) is the case).

We have to prove that the value Qπ(A), if defined, is defined uniquely (like it is the case for
the standard supremum and infimum operations). Let A ⊂ Σ be given, let A0 ⊂ A,B0 ⊂ A be
finite subsets of A such that both Π(A0) and Π(B0) define π-quasi-suprema Qπ

1 (A) and Qπ
2 (A). In

this case, however, the identity Qπ
1 (A) = Qπ

2 (A) follows. Indeed, let A0 = {a1, a2, . . . aK} ⊂ A, let
B0 = {b1, b2, . . . , bL} ⊂ A. Then, applying (4.1) we obtain that

Π(A0) =
T ,K∨

i=1

π(ai) =

(T ,K∨

i=1

π(ai)

)
∨T π(b1) =

(T ,K∨

i=1

π(ai)

)
∨T π(b1) ∨T π(b2)

=

(T ,K∨

i=1

π(ai)

)
∨T (π(b1) ∨T π(b2) ∨T · · · ∨T π(b2)) = Π(A0) ∨T Π(B0).

(4.2)

Repeating this construction and consideration once more, but now starting from Π(B0) and adding,
step by step, the values π(a1), π(a2), . . . , π(aK), we arrive at the equality Π(B0) = Π(B0) ∨T Π(A0),
hence, the identity Π(A0) = Π(B0) follows, so that the π-quasi-supremum Qπ(A) is defined uniquely
supposing that it is defined.

On the other side, the π-quasi-supremum Qπ(A) need not be defined in general, i.e., it is pos-
sible that there is no finite A0 ⊂ A meeting the conditions imposed on Qπ(A). E.g., consider
Σ = {η1, η2, . . . } and T = {t1, t2, . . . } together with binary relation ≤T such that ti <T tj holds
iff i < j is the case (obviously, T = N = {1, 2, . . . } and the standard linear ordering ≤ on N will do).
The pair T = 〈T,≤T 〉 then defines the upper semi-lattice. Let π : Σ → T be defined by π(ηi) = ti
for each i ∈ N , let A = {ηi1 , ηi2 , . . . }, i1 < i2 < . . . be any infinite subset of Σ. Then no finite subset
A0 ⊂ A possesses the property that Π(A0) =

∨T
η∈A0

π(η) defines the π-quasi-supremum of A. Indeed,
denote by α(A0) ∈ N the value α(A0) = max{j ∈ N : ηj ∈ A0}. Then

Π(A0) =
T∨

η∈A0

π(η) =
T ,α(A0)∨

i=1,ηi∈A0

π(ηj) =
T ,α(A0)∨

i=1

ti = tα(A0). (4.3)

As the set A is infinite, there exists j0 ∈ N such that ηj0 ∈ A and j0 > α(A0) hold together. In this
case, however, the relation π(ηj0) = tj0 >T tα(A0) = Π(A0) follows (cf. (4.3)), so that the inequality
Π(A0) ∨T π(ηj0) = π(ηj0) >T Π(A0) holds. Hence, Π(A0) does not define the π-quasi-supremum of
A.

It is perhaps worth being introduced explicitly, that the class of subsets A ⊂ Σ for which π-quasi-
supremum Qπ(A) is defined is larger than the class of all π-finite subsets of Σ. Indeed, if A is π-finite,
then there exists a finite set A0 ⊂ A such that π(A0) =

∨T
η∈A0

π(η) =
∨T

η∈A π(η), so that Π(A0)
obviously defines the π-quasi-supremum of A. On the other side, when there exists a finite set A0 ⊂ A
which defines the value Qπ(A), it is possible that A − A0 is an infinite set and the set of different
values π(η), η ∈ A−A0, is also infinite and for each η ∈ A−A− 0 the relation π(η) ≤T Π(A0) holds,
hence, the set A is not π-finite.

Definition 4.2 Let the notations and conditions of Definition 3.1 hold. Statistical estimation ΠN (η∗, ω)
of the value Π(A) for A ⊂ Σ is δ-statistically optimal, where δ is a given real number, if the relation
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P ({ω ∈ Ω : ΠN+1(η∗, ω) = ΠN (η∗, ω)}) > 1− δ (4.4)

is valid.

Hence, ΠN (η∗, ω) is statistically optimal estimation of Π(A) in the sense of Definition 3.1 iff
ΠN (η∗, ω) is 0-statistically optimal in the sense of Definition 4.2.

Theorem 4.1 Let 〈Ω,A, P 〉 be a probability space, let 〈Σ,P(Σ)〉 be the complete measurable space
over a countable set Σ of elementary possibilistic states. Let T = 〈T,≤T 〉 be an upper semilattice,
let π : Σ → T be a mapping such that

∨T
η∈Σ π(η) = 1T =

∨T
η∈Σ η =

∨T
T holds supposing that∨T

T is defined. Let A ⊂ T be given, let η∗ : 〈Ω,A, P 〉 → 〈Σ,P(Σ)〉 be a random variable such that
P ({ω ∈ Ω : η∗(ω) = η}) > 0 is the case iff η ∈ A holds.

Let 〈η∗1 , η∗2 , . . . 〉 be an infinite sequence of statistically independent random variables each of them
being distributed identically with η∗, let N = 1, 2, . . . , define

ΠN (η∗, ω) =
T ,N∨

i=1

π(η∗i (ω)). (4.5)

Then, for each δ > 0, the assertion

lim
N→∞

P
({

ω ∈ Ω : ΠN (η∗, ω) defines a δ-statistically optimal sta-
tistical extimation of the value Π(A)

})
= 1 (4.6)

holds.

Proof: Let δ > 0 be given. According to the conditions imposed on η∗ and consequently, on each
η∗1 , η∗2 , . . . , there exits a finite set A0 ⊂ Σ such that

P (A0) = P ({ω ∈ Ω : η∗(ω) ∈ A0}) = P ({ω ∈ Ω : η∗i (ω) ∈ A0}) =

=
∑

η∈A0

P ({ω ∈ Ω : η∗1(ω) = η}) > 1− δ (4.7)

holds. Hence, if ΠN (η∗, ω) ⊃ A0 is the case, then the inequality ΠN+1(η∗, ω) >T ΠN (η∗, ω) may
happen to be valid only when η∗N+1(ω) ∈ A−A0 holds. However, the probability of this random event
does not exceed δ, as proved in (4.7). As shown in Theorem 3.1, for each finite A0 ⊂ A the inclusion
ΠN (η∗, ω) ⊃ A0 holds with the probability increasing to 1 with N → ∞, the same limit assertion is
valid for the probability that ΠN (η∗, ω) defines a δ-statistically optimal statistical estimation of the
value Π(A). The theorem is proved. 2

5 Conclusions

In this contribution we analyzed an alternative mathematical model of uncertainty quantification and
processing which combines two qualitatively different approaches to the idea of uncertainty. The first
one takes the uncertainty in the sense of fuzziness and vagueness formalized above by the notion
of possibilistic space 〈E, E〉, the other approach is that of randomness, formalized by the standard
notion of probability space and probability algorithm. What may be perhaps of interest is the mutual
relation of both the uncertainty processing tools which copies the structure of probability algorithms,
well-known from numerous theoretical and practical procedures.

At least the two directions of further developing of the basic ideas of mixed uncertainty quantifica-
tion and processing models might be considered. First, more sophisticated details of the probability
algorithm sketched above and perhaps some of its interesting applications should be analyzed and dis-
cussed. Second, different combinations of various models of uncertainty quantification and processing
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should be considered. E.g., in the first step probability algorithm for classical real-valued quantifica-
tion are applied, but the quality of the achieved results, e.g., the distance of these results from the
ideally perfect masterpiece, are quantified in the terms of a possibilistic lattice-valued measure.

The authors hope to have a possibility, sometimes in the future, to return to these and related
problems more closely.

Important note concerning the references: for the reader’s convenience, the list of references con-
tains not only the items namely referred in the text, but also some works thematically tightly close
to the subject of this paper, so making its understanding more easy.
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