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Abstract:

Considering complete lattice as the structures in which non-numerical fuzzy sets or, in our case, possibilistic
measures take their values can be proved as too strong and restrictive for some practical cases when
processing uncertainty degrees. Hence, some weaker structures over uncertainty degrees may be worth
being considered and, in what follows, we investigate, for these purposes, possibilistic measures taking their
values in upper semilattices. Two alternative models how to modify the original upper semilattice-valued
mapping in order to obtain structures embeddable in a complete lattice are proposed and analyzed. In order
to compare the qualities of the original mapping taken as a partial upper semilattice-valued possibilistic
measure and the resulting complete lattice-valued possibilistic measure a complete lattice-valued entropy
function applicable to both the kinds of possibilistic measure is introduced and its values for the original
(partial upper semilattice-valued) and the resulting complete lattice-valued possibilistic measures are proved
to be identical.
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1 Introduction, Preliminaries, Problem Formulation

The origins of possibilistic measures go back to the notion of fuzzy sets as introduced, in its real-
valued version, by L. A. Zadeh in [16]. Given a nonempty space X, fuzzy set in X is a mapping
A : X → [0, 1] ascribing to each x ∈ X the value A(x) ∈ [0, 1] taken as the degree of uncertainty, in
the sense of fuzziness or vagueness, to which x belongs to A. In order to quantify the total amount of
this uncertainty contained in the standard (crisp) subset Y ⊂ X the value ΠA(Y ) = sup{A(x) : x ∈ Y }
was proposed and analyzed in more detail, again by L. A. Zadeh in [18]. He also proposed the term
possibilistic (or possibility) distribution for the mapping A : X → [0, 1], and the term possibilistic (or
possibility) measure for the mapping ΠA : P(X) → [0, 1] induced by A on the power-set of all subsets
of X.

When processing real-valued fuzzy sets, the most important operations over their values are those
of supremum and infimum. In spite of the operations of addition (summary or series taking), sub-
straction, multiplication, etc., which are the key ones for the standard measure and probability theory
and which are closely related with the structures over the real line in general and the unit interval
in particular, operations of supremum and infimum can be defined in a great variety of structures
including the non-numerical ones. It was why very soon, within two-years distance after the Zadeh’s
pioneering work, the first mathematical model of fuzzy sets with non-numerical fuzziness degrees was
presented in [8] by J. A. Goguen. This idea was re-written in the terms of lattice-valued possibilistic
measures and carefully and in detail analyzed by G. de Cooman in [2].

To proceed in our explanation, some more formal apparatus will be necessary and the reader is
supposed to be familiar with its most elementary foundations. Let T = 〈T,≤T 〉 be a partially ordered
set, hence, T is a nonempty set (support of T ) and ≤T is a reflective, antisymmetric and transitive
binary relation on T. Given ∅ 6= A ⊂ T, the supremum

∨
A and infimum

∧
T are defined in the

standard way, if necessary, we write
∨T

A and
∧T

A to avoid possible misunderstanding. In general,
neither

∨
A nor

∧
A need be defined for every A ⊂ T, the more specific examples are classified as

follows:
T = 〈T,≤T 〉 is an upper (a lower, resp.) semilattice, if for each finite A ⊂ T the supremum∨

A (the infimum
∧

A, resp.) is defined. T = 〈T,≤T 〉 is a complete upper (a complete lower, resp.)
semilattice, if for each A ⊂ T the supremum

∨
A (the infimum

∧
A), resp.) is defined.

T = 〈T,≤T 〉 is a lattice, if it is an upper semi-lattice and a lower semi-lattice. T = 〈T,≤T 〉 is a
complete lattice, if it is a complete upper semi-lattice and a complete lower semilattice.

The most simple examples may read as follows. The system P(Ω) of a nonempty space Ω defines
a complete lattice and the system of all finite subsets of Ω defines a complete lower semilattice and
an (incomplete, if Ω is finite) upper semilattce, both with standard set inclusion as partial ordering.
Other examples may be (a, b) ⊂ R = (−∞,∞) for incomplete lattice and 〈a, b〉 ⊂ R for complete
lattice, both with respect to the standard partial (linear, in this case) ordering ≤ on R.

In what follows, we focus our attention to the p.o.set 〈T,≤T 〉 such that, for each nonempty subset
A ⊂ T the infimum

∧T
A =

∧T
t∈A t is defined, and for each finite subset A ⊂ T (including the empty

set) the supremum
∨T

A =
∨T

t∈A is defined. Such a p.o.set 〈T,≤T 〉 will be called ∗-lattice and denoted
by T ∗.

Let Ω be a nonempty set, let T = 〈T,≤〉 be a p.o.set, let π : Ω → T be a total, i.e., for each ω ∈ Ω
defined mapping. If T defines a complete lattice and the condition of normalization

∨
ω∈Ω π(ω) =

1T =
∨

T holds, then π defines a T -(valued possibilistic) distribution on Ω, for each A ⊂ Ω the value
Π(A) =

∨
ω∈A π(ω) is defined (π(∅) = ®T =

∧
T ) and the (total) mapping Π : P(Ω) → T is called the

T -(valued possibilistic) measure induced by π on P(Ω), obviously, Π(Ω) = 1T . This case of complete
lattices and possibilistic distributions over then is analyzed and investigated in detail in [2, 3, 10],
and elsewhere, and it is the most simple in the sense that the existence of all supremum and infimum
values in question is assumed a priori.

Let Ω, T and π : Ω → T be as above, but this time let T ∗ = 〈T,≤T 〉 be an ∗-lattice. So, for each
∅ 6= A ⊂ T the infimum value

∧
A is defined in T ∗, but the supremum value

∨T is defined only if A
is finite. The intuition behind is very simple – such a lattice describes the behaviour of non-negative
characteristics whose positive values may take no matter which finite sizes: but there is no universal
upper bound over the possible values.
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Taking T ∗ as the structure over T, the definition of Π(A) may fail for infinite sets A ⊂ Ω and the
definition of π∗-possibilistic distribution π and T ∗-possibilistic measure Π may fail as well. If T ∗ is an
∗-lattice, the supremum value

∨
ω∈A π(ω) is obviously defined for nonempty finite A’s⊂ Ω, but also for

such infinite A’s for which the number of different values π(ω), ω ∈ A is finite, there subsets of Ω will be
called π-finite. Each nonempty finite subset of Ω is obviously also π-finite for each mapping π : Ω → T,
but the inverse implication need not be the case. Indeed, take Ω = {ω1, ω2, . . . }, π(ωj) = t1 ∈ T, if
j is odd, π(ωj) = t2 for j even. Then Π(A) is defined for each ∅ 6= A ⊂ Ω, as each ∅ 6= A ⊂ Ω is
π-finite. Hence, the mapping π : Ω → T does not define a T -possiblistic distribution on Ω and does
not induce a T -possiblistic measure Π on P(Ω) iff there exists an (obviously infinite) subset A0 ⊂ Ω
such that the set {π(ω) : ω ∈ A0} is infinite. So, the most simple (from the abstract mathematical
point of view) approximation of the mapping π : Ω → T, with respect to ∗-lattice T ∗ = 〈T,≤T 〉 by a
possibilistic distribution on Ω enabling to define possibilistic measure Π on P(Ω) reads as follows.

Let T ∗ = 〈T,≤T 〉 be an ∗-lattice, let Ω be a nonempty space, let π : Ω → T be a mapping, let
∅ 6= Ω0 ⊂ Ω be a π-finite subset of Ω, so that the value t0 =

∨
ω∈Ω0

π(ω) = Π(Ω0) is defined, let t1 ∈ T

be a fixed value such that t1 ≤ t0 holds. Define the mapping π0 : Ω → T in this way: π0(ω) = π(ω),
if ω ∈ Ω0, π

0(ω) = t1, if ω ∈ Ω− Ω0. Hence, the set {π0(ω) : ω ∈ Ω} is finite, as it is a subset of the
set {π0(ω) : ω ∈ Ω0} ∪ {t1}. Consequently, the space Ω is π0-finite and the identity

Π0(Ω) =
∨

ω∈Ω

π0(ω) =
∨

ω∈Ω0

π(ω) = t0 (1.1)

holds, as π0(ω) = t1 ≤ t0 holds for each ω ∈ Ω− Ω0. So, π0 : Ω → T defines a T0-valued possibilistic
distribution on Ω, where T0 = 〈T0,≤T ¹ T0〉, T0 = {t ∧ t0 : t ∈ T}, and this possibilistic distribution
induces the T0-possibilistic measure Π0 on P(Ω).

2 Lattice-Valued Possibilistic Entropy

When choosing the π-finite set Ω0 ⊂ Ω from which the construction of the possibilistic distribution π0

on Ω begins, at the first sight it seems to be intuitive to choose the greatest π-finite subset Ω0 ⊂ Ω.
However, up to the most simple case when the whole set Ω is π-finite, the greatest π-finite proper
subset of Ω does not exist. Indeed, if Ω is not π-finite, then no Ω0 ⊂ Ω such that Ω − Ω0 is π-finite
may be π-finite. If this were the case, then Ω would be also π-finite, as Ω = Ω0 ∪ (Ω−Ω0) holds. So,
if Ω is not π-finite, then for each π-finite Ω0 ⊂ Ω the set Ω − Ω0 is infinite and Ω0 may be extended
just to an Ω1 such that Ω0 ⊂ Ω1 ⊂ Ω holds, but Ω1 − Ω0 is finite and Ω− Ω1 is infinite.

Now, the problem is twofold. First, to find whether, and in which sense, the possibilistic distribu-
tion π0 could play the role in a reasonable sense similar to that one played by π on T supposing that
T were a complete lattice. Second, two free parameters, the set Ω0 and the value t1(≤ t0 = Π(Ω0))
enter our construction of π0 as free parameters and we may and will ask, how the changes of these
values influence some reasonable quality criterion applied to the resulting possibilistic distribution π0

on Ω. For these purposes let us recall the notion of lattice-valued possibilistic entropy function.

Definition 2.1 Let T = 〈T,≤T 〉 be a complete lattice, let π : Ω → T be a T -possibilistic distribution
on a nonempty space, so that

∨
ω∈Ω π(ω) = 1T (=

∨
t∈T t). The T -(valued possibilistic) entropy

function I will be defined by the Sugeno integral I(π) of the nonincreasing (in π(ω)) lattice-valued
function Π(Ω− {ω}). Hence,

I(π) =
∫

Π(Ω− {ω})dπ(ω) =
∨

ω∈Ω

[π(ω) ∧Π(Ω− {ω})] =

=
∨

ω∈Ω

[π(ω) ∧
∨

ω1∈Ω,ω1 6=ω

π(ω1)]. (2.1)

The weak point of this entropy function consists in the fact that if there are at least two different
ω1, ω2 ∈ Ω such that π(ω1) = π(ω2) = 1T , then
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I(π) = Π(Ω− {ω1}) ∧ π(ω1) = 1T ∧ 1T = 1T , (2.2)

as ω2 ∈ Ω − {ω1} holds. Nevertheless, in what follow we will apply this entropy function to the
distributions π0. In this case, and with the values t1 = t0 =

∨
ω∈Ω0

π(ω), we obtain that I(π0) = t0 =
1T0 , as t0 is the unit (the maximum) element in T0 = 〈T0,≤T ¹ T0〉, T0 = {t ∈ T, t ≤ t0}, supposing
that the space Ω is not π-finite. The same will be the case when π(ω1) = π(ω2) = t0 for at least two
ω1, ω2 ∈ Ω0. Consequently, the application of I to π0 will lead to non-trivial results when there exists
just one ω0 ∈ Ω such that π(ω0) = t0.

Theorem 2.1 Let T ∗ = 〈T,≤T 〉 be an ∗-lattice, let Ω be a nonempty space, let π : Ω → T be a (total)
mapping. Let Ω0 be a fixed π-finite subset of Ω so that the value t0 = Π(Ω0) =

∨
ω∈Ω0

π(ω) ∈ T is
defined. Let π0(ω) = π(ω), if ω ∈ Ω0, let π0(ω) = t1, if ω ∈ Ω−Ω0, where t1 < t0 is a fixed element of
T, let there exist ω0 ∈ Ω0 such that π(ω0) = t0 is the case, let I be the lattice-valued entropy function
defined by (2.2). Then the relation

I(π0) = t1 ∨

 ∨

ω∈Ω0,ω 6=ω0

π(ω)


 = t1 ∨Π(Ω− {ω0}) (2.3)

holds.

Proof: As shown in Section 1, the mapping π0 defines a T0-valued possibility distribution on the
complete lattice T0 over T0. The entropy value I(π0) may be separated into three items as follows.

I(π0) =
∨

ω∈Ω

(π0(ω) ∧Π0(Ω− {ω})) =

=


 ∨

ω∈Ω0−{ω0}
(π0(ω) ∧Π0(Ω− {ω}))


 ∨

[ ∨
ω=ω0

(π0(ω) ∧Π0(Ω− {ω}))
]
∨

[ ∨

ω∈Ω−Ω0

(π0(ω) ∧Π0(Ω− {ω}))
]

. (2.4)

For each A ⊂ Ω, π0(ω) takes only finitely many values, if ω ranges over A, so that each A ⊂ Ω is
π0-finite and the values Π0(A), in particular, the values Π0(Ω− {ω}), are defined for each ω ∈ Ω.

Let us distinguish two cases: (i) there is only one ω0 ∈ Ω0 such that π(ω0) = t0 =
∨

ω∈Ω0
π(ω), and

(ii) there are at least two such ω0’s, let us denote them ω1
0 , ω2

0 . If (i) is the case, then Π0(Ω−{ω}) = t0,
if ω 6= ω0, and Π0(Ω − {ω0}) = t1 ∨

∨
ω∈Ω,ω 6=ω0

π(ω) for ω0, if (ii) is valid, then Π0(Ω − {ω}) =∨
ω∈Ω0

π(ω) = t0 holds for each ω ∈ Ω. Hence, the values π0(ω) ∧ Π0(Ω − {ω}) are in T and range
over a finite subset of T, so that the supremum values occuring in (2.4) are defined.

So, if (i) holds, then for each ω ∈ Ω0−{ω0} the relations ω0 ∈ Ω−{ω} and Π0(Ω−{ω}) = π(ω0) = t0
hold. Consequently, for each ω ∈ Ω0 − {ω0}, π0(ω) ∧ Π0(Ω − {ω}) = π0(ω) ∧ t0 = π0(ω), hence, we
obtain that the relation

∨

ω∈Ω0,ω 6=ω0

[π0(ω) ∧Π0(Ω− {ω})] =
∨

ω∈Ω0,ω 6=ω0

π0(ω) =
∨

ω∈Ω0,ω 6=ω0

π(ω) (2.5)

is valid, as for each ω ∈ Ω0 the values π0(ω) and π(ω) are identical. The following line in (2.4) yields
that

π0(ω0) ∧ π0(Ω− {ω0}) = t0 ∧
∨

ω∈Ω0,ω 6=ω0

π0(ω). (2.6)

3



If ω ∈ Ω−Ω0 is the case, then ω 6= ω0 follows (as ω0 ∈ Ω0), so that ω0 ∈ Ω−{ω} and Π0(Ω−{ω}) = t0
hold as well, hence,

∨

ω∈Ω−Ω0

[π0(ω) ∧Π0(Ω− {ω})] =
∨

ω∈Ω0

[t1 ∧ t0] = t1, (2.7)

according to the definition of π0(ω) for ω ∈ Ω − Ω0. Combining together (2.5), (2.6), and (2.7), we
obtain that in the case (i), I(π0) = t1 ∨ [

∨
ω∈Ω0,ω 6=ω0

π(ω)] holds.
If (ii) is the case (i.e., π(ω1

0) = π(ω2
0) =

∨
ω∈Ω0

π(ω) holds for different ω1
0 , ω2

0 ∈ Ω0,) then Π0(Ω−
{ω}) = π0(ω0) for each ω ∈ Ω, so that

I(π0) =
∨

ω∈Ω

(π0(ω) ∧ π0(ω)) =
∨

ω∈Ω

π0(ω) = π0(ω0) (2.8)

holds for both ω0 = ω1
0 , ω0 = ω2

0 . Consequently, for both ω1
0 , ω2

0 , either ω2
0 or ω1

0 is in Ω − {ω1
0} (in

Ω− {ω2
0}, resp.), so that

∨

ω∈Ω

π0(ω) =
∨

ω∈Ω,ω 6=ω0

π0(ω) = π0(ω0) = I(π0) (2.9)

follows and the assertion is proved also in the case (ii). 2

Consequently, the value I(π0) is nontrivial (in the sense that it is smaller than the maximum value∨
ω∈Ω0

π(ω)) only when there exists only one ω0 ∈ Ω0 such that π(ω0) =
∨

ω∈Ω0
π(ω) and this value

π(ω0) is strictly greater than each π(ω), ω 6= ω0, in the sense that
∨

ω∈Ω,ω 6=ω0
π(ω) < π(ω0) holds.

3 A Simple Illustrative Example

As an illustration, the following simple example may be introduced. Let T = 〈T,≤T 〉 be an ∗-lattice,
e.g., the set of all non-negative integers under their standard ordering, let Ω be a nonempty space, let
π : Ω → T be given, let t ∈ T be fixed. Take ω1 ∈ Ω such that t < π(ω1) holds, take Ω1 = {ω1}. The
set Ω1 is obviously finite, hence, π-finite, so that we may define the mapping π1 : Ω → T analogously
to π0 above and we obtain: π1(ω1) = π(ω1), π1(ω) = t < π(ω1) for each ω ∈ Ω− {ω1}. According to
(2.1) we define the entropy function I and we obtain for π1, that

I(π1) =
∨

ω∈Ω

[π1(ω) ∧Π1(Ω− {ω})] =

= [π1(ω1) ∧Π1(Ω− {ω1})] ∨
∨

ω∈Ω,ω 6=ω1

[π1(ω) ∧Π1(Ω− {ω})]. (3.1)

As π(ω) = t for each ω 6= ω1, Π1(Ω − {ω1}) = t follows. In the same case, ω1 ∈ Ω − {ω}, hence,
Π1(Ω− {ω}) = π(ω1) holds, so that (3.1) yields that

I(π1) = [π1(ω1) ∧ t] ∨
∨

ω∈Ω,ω 6=ω1

(t ∧ π1(ω1)) = t ∧ π1(ω1) = t (3.2)

holds due to the assumption that t < π(ω1) is valid.
Obviously, when taking ω2 ∈ Ω, ω2 6= ω1, setting Ω2 = {ω2}, introducing the mapping π2 : Ω → T

analogously to π1 but now with Ω2 (π is the same as above), and supposing that t < π2(ω2)(= π(ω2))
holds for the same t ∈ T as before, we obtain that I(π2) = t ∧ π2(ω2) = t holds as well, so that
I(π∗) = t for each π∗ induced from π by Ω∗ = {ω∗} such that t < π(ω∗) holds.

Let us combine Ω1 and Ω2 in this way. Keep T , π,Ω, ω1, ω2 and t as above and set Ω12 = {ω1, ω2}.
Consequently, define π12 : Ω → T in this way: π12(ω1) = π(ω1), π12(ω2) = π(ω2), π12(ω) = t
(<T π(ω1), π(ω2), according to the assumptions) for each ω ∈ Ω − {ω1, ω2}. For the entropy value
I(π12) we obtain that
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I(π12) =
∨

ω∈Ω

(π12(ω) ∧Π12(Ω− {ω})) =

= [(π12(ω1)) ∧Π12(Ω− {ω1})] ∨ [(π12(ω2)) ∧Π12(Ω− {ω2})] ∨
∨

∨

ω∈Ω−{ω1,ω2}
[π12(ω) ∧Π12(Ω− {ω})] =

= [π(ω1) ∧ π(ω2)] ∨ [π(ω2) ∧ π(ω1)] ∨ [t ∧Π({ω1, ω2})] = π(ω1) ∧ π(ω2),
(3.3)

applying the inequalities t <T π(ω1), t <T π(ω2), and the elementary relations valid in p.o.sets.
Let us analyze the same situation applying Theorem 2.1 to the particular case when Ω12 = {ω1, ω2}

and π(ω1) > t, π(ω2) > t holds. So, Ω12 = {ω1} ∪ {ω2}, hence
∨

ω∈Ω0
π(ω) = π(ω1) ∨ π(ω2) (here and

below Ω0 denotes Ω12) is defined and we suppose, according to the conditions imposed in Theorem 2.1,
that there exists ω0 ∈ Ω0 such that π(ω0) = π(ω1) ∨ π(ω2). This may be the case only when π(ω1) ≤
π(ω2) (hence, ω0 = ω2 and π(ω0) = π(ω2)) holds, or when π(ω2) ≤ π(ω1) (hence, ω0 = ω1 and
π(ω0) = π(ω1)) is the case, without any loss of generality we may suppose that π(ω1) ≤ π(ω2) holds.
Relation (2.3) then yields that

I(π12) = t ∨Π0(Ω0 − {ω0}) = t ∨ π(ω1) = π(ω1) = π(ω1) ∧ π(ω2), (3.4)

as in (3.3).

Lemma 3.1 Let the notations and conditions of Theorem 2.1 hold, let t1 = ®T (=
∧

t∈T t), let
ω1 ∈ Ω − Ω0 be such that π(ω1) ≥ π(ω0) =

∨
ω∈Ω0

π(ω) hold, let Ω1 = Ω0 ∪ {ω1}, let π1(ω) = π(ω)
for each ω ∈ Ω1, let π1(ω) = ®T (= t1 in our particular case) for each ω ∈ Ω− Ω1. Then

I(π1) = I(π0) ∨ π(ω0) = Π0(Ω0) = Π1(Ω1 − {ω1}). (3.5)

Proof: As the set Ω0 is supposed to be π-finite, the same is valid for Ω1 and there exists ω ∈ Ω,
namely ω1, such that π1(ω1) =

∨
ω∈Ω1

π1(ω). Hence, applying Theorem 2.1, we obtain that

I(π1) =
∨

ω∈Ω1−{ω1}
π1(ω) =

∨

ω∈Ω0

π(ω) = Π0(Ω0) = Π0(Ω0 − {ω0}) ∨Π0({ω0}) =

= I(π0) ∨ π(ω0) (3.6)

and the assertion is proved. 2

The following corollary of Lemma 3.1 is easy to verify.

Corollary 3.1 If π(ω1) < π(ω0) =
∨

ω∈Ω0
π(ω) is the case, then the identity

I(π1) =
∨

ω∈Ω1−{ω1}
Π(ω) =

∨

ω∈Ω0

π(ω) =
∨

ω∈Ω0−{ω0}
π(ω) = I(π0) (3.7)

easily follows.

4 An Alternative Approximation of Possibilistic
Distributions for ∗-Lattice-Valued Mappings

As above, let T ∗ = 〈T,≤T 〉 be an asterisk lattice, let Ω be a nonempty set, let π : Ω → T be a mapping,
let q0 ∈ T be given, let π0 : Ω → T be defined by π0(ω) = π(ω) ∧ q0. Then π0 is a mapping which
takes its values in the structure T0 = 〈T0,≤T ¹ T0〉, where T0 = {t ∈ T : t ≤ q0} = {t ∧ q0 : t ∈ T},
and ≤T ¹ T0 is the restriction of ≤T on T0, so that t1 ≤T ¹ T0 t2 holds iff t1, t2 ∈ T0 and t1 ≤T t2 is
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the case. Let there exist ω0 ∈ Ω such that π(ω0) ≥ q0 holds, and the mapping π0 : Ω → T0 defines a
lattice-valued possibilistic distribution on Ω taking values in the complete lattice T0.

We will suppose, that given q0 ∈ T, the structure T0 = 〈T0,≤T ¹ T0〉 defines a complete lattice.
In this case, the restriction ≤T ¹ T0 of the partial ordering ≤T on T0 also defines a partial ordering
so that what remains to be proved is the existence of the supremum

∨T0 A and the infimum
∧T0 A

for each ∅ 6= A ⊂ T0. For
∧T0 A we obtain easily that this infimum exists due to the existence of

the infimum
∧T0 A (recall that T ∗ is an asterisk lattice) and both the infimum values are identical.

If
∨T

A is defined for A ⊂ T0, then
∨T

A ≤ q0 holds, so that
∨T0 A also exists and is identical with∨T

A. If
∨T

A does not exists, then the value q0 is the only upper bound for all elements of A in the
sense of the relation ≤T ¹ T0, so that this value defines the supremum value

∨T0 A of the set A ⊂ T0.
Consequently, the p.o.set T0 = 〈T0,≤T ¹ T0〉 defines a complete lattice. As π(ω0) ≥ q0 is supposed to
hold, we obtain that π0(ω0) = π(ω0) ∧ q0 = q0 = 1T0 is valid, so that

∨
ω∈Ω π0(ω) = q0 = 1T0 , hence,

π0 defines a T0-valued possibilsitic distribution on Ω.

Theorem 4.1 Let the ∗-lattice T = 〈T,≤T 〉, nonempty set Ω, mapping π : Ω → T and the entropy
function I(π) be defined as above, let q0 ∈ T be given such that there exists ω0 ∈ Ω with the property
π(ω0) ≥ q0, let π0 : Ω → T be defined by π0(ω) = π(ω)∧q0 for each ω ∈ Ω, here ∧ denotes the infimum
operation in T . Then the value Π0(A) =

∨T0
ω∈A π0(ω) is defined for each A ⊂ Ω and the relation

I(π0) = Π0(Ω− {ω0}) (4.1)

holds.

Proof: Let ω0 ∈ Ω be such that π(ω0) ≥ q0, hence, π0(ω0) = π(ω0) ∧ q0 = q0 holds. For I(π0) =∨
ω∈Ω(π0(ω) ∧ Π0(Ω − {ω0})) we obtain that if ω 6= ω0, then ω0 ∈ Ω − {ω} is the case, so that

Π0(Ω− {ω}) =
∨

ω1∈Ω,ω1 6=ω π(ω1) = π(ω0) = q0 follows. If ω = ω0, we obtain that

π0(ω) ∧Π0(Ω− {ω}) = π(ω0) ∧Π0(Ω− {ω0}) = q0 ∧Π0(Ω− {ω0}) = Π0(Ω− {ω0}). (4.2)

Combining both the cases together, the result

I(π0) = (π(ω0) ∧Π0(Ω− {ω0})) ∨
T0∨

ω∈Ω,ω 6=ω0

(π0(ω) ∧Π0(Ω− {ω})) =

= (q0 ∧Π0(Ω− {ω0})) ∨
T0∨

ω∈Ω−{ω0}
(π0(ω) ∧ π0(ω0)) =

= Π0(Ω− {ω0}) ∨
T0∨

ω∈Ω−{ω0}
π0(ω) =

= Π0(Ω− {ω0}) ∨Π0(Ω− {ω0}) = Π0(Ω− {ω0}) (4.3)

follows, so that the assertion is proved. 2

Corollary 4.1 The value I(π0) in (4.1) is defined uniquely no matter how large the set {ω ∈ Ω :
π0(ω) = q0} may be.

Proof: Supposing that there exists only one ω0 such that π0(ω0) = q0 (i.e., such that π(ω0) ≥ q0 holds),
the assertion is obvious. If there exist at least two elements ω0, ω1 ∈ Ω such that π0(ω0) = π0(ω1) = q0

holds, then ω1 ∈ Ω − {ω0}, hence, Π0(Ω − {ω1}) = Π0(Ω − {ω0}) = q0 = I(π0). So, I(π0) is defined
uniquely and takes the maximum value q0 (let us recall that q0 defines the maximum or the unit
element of the complete lattice T0 = 〈T0,≤T0〉). 2
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5 Sequential Applications of Approximation
Operations to Lattice-Valued Mappings

In order to be able to define repeated applications of the operation (·)0 leading from a mapping
π : Ω → T to the mapping π0 : Ω → T given Ω0 ⊂ Ω and t1 ∈ T , let us rewrite this operation in the
following way. Let T = 〈T,≤T 〉 be an ∗-lattice, let π be a mapping which takes Ω into T, let Ω0 be
a π-finite subset of Ω, let t ∈ T be given. Then ϕ(Ω0, t) is the operation ascribing to π the mapping
ϕ(Ω0, t)(π) : Ω → T such that

(ϕ(Ω0, t)(π))(ω) = π(ω), if ω ∈ Ω0, (ϕ(Ω0, t)(π))(ω) = t, if ω ∈ Ω− Ω0.

Hence, the particular mapping π0 : Ω → T, defined and analyzed in more detail above, would be
denoted by (ϕ(Ω0, t1))(π).

Let t ∈ T, let Q = 〈Ω1, Ω2, . . . 〉 be an infinite sequence of nonempty π-finite subsets of Ω, let
ϕ(n)(Q, t) be the operation ascribing to each π : Ω → T the mapping (ϕ(n)(Q, t))(π) : Ω → T defined
by induction on n in this way: (ϕ(1)(Q, t))(π) = (ϕ(Ω1, t))(π)(= π0 in the former notation with Ω0 =
Ω1, t1 = t),

(ϕ(n)(Q, t))(π) = (ϕ(Ωn, t))((ϕ(n−1)(Q, t))(π)). (5.1)

Theorem 5.1 Under the notations and conditions introduced in (5.1) the relation

(ϕ(n)(Q, t))(π) =

(
ϕ

((
n⋂

i=1

Ωi

)
, t

))
(π) (5.2)

holds. Hence, ((ϕ(n)(Q, t))(π)(ω) = π(ω) holds, if ω ∈ Ωi holds for each 1 ≤ i ≤ n, and ((ϕ(n)(Q, t))
(π))(ω) = t otherwise.

Proof: Like the definition of ϕ(n), also the proof is by induction on n. For n = 1 the relation (5.2)
reduces to

(ϕ(1)(Q, t))(π) =

(
ϕ

(
1⋂

i=1

Ωi, t

))
(π) = (ϕ(Ω1, t))(π) (5.3)

which agrees with the definition of ϕ(1)(Q, t) in (5.1). Let (5.2) hold for n = 1, denote the set
⋂n

i=1 Ωi

by Ω(n). Hence, we have to prove that

(ϕ(Ωn, t))(ϕ(Ωn−1, t)(π)) = (ϕ(Ω(n), t))(π) (5.4)

holds.
Let ω ∈ ⋂n

i=1 Ωi, hence, ω ∈ Ωi for each i ≤ n, so that ((ϕ(Ωi, t))(π))(ω) = π(ω) is valid for each
i ≤ n− 1. As ω ∈ Ωn holds as well,

((ϕ(Ωn, t))(π))(ω) = ((ϕ(n−1)(Q, t))(π))(ω) = π(ω), (5.5)

hence, ((ϕ(n)(Q, t))(π))(ω) = π(ω).
Let ω ∈ ⋂n−1

i=1 Ωi, but ω ∈ Ω− Ωn be the case. Then ((ϕ(Ωn, t))(π))(ω) = t no matter which the
value ((ϕ(n−1)(Q, t))(π))(ω) may be, so that ((ϕ(n)(Q, t))(π))(ω) = t holds. If ((ϕ(n−1)(Q, t))(π))(ω) =
t, then the value ((ϕ(n)(Q, t))(π))(ω) = t follows either as the copy of the value ((ϕ(n−1)(Q, t))(π))(ω),
if ω ∈ Ωn holds, or the same value ((ϕ(n)(Q, t))(π)(ω) = t follows according to the rule how to
process the value ((ϕ(n−1)(Q, t))(π))(ω) for ω ∈ Ω− Ωn. To conclude, ((ϕ(n)(Q, t))(π))(ω) = π(ω), if
ω ∈ ⋂n

i=1 Ωi holds, this value being t otherwise. The assertion is proved. 2

7



As the most simple example let us introduce the case with n = 2 and Ω1 = Ω2 (= Ω0), hence, let
us analyze the repeated application of the operation (·)0 to the mapping π : Ω → T. So, we have to
compute the mapping π0(π0) : Ω → T. We obtain that (π0(π0))(ω) = π0(ω) = π(ω) for ω ∈ Ω0. If
ω ∈ Ω−Ω0 is the case, then π0(π0(ω)) = t no matter which the actual value Π0(ω) may be according
to the rule defining the value π0(ω) for ω ∈ Ω− Ω0. So, π0(π0(ω)) = π(ω), if ω ∈ Ω0, π

0(π0(ω)) = t,
if ω ∈ Ω − Ω0, so that π0(π0(ω)) = π0(ω) for every ω ∈ Ω, in other terms, the operation (·)0 is
idempotent.

For the alternative approximation π0 of the mapping π the situation is analogous, the operation
(·)0 is also idempotent. Let us recall that, given π : Ω → T, the mapping π0 : Ω → T is defined by
π0(ω) = π(ω) ∧ q0 for certain q0 ∈ T. We obtain that the relation

π0(π0(ω)) = (π0(ω)) ∧ q0 = (π(ω) ∧ q0 = π(ω) ∧ q0 = π0(ω) (5.6)

is valid, so that (·)0 is also idempotent.
The following assertion is almost self-evident.

Lemma 5.1 Let T = 〈T,≤T 〉 be an ∗-lattice, let π : Ω → T be as above, let for each i = 1, 2, . . . , qi

be an element of T such that there exists ωi ∈ Ω with the property qi ≤T π(ωi), let Ψi be the operator
transforming the mapping π into the mapping Ψi(π) : Ω → T defined, for each ω ∈ Ω, by (Ψi(π))(ω) =
π(ω) ∧ qi. let Ψ(n) be the operator defined by induction as (Ψ(1)(π))(ω) = π0(ω) = π(ω) ∧ q1,

(Ψ(n)(π))(ω) = ϕn((Ψ(n−1)(π))(ω)) = (Ψ(n−1)(π))(ω) ∧ qn. (5.7)

Then Ψ(n)(ω) = π(ω) ∧ (
∧n

i=1 qi).

6 Conclusions

When taking into consideration uncertainty quantifications with non-numerical degrees, complete lat-
tices were quite naturally the first structures coming into one’s mind, into which such uncertainty
values should be embedded. Indeed, as finite and infinite suprema and infima of non-numerical uncer-
tainty degrees are defined for each complete lattice-valued systems, the considerations over uncertainty
or possibility degrees taking their values in an appropriate complete lattice are simplified by the gen-
eral assumption that suprema and infima of all sets of possibility degrees are always defined, hence,
their existence need not be, case by case, either proved or assumed to be defined in some particular
cases, and replaced by weaker properties in the remaining cases.

On the other side, we should like also to investigate possibility degrees taking their values in weaker
structures than complete lattices, e.g., in upper semilattices. Such semilattices describe the qualitative
properties of non-negative quantities which are finite but not covered by a common upper bounds.
Such quantities may be processed just by finite and qualitative relations like “the value of an object
A (its price, e.g.) is greater than (not lesser that, resp.) than the value (price) of an object B” and,
in general, not every two objects are comparable with each other in this sense.

In this paper we have proposed and analyzed the solution perhaps the most simple and conser-
vative one from the methodological (even if perhaps not too easy from the computational) point of
view. Namely, we have subjected the original upper semilattice to certain modifications (deforma-
tions) transforming this upper semilattice into a complete lattice preserving at least some important
properties of the original upper semilattice, expressed and proved in assertions on the values taken by
lattice-valued entropy function for the original as well as for the resulting structures. Two models of
modifications (deformations) are proposed and analyzed, both of them depending on free parameters
the choice of which involves the properties and qualities of the resulting complete lattice related to
the outcoming upper semilattice.

At present, the author tries to open another way how to overcome the problem that the supre-
mum value Π(A) =

∨
ω∈A π(ω) is not defined for infinite sets A ⊂ Ω with infinite sets of values of

upper-semilattice-valued mappings π : Ω → T. This approach is based on the principal paradigma of
mathematical statistics according to which “appropriately”, in the sense which can be precized and
formalized within the framework of standard probability theory and mathematical statistics, chosen
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or “sampled” (when using standard tern of mathematical statistics), finite subset A0 ⊂ A may be
used instead of the whole A ⊂ Ω so that the value Π(A0) =

∨
ω∈A0

π(ω) is defined and either approx-
imates (estimates) sufficiently closely the value Π(A), if this value is defined, or the value Π(A0) in a
reasonable sense extends the mapping Π from finite and π-finite subsets of Ω to A. A more detailed
manuscript is just under preparation and the author hopes to submit it for publication as soon as
possible.
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