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Static load balancing of parallel mining of frequent itemsets using reservoir
sampling

Robert Kessl∗

Abstract

In this paper, we present a novel method for parallelization

of an arbitrary depth-first search (DFS in short) algorithm

for mining of all FIs. The method is based on the so

called reservoir sampling algorithm. The reservoir sampling

algorithm in combination with an arbitrary DFS mining

algorithm executed on a database sample takes an uniformly

but not independently distributed sample of all FIs using the

reservoir sampling. The sample is then used for static load-

balancing of the computational load of a DFS algorithm for

mining of all FIs.

1 Introduction

The automated data collection causes that companies
own huge databases. The companies are interested in
analysing their databases, so they can use them for
making better decisions. The process of analysing the
data is called data mining. Unfortunately, extreme
growth of the database sizes make using ordinary data
mining techniques unfeasible. Processing of databases
of such sizes is almost impossible with a single processor.
Therefore, new parallel algorithms that are able to
process such amount of data are needed. Today,
large shared-memory machines parallel are still quite
expensive. Distributed-memory multiprocessors can
be easily built from cheap computers connected with
a special network. Therefore, we consider designing
algorithms for distributed-memory parallel machines.

One of the important data mining tasks is the search
for co-occurences among the data, so called frequent
itemset mining [1]. The frequent itemset mining was
introduced in the context of analysing the market basket
of a consumer in a retail store (hence the term market
basket analysis). In the retail store, we track the
contents of baskets of customers. The content of the
baskets is stored in the database as transactions. In this
database, we search for sets of items (itemsets in short)
that occurs in at least min support transactions. These
itemsets are so called frequent itemsets (or FIs in short).
From FIs, we create rules of type X ⇒ Y , where X,Y

∗This paper was supported from the Czech Science Founda-
tion, grant number GA ČR P202/10/1333.

are two FIs. For example {butter, bread} ⇒ {milk}.
The search of these co-occurences is divided into two
parts: 1) find all frequent itemsets; 2) create association
rules from the FIs.

This task is computationally and memory demand-
ing. It seems that the finding of all frequent itemsets
is the most time-consuming part of the whole process.
With the growth of retail-store databases it is important
to design parallel algorithms for mining of FIs.

The first parallel algorithm for this task was pro-
posed in [2]. In [3] and [4] we have proposed new par-
allel methods for mining of FIs. First, we denote the
set of all FIs by F . The basic idea of the algorithms
proposed in [3, 4] is to create a sample of FIs F̃s that is
used to create disjoint partitions Fi, Fj ⊆ F such that
|Fi|/|F| ≈ 1/P , where P is the number of processors.
The relative size |Fi|/|F| is estimated using the sample

F̃s. The partitions Fi are then independently processed
by each processor. In [3, 4], we have proposed a method

of creation of F̃s, based on a modified coverage algo-
rithm. The problem with these two methods is that
the sample F̃s is non-uniform and additionally the two
methods needs an algorithm for mining of maximal fre-
quent itemsets (MFIs in short). Since the number of
MFIs can be quite large the methods are in some cases
very memory consuming.

In this paper, we show how to create a uniform
sample F̃s using a different, faster and less memory
consuming, method. The new method does not need
to compute the MFIs (and store them in main memory)
and therefore is less memory consuming. Additionally,
our new method needs only the algorithm for mining of
FIs and its modifications.

2 Notation

Let B = {bi} be a base set of items (items can be
numbers, symbols, strings etc.). An arbitrary set of
items U ⊆ B will be further called an itemset. Further,
we need to view the baseset B as an ordered set. The
items are therefore ordered using an arbitrary order <:
b1 < b2 < . . . < bn, n = |B|. Hence, we can view an
itemset U = {bu1

, bu2
, . . . , bu|U|}, bu1

< bu2
< . . . bu|U| ,

as an ordered set denoted by U = (bu1
, bu2

, . . . , bu|U|).
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Let U ⊆ B be an itemset and id a unique identifier.
We call the pair (id, U) a transaction. The id is called
the transaction id. A database D is a set of transactions.
In our algorithms, we need to sample the database D.
A database sample is denoted by D̃. We define the
support as the number of transactions containing U ,
but in some literature, the relative support is defined
by Supp∗(U) = Supp(U)/|D|. We call U frequent in
database D if Supp(U,D) ≥ min support. We can also
define the frequent itemset using the relative support,
denoted by min support∗, 0 ≤ min support∗ ≤ 1, i.e.,
an itemset is frequent iff Supp∗(U,D) ≥ min support∗.

We denote the set of all frequent itemsets computed
from D by F . The set of all frequent itemsets computed
from D̃ is denoted by F̃ . A sample of frequent itemsets
is denoted by F̃s. In our case, the set F̃s is a sample of
F̃ , i.e., F̃s ⊆ F̃ .

The basic property of frequent itemsets is the so
called monotonicity of support. It is an important
property of all FIs mining algorithms and is defined as
follows:

Theorem 2.1. (Monotonicity of support) Let
U, V ⊆ B be two itemsets such that U ( V and D be a
database. Then for the supports of U and V we have
Supp(U,D) ≥ Supp(V,D).

The multivariate hypergeometric distribution de-
scribes the following problem: let the number of colors
be C and the number of balls colored with color i is
Mi and the total number of balls is N =

∑
iMi. Let

Xi, 1 ≤ i ≤ C, be a random variable representing the
number of balls colored by the ith color. The sample
of size n is drawn from balls and Xi balls, such that
n =

∑C
i=1Xi, are colored by the ith color. Then the

probability mass function is:

P (X1 = k1, . . . , XC = kC) =

∏C
i=1

(
Mi

ki

)(
N
n

) .

We denote the number of processors by P and
processor i by pi.

3 The lattice of all itemsets

It is well known that the powerset P(B) of a set B is
a complete lattice. The join operation is the set union
operation and meet the set intersection operation. To
decompose the P(B) into the prefix-based equivalence
classes, we need to order the items in B. An equivalence
relation partitions the ordered set P(B) into disjoint
subsets called prefix-based equivalence classes:

Definition 3.1. (prefix-based equivalence class)
Let U ⊆ B, |U | = n be an itemset. We im-
pose some order on the set B and hence view
U = (u1, u2, . . . , un), ui ∈ B as an ordered set. A prefix-
based equivalence class (PBEC in short) of U , denoted
by [U ]`, is a set of all itemsets that have the same prefix
of length `, i.e., [U ]` = {W = (w1, w2, . . . , wm)|ui =
wi, i ≤ `,m = |W | ≥ |U |, ` ≤ |U |, U,W ⊆ B}

To simplify the notation, we use [W ] for the PBEC
[W ]` iff ` = |W |. Each [W ],W ⊆ B is a sublattice
of (P(B),⊆). Additionally, we use the term prefix
for both: (a) ordered set ; (b) unordered set ; if clear
from context, e.g., let B = {1, 2, 3, 4, 5} with the order
1 < 2 < 3 < 4 < 5 and U = {3, 1, 2} then the term
prefix means U = (1, 2, 3).

Definition 3.2. (Extensions) Let U ⊆ B be an
itemset. We impose some order < on the set B =
(b1, b2, . . . , bn) and view U = (u1, u2, . . . , um), ui ∈ B
as an ordered set. The extensions of the PBEC [U ] is
an ordered set Σ ⊆ B such that U ∩Σ = ∅ and for each
W ∈ [U ],W \ U ⊆ Σ. We denote the PBEC together
with the extensions Σ by [U |Σ].

We omit the extensions from the notation if clear
from context.

Let B = {b1, . . . , bn}, b1 < . . . < bn. Let Ui = {bi}
and Σi = {bj |bi < bj} and Q = {(Ui,Σi)} be a set
of pairs such that each pair forms a PBEC [Ui|Σi].
The [Ui|Σi] forms disjoint PBECs. Each PBEC [Ui|Σi]
can be recursively divided into disjoint PBECs in the
following way: let q = (U,ΣU ) ∈ Q and Wk = U ∪
{bk}, bk ∈ ΣU and Σ′k = {b|bk < b; b, bk ∈ ΣU} then
[Wk|Σ′k] forms disjoint PBECs. The PBEC [U |ΣU ] is a
union of the new PBECs: [U |ΣU ] = (

⋃
k[Wk|Σ′k])∪{U}.

We can replace q = (U,ΣU ) by pairs (Wk,Σ
′
k), i.e.,

Q′ ← (Q \ q) ∪ (
⋃
k{(Wk,Σk)}). Since the pairs in

Q forms disjoint PBECs and the new PBECs are also
disjoint and [U |ΣU ] = (

⋃
k[Wk|Σ′k]) ∪ {U}, the set Q′

also forms disjoint PBECs and contains almost the same
FIs. This process can be recursively repeated, making
the PBECs smaller. During the partitioning, we can
freely change the order of items in the extensions ΣU :
the resulting PBECs remain disjoint.

Further, we need to partition F into P disjoint sets,
Fi, such that

⋃
i Fi = F and |Fi|/|F| ≈ 1/P . This

partitioning can be done using the PBECs. The PBECs
can be collated to a single partition: let have m disjoint
PBECs [Ul], such that

⋃
l[Ul] = F and sets of indexes

of the PBECs Li ⊆ {l|1 ≤ l ≤ m}, 1 ≤ i ≤ P such that
Li ∩ Lj = ∅,

∑
i |Li| = m and Fi =

⋃
l∈Li

([Ul] ∩ F).
The sets Li can be chosen in such a way that Fi make
the partitions of relative size |Fi|/|F| ≈ 1/P
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4 Existing parallel algorithms

There is a number of parallel algorithms for parallel
mining of FIs on distributed memory machines. A lot of
these algorithms are based on the Apriori algorithm [1].
Because the Apriori algorithm is a breadth-first search
algorithm, it is very slow and needs huge amount of
memory. A first parallelization of the Apriori algorithm
is the count distribution algorithm [2]. A prunning tech-
niques for the parallel Apriori algorithm were proposed
by Cheung [5, 6].

Parallelizations of the Eclat algorithm were pro-
posed by Zaki[7]. The parallelization of the FP-
Growth algorithm was proposed by [8]. The idea be-
hind these two algorithms is to estimate the amount of
FIs in a PBEC and schedule the PBECs based on the
estimation. In both cases, the estimation of the size of
the PBECs is a heuristic. Unfortunately, the heuris-
tic cannot be viewed as a static load-balancing method,
because it does not capture the real amount of FIs in a
PBEC.

Another parallelization of the algorithm for mining
of all FIs was proposed by Veloso[9]. The method in fact
uses only a parallel algorithm for mining of MFIs. The
method first distributes the database among processors,
processor pi having a database partition Di such that
Di ∩Dj = ∅, |Di| ≈ |D|/P . The method then computes
the MFIs from the whole database in parallel and then
each pi enumerates all FIs using the computed MFIs,
computing support for each FI in Di. The supports
are then added together in parallel. First, we have to
argue that in the case of having large amount of FIs, the
parallel computation of supports can be very expensive
in the terms of communication. Second, it is not clear
from the paper which algorithm is used for computation
of the speedup, i.e., to which sequential algorithm is
compared the execution time of the parallel algorithm.

In [4], we have proposed the Parallel-FIMI-Par
method for parallel mining of all FIs. Our method
also computes the MFIs. However, we compute the
MFIs from a database sample and we use the MFIs
for different purpose. The MFIs are used for making
a sample of FIs. We discuss the Parallel-FIMI-Par
method in a more detail in Section 7.

5 Sampling methods

The basic idea of our method is to create a database
sample D̃ and from D̃ we create F̃s that allow us to
estimate the relative size of an arbitary PBEC. The
reason of making F̃s using D̃ is the speed of the “double
sampling process”.

5.1 Database sample The time complexity of the
decision whether an itemset U is frequent or not is in

fact the complexity of computing the relative support
Supp∗(U,D) in the input database D. If we know
the approximate relative support of U , we can decide
whether U is frequent or not with certain probability.
We can estimate the relative support Supp∗(U,D) from

a database sample D̃, i.e., we can use Supp∗(U, D̃)
instead of Supp∗(U,D) – this significantly reduces the
time complexity. The approach of estimating the
relative support of U was described by Toivonen [10].

Toivonen uses a database sample D̃ for the sequen-
tial mining of frequent itemsets and for the efficient es-
timation of theirs supports. Toivonen’s algorithm works
as follows: 1) create a database sample D̃ of D; 2) com-

pute all frequent itemsets in D̃; 3) check that all these

FIs computed using D̃ are also FIs in D and correct the
output. If an itemset is frequent in D and not in D̃, cor-
rect the output using D. Toivonen’s algorithm is based
on an efficient probabilistic estimate of the support of
an itemset U . We reuse this idea of estimating the sup-
port of U in our method for parallel mining of FIs, i.e.,
we use only the first two steps.

We define the error of the estimate of Supp∗(U,D)

from a database sample D̃ by: errsupp(U, D̃) =

|Supp∗(U,D)− Supp∗(U, D̃)|
The database sample D̃ is sampled with replace-

ment. The estimation error can be analyzed using
the Chernoff bound without making other assumptions
about the database. The error analysis then holds for a
database of arbitrary size and properties.

Theorem 5.1. [10] Given an itemset U ⊆ B and a

random sample D̃ drawn from database D of size

|D̃| ≥ 1

2ε2
D̃

ln
2

δD̃
,

then the probability that errsupp(U, D̃) > εD̃ is at
most δD̃.

See [10] for proof. Using a database sample D̃ with
size given by the previous theorem, we can estimate
Supp∗(U,D) with error εD̃ that occurs with probability
at most δD̃: It follows from Lemma 5.1 that if we

compute the approximation F̃ of F from the database
sample D̃ of size |D̃| ≥ 1

2ε2
D̃

ln 2
δD̃

, we could get a close

approximation F̃ of F .

5.2 The reservoir sampling algorithm In this
section, we show the reservoir sampling algorithm [11]
that creates an uniformly but not independently dis-
tributed sample F̃s ⊆ F̃ .

We can formulate the problem of reservoir sampling
in the terms of F̃ and F̃s: let have a stream of frequent
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itemsets U ∈ F̃ mined from a database D̃. We do not
know the number of FIs |F̃ | in advance and the task is to

take |F̃s| samples of F̃ . The solution of this task solves

our problem of making a uniform sample F̃s ⊆ F̃ . The
sampling is done using an array of FIs (a buffer, or in

the terminology of [11] a reservoir) that holds F̃s during

the processing of the itemsets from F̃ .
The reservoir sampling uses the following two pro-

cedures: 1) ReadNextFI(L): reads next FI from an
output of an arbitrary sequential algorithm for mining
of FIs and stores the itemset at the location L in mem-
ory; 2) SkipFIs(k): skips k FIs from the output of an
arbitrary algorithm for mining of FIs. And the follow-
ing function: Random() which returns an uniformly
distributed real number from the interval [0, 1]

The simplest reservoir sampling algorithm is sum-
marized in Algorithm 1. It takes as an input an ar-
ray R (reservoir/buffer) of size n = |F̃s|, the function
ReadNextFI(L) that reads an FI from the output of
an FI mining algorithm and stores it in memory at loca-
tion L, and finally the function SkipFIs(k) that skips
k FIs. The algorithm samples n FIs and stores them in
main memory into the buffer R.

Algorithm 1 The Reservoir-Sampling algorithm

Reservoir-Sampling(In/Out: Array R of size n,
In: Integer n,
In: Function ReadNextFI,
In: Function SkipFIs)

1: for j = 0 to n− 1 do
2: ReadNextFI(R[j])
3: end for
4: t = n
5: while not eof do
6: t = t+ 1
7: m = bt × Random()c {pick uniformly a number

from the set {1, . . . , t− 1}}
8: if m < n then
9: ReadNextFI(R[m])

10: else
11: SkipFIs(1)
12: end if
13: end while

The Reservoir-Sampling is quite slow, it is lin-
ear in the number of input records read by Read-
NextFI(R), i.e., it is linear in |F̃ |. Vitter [11] cre-
ated a faster algorithm with the average running time

O(|F̃s|(1 + log |F̃|
|F̃s|

)), where |F̃s| is the size of the array

R used by Reservoir-Sampling. The algorithm has
the same parameters as the Reservoir-Sampling and

we denote the Vitter’s variant of the reservoir sampling
algorithm by Vitter-Reservoir-Sampling.

Now, we analyse the relative size of a PBEC using
the samples taken by the reservoir sampling algorithm.
The reservoir sampling samples the set F̃ without
replacement, resulting in F̃s.

Using the bounds from [12, 13] we can analyse the

size of the sample F̃s in order to estimate the relative
size of a PBEC using an uniformly but not independently
distributed sample. From these bounds follows the
following theorem:

Theorem 5.2. Let F ⊆ F̃ be a set of itemsets. The

relative size of F , |F |
|F̃|

, is estimated with error εF̃s
with

probability δF̃s
from a hypergeometrically distributed

sample F̃s ⊆ F̃ with parameters N = |F̃ |,M = |F |
of size:

|F̃s| ≥ −
log(δF̃s

/2)

D(ρ+ εF̃s
||ρ)

Where D(x||y) is the Kullback-Leibler divergence of two
hypergeometrically distributed variables with parameters
x, y and ρ = |F |/|F̃ |. The expected value of the size

|F ∩ F̃s| is E[|F ∩ F̃s|] = |F̃s| · |F ||F̃| .

Proof. In [12, 13] is shown that P [E[i] − ε|F̃s| ≤ i ≤
E[i]+ ε|F̃s|] ≤ 1− (e−|F̃s|D(ρ−εF̃s

||ρ) +e−|F̃s|D(ρ+εF̃s
||ρ)).

From this and the fact that D(ρ+εF̃s
||ρ) > D(ρ−εF̃s

||ρ)
we have:

1− (e−|F̃s|·D(p−ε||p) + e−|F̃s|·D(p+ε||p)) ≤ 1− δF̃s

1− 2e−|F̃s|·D(p+ε||p) ≤ 1− δF̃s

�

6 Error of the estimation of the size of a union
of PBECs using D̃

In our method, we create a sample F̃s ⊆ F̃ using the
reservoir sampling algorithm. Let have n ≥ 1 prefixes
Ui, we need to have |

⋃
i[Ui] ∩ F̃|/|F̃ | very close to

|
⋃
i[Ui] ∩ F|/|F|. The following theorem gives bounds

the size of |
⋃
i[Ui]∩F|/|F| in terms of |

⋃
i[Ui]∩F̃|/|F̃ |:

Theorem 6.1. (bounds on the size of union of FIs)
Let Vi ⊆ B, 1 ≤ i ≤ n, [Vi] ∩ [Vj ] = ∅, i 6= j. We use two
sets of itemsets:

1. A = {U |Supp∗(U,D) < min support∗ and

Supp∗(U, D̃) ≥ min support∗}, i.e., the collection

of itemsets U infrequent in D and frequent in D̃ –
wrongly added FIs to F̃ .
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2. B = {U |Supp∗(U,D) ≥ min support∗ and

Supp∗(U, D̃) < min support∗}, i.e., the collection

of itemsets U frequent in D and infrequent in D̃ –
wrongly removed FIs from F̃ .

The relative size of A is denoted by a = |A|
|F| and the

relative size of B is denoted by b = |B|
|F| . Then for two

sets of itemsets C =
⋃
i[Vi]∩F and C̃ =

⋃
i[Vi]∩ F̃ , we

have:

|C̃|
|F̃ |

(1 + a− b)− a ≤ |C|
|F|
≤ |C̃|
|F̃ |
· (1 + a− b) + b

Proof. From the assumptions follows: |F̃ | = |F|(1+a−
b). Therefore: |F̃|

(1+a−b) = |F|.
We know that the fraction a of FIs is not frequent

in D but is frequent in D̃ are present in F̃ . Therefore,
we can compute the lower bound of the relative size of
C:

(6.1) |C̃| ≤ |C|+ a · |F|

(6.2)
|C̃|
|F|
≤ |C|
|F|

+ a

(6.3) follows from (6.2) using the fact that |F| =
|F̃|

(1+a−b) .

(6.3)
|C̃|
|F̃ |

(1 + a− b) ≤ |C̃|
|F|
≤ |C|
|F|

+ a

(6.4)
|C̃|
|F̃ |

(1 + a− b)− a ≤ |C|
|F|

We compute the upper bound of |C||F| using similar

computations as for the lower bound. The fraction b
of FIs F was not frequent in D̃ and frequent in D and
therefore the lower bound of the size |C̃| is:

(6.5) |C| − b · |F| ≤ |C̃|

(6.6)
|C|
|F|
− b ≤ |C̃|

|F|

(6.7)
|C|
|F|
≤ |C̃|
|F̃ |
· (1 + a− b) + b

Corollary 6.1. If the size of |C̃|
|F̃|

is estimated with

error εF̃s
, 0 ≤ εF̃s

≤ 1, with probability 0 ≤ δF̃s
≤ 1

then:

|C̃|
|F̃ |

(1−εF̃s
)(1+a−b)−a ≤ |C|

|F|
≤ |C̃|
|F̃ |

(1+εF̃s
)(1+a−b)+b

with probability δF̃s
.

Set C can be viewed as a partition processed by a
single processor. We estimate the relative size of |C|/|F|
from F̃s (that was computed using D̃) and we are able
to bound the error made while estimating the size of a
partition. Unfortunately, the bounds are not very tight
and making tighter bounds is hard.

7 Summary of the previous two methods

In [3] we have proposed the Parallel-FIMI-Seq
method and in [4] we have proposed the Parallel-
FIMI-Par method. The idea of the two methods is to
partition all FIs into P disjoint sets Fi, using PBECs of

relative size |Fi|
|F| ≈

1
P . Each processor pi then processes

partition Fi. The whole method consists of four phases.
The input and the parameters of the whole method

are the following: 1) Minimal support min support∗;
2) The sampling parameters: real numbers 0 ≤
εD̃, δD̃, εF̃s

, δF̃s
≤ 1, see Sections 5.1 and 5.2; 3) The

relative size of a PBEC: the parameter ρ, 0 ≤ ρ ≤ 1,
see Sections 5.2; 4) Partition parameter: real number
α, 0 ≤ α ≤ 1; 5) Database parts Di, 1 ≤ i ≤ P . The
database partitions are loaded by each processor at the
beginning of the methods.

The four phases are designed in such a way that
they statically load-balance the computation of all FIs.
In Phases 1–2, we prepare the static load-balancing
for Phase 4. In Phase 3, we redistribute the database
partitions so each processor can proceed independently
with some PBECs. In the Phase 4, we execute an
arbitrary algorithm for mining of FIs. To speedup
Phases 1–2, we can execute each of Phase 1–2 in parallel.

We assume that at the beginning of the computa-
tion, processor pi loads its database partition Di to a
local memory. The database partitions Di has the fol-

lowing properties: Di ∩ Dj = ∅, i 6= j, and |Di| ≈ |D|P .
Additionally, without loss of generality, we expect that
each bi ∈ B is frequent. If some of the items bi ∈ B are
not frequent, each processor pi computes local support
of all items bj ∈ B in its database part Di. The support
is then broadcast and each pi removes all bj that are
not globally frequent. The four phases are summarized
below:
Phase 1 (sampling of FIs): the input of Phase 1 is the
minimal support min support∗, a partitioning of the
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database D into P disjoint partitions Di, and the real
numbers 0 ≤ εD̃, δD̃, εF̃s

, δF̃s
≤ 1. Output of Phase 1 is

a sample of frequent itemsets F̃s ( F̃ . Generally, the
only purpose of the first phase is to compute a sample
of FIs F̃s and a database sample D̃. First, each pro-
cessor samples Di (in parallel) and creates part D′i and
broadcasts them to other processors (all-to-all scatter1).

Each processor pi then creates D̃ =
⋃
iD′i. The proces-

sors compute the set of all MFIs from D̃, denoted by
M̃. The set M̃ is the upper boundary in the sense of
set inclusion of the set F̃ , i.e., due to the monotonicity of
support for each U ∈ F̃ exists m ∈ M̃ such that U ⊆ m.
We need to take a sample F̃s ( F̃ . This can be done us-
ing a modified coverage algorithm. The modified cover-
age algorithm randomly chooses m ∈ M̃ with probabil-
ity |P(m)|/

∑
m′∈M̃ |P(m′)|. Then it picks uniformly an

itemset U ∈ P(m) – the itemset U is frequent due to the

monotonicity principle. Because the FIs U ∈ F̃ have dif-
ferent probability of being chosen in the sample F̃s the
approach does not generates an uniformly distributed
sample F̃s and neither does not guarantee the probabil-
ity of the error of the relative size of a PBEC. Therefore,
we do not have any guarantees on the error of the es-
timate of the relative size. But the estimates using the
sample F̃s gives reasonably good results and the process
is very quick. For the coverage algorithm that creates
independently and identically (uniformly) distributed
sample, see [14]. The difference between Parallel-
FIMI-Seq and Parallel-FIMI-Par methods is that
the second computes a set M in parallel, such that
M̃ ⊆ M ⊆ F̃ , i.e., it computes a superset of M̃. Com-
putation of M in parallel makes the Parallel-FIMI-
Par faster then Parallel-FIMI-Seq but it also needs
more memory.
Phase 2 (lattice partitioning): the input of this phase is

the sample F̃s, the database sample D̃ (both computed
in Phase 1) and the parameter α. In Phase 2, processor
p1 creates prefixes Ui ⊆ B and the extensions Σi of
each PBEC [Ui|Σi], and estimates the size of [Ui|Σ]∩F
using F̃s: |[Ui|Σ]∩F|/|F| ≈ |[Ui|Σ]∩ F̃s|/|F̃s|. p1 then
creates indexsets Li, 1 ≤ i ≤ P that makes the partition
Fi = F ∩

⋃
j∈L[Uj |Σj ] such that Fi ∩ Fj = ∅, i 6= j and

|Fi|/|F| ≈ 1/P .
Phase 3 (data distribution): the input of this phase
is the assignment of the prefixes Uj and the exten-
sions Σj to the processors pi and the database parti-
tioning Di, i = 1, . . . , P . Now, the processors exchange
database partitions: processor pi sends Sik ⊆ Di to pro-
cessor pk such that Sik contains transactions needed by

1all-to-all scatter is a well known communication operation:

each processor pi sends a message mij to processor pj such that
mij 6= mik, i 6= k

pk for computing support of the itemsets of its assigned
PBECs.
Phase 4 (computation of FIs): as the input to each
processor are the prefixes Uk, its extensions Σk, and the
database parts needed for computation of supports of
itemsets V ∈ [Uk] ∩ F and the original Di. Each pro-
cessor computes the FIs in [Uk] ∩ F by executing an
arbitrary sequential algorithm for mining of FIs. Addi-
tionally, each processor computes support of W ⊆ Uk in
Di, i.e., Supp(W,Di). The supports are then send to p1
and p1 computes Supp(W,D) =

∑
1≤i≤P Supp(W,Di)

The difference between our new method and the
previous two methods is only in Phase 1: we use
the reservoir sampling instead of the modified coverage
algorithm. However, the use of the reservoir sampling
is quite important, because the number of MFIs can be
quite large (and therefore sometims do not fit into main
memory) and we have a better values of speedup.

8 Proposal of a new DM parallel method

Our new method is called Parallel Frequent Itemset
MIning – Reservoir (Parallel-FIMI-Reservoir in short).
This method works for any number of processors P �
|B|. The basic idea is the same as in the Parallel-
FIMI-Par method. The main difference is the usage
of the so called reservoir sampling algorithm instead of
the modified coverage algorithm. This allow us to take
an uniformly but not independently distributed sample
F̃s. We make the sample F̃s in parallel: in Phase 1,
we execute an arbitrary algorithm for mining of FIs in
parallel and the output of the FI mining algorithm is
sampled using the reservoir sampling (in parallel). The
input parameters are the same as in the Parallel-
FIMI-Par method. In the rest of this section, we give
detailed description of the four phases.

8.1 Detailed description of Phase 1 In this Sec-
tion, we give a detailed description of the sampling pro-
cess based on the reservoir sampling [11] that samples

F̃ uniformly, i.e., it creates an identically distributed
sample F̃s of F̃ . At the beggining the processors create
the database sample D̃ by sampling its database parts
Di.

In our parallel method, we are using the Vitter-
Reservoir-Sampling Algorithm, the faster reservoir
sampling algorithm. To speedup the sampling phase
of our parallel method, we execute the sequential algo-
rithm for mining of FIs on the database D̃ in parallel.
The database sample D̃ is distributed among the proces-
sors – each processor having a copy of the database sam-
ple D̃. The baseset B is partitioned into P parts Bi ⊆ B
of size |Bi| ≈ |B|/P such that Bi ∩ Bj = ∅, i 6= j. Pro-
cessor pi then takes part Bi and executes an arbitrary
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sequential depth-first search (DFS in short) algorithm

for mining of FIs, enumerating [(bj)] ∩ F̃ , bj ∈ Bi. Be-
cause the sequential algorithm is run in parallel with dy-
namic load balancing, processor pi ask other processors
for work when it finishes the items in Bi, i.e., processor
pi must not process only the items in Bi. For terminat-
ing the parallel execution, we use the Dijkstra’s token
termination algorithm. The output of the sequential
DFS algorithm is read by the reservoir sampling algo-
rithm that creates the sample F̃s.

The task of the process is to take |F̃s| =

− log(δF̃s
/2)

D(ρ+εF̃s
||ρ) samples, see Theorem 5.2. Because, the

sequential algorithm for mining of MFIs with the reser-
voir sampling is executed in parallel with dynamic load-
balancing, it is not known how many FIs are computed
by each processor. Denote the unknown number of FIs
computed on pi by fi, the total number of FIs is de-
noted by f =

∑
1≤i≤P fi. Because, we do not know fi

in advance, each processor samples |F̃s| frequent item-
sets using the reservoir sampling algorithm, producing
F̃s, and counts the number of FIs computed by the se-
quential algorithm. When the reservoir sampling fin-
ishes, processor pi sends fi to processor p1. p1 picks P
random variables Xi, 1 ≤ i ≤ P from multivariate hy-
pergeometrical distribution with parameters: number of
colors C = P , Mi = fi. Each processor pi choose Xi

itemsets U ∈ F̃s at random out of the N = |F̃s| sam-
pled frequent itemsets computed by pi. The samples
are then send to processor p1. p1 stores the received
samples in F̃s.

8.2 Detailed description of Phase 2 In Phase 2
the method partitions F sequentially on processor p1.
As an input of the partitioning, we use the samples F̃s,
the database D̃ (computed in Phase 1), the set B, and
a real number α, 0 < α ≤ 1. For the purpose of this
section, we denote the prefixes by Uk, the extensions of
Uk by Σk, i.e., Uk and Σk forms a PBEC [Uk|Σk]. The
output of this phase are the indexsets Li. The indexsets
make the disjoint sets Fi such that |Fi|/|F| ≈ 1/P , see
Section 3. Each processor pi then in Phase 4 processes
the FIs contained in Fi. The output of Phase 2 are
the index sets Li of PBECs, computed on p1, and the
PBECs [Uk|Σk].

The DFS sequential FI mining algorithm usually
dynamically changes the order of items in Σk for each
PBEC [Uk|Σk], i.e., the algorithm uses different order
of items in the extensions. The PBECs are still disjoint
and additionally the sequential algorithm is faster.
Therefore, we need to prepare the PBECs in the same
way as the sequential algorithm does. Let U be a
prefix and Σ = {b1, . . . , bn} ⊆ B the extensions. The

sequential algorithm orders the items bi: b1 < . . . < bn
such that Supp(U ∪ {b1}) < . . . < Supp(U ∪ {bn}). We

use the supports estimated using D̃ for estimating the
order of the extensions.

The partitioning of F is a two step process:

(1) p1 creates a list of prefixes Uk such that the
estimated relative size of the PBEC [Uk] ∩ F
satisfies |[Uk]∩F̃s|

|F̃s|
≤ α · 1

P , where 0 < α < 1 is

a parameter of the computation set by the user.
The PBECs are created recursively, see Section 3.
The reason for making the PBECs of relative size
≤ α · 1P is to make the PBECs small enough so that
they can be scheduled and the schedule is balanced,
i.e., each processor having a fraction ≈ 1/P of FIs.
Smaller number of large PBECs could make the
scheduling unbalanced.

(2) p1 creates set of indexes Li such that |Fi|/|F| ≈
1/P . Making the sets Li is a well known NP-
complete problem of scheduling tasks on P equiv-
alent machines. We use the well-known LPT-
Schedule algorithm. The LPT-Schedule algo-
rithm is a best-fit algorithm, see Algorithm 2 and
[15].

Algorithm 2 The LPT-Schedule algorithm

LPT-Schedule(In: Set S = {(Ui,Σi, si)}, Out: Sets
Li)

1: Sort the set S such that si < sj , i 6= j.
2: Assign each (Ui,Σi, si) (in decreasing order by si) to

the least loaded processor pi. The indexes assigned
to pi, are stored in Li.

Lemma 8.1. [15] LPT-Schedule is 4/3-
approximation algorithm.

The index sets Li together with Uk and Σk are then
broadcast to the remaining processors.

The only problem with the scheduling proposed in
this Section is the following: the Theorem 5.2 allows us
to estimate the size of a single PBEC. Unfortunatelly,
we need to estimate the size of the union of PBECs
that are dependent on the sample F̃s. Let Ui ⊆ B, 1 ≤
i ≤ n, be prefixes and [Ui] corresponding PBECs.
We are creating the PBECs by recursive splitting the
PBECs and estimating its size using the sample, i.e.,
|[Ui]∩F̃|/|F̃ | ≈ |[Ui]∩F̃s|/|F̃s|. Processor pi is assigned
with prefixes from the index set Li, i.e., it is assigned
with FIs Fi =

⋃
j∈Li

[Uj ] ∩ F̃ such that |Fi|/|F̃ | ≈ 1/P .
The problem is that we make the set Fi using the
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sample F̃s. Therefore, we are not able to use the
estimate of the relative size of a single PBEC with error
εF̃s

with probability δF̃s
for estimation of the relative

size of |Fi|/|F̃ | with error εF̃s
with probability δF̃s

.

The error of |Fi|/|F̃ | is ε = |Li| · εF̃s
with probability

δ = |Li| · δF̃s
. We will discuss the error of the estimate

later, in Section 10.1.

8.3 Detailed description of Phase 3 The input
of Phase 3 for processor pi is the set of indexes of the
assigned PBECs Li together with the prefixes Uk and its
extensions Σk. Processor pi needs for the computation
of Fi =

⋃
k∈Li

([Uk] ∩ F) a database partition D′i =⋃
j{t|t = (id,W ) ∈ Dj , k ∈ Li, and Uk ⊆ W}. The

database partition D′i should contain all the information
needed for computation of Fi. At the begginning
of this phase, the processors has disjoint database

partitions Di such that |Di| ≈ |D|
P . We expect that

we have a distributed memory machine whose nodes
are interconnected using a network such as Myrinet or
Infiniband, i.e., a network that is not congested while
an arbitrary permutation of two nodes communicates
with each other. The problem is the congestion of the
network in Phase 3.

To construct D′i on processor pi, every processor
pj , i 6= j, has to send a part of its database partition D′j
needed by the other processors to all other processors
(an all-to-all scatter takes place2). That is: processor
pi send to processor pj the set of transactions Sij =
{t|t = (id,W ) ∈ Di, k ∈ Lj , and Uk ⊆ W}, i.e., all
transactions that contain at least one Uk, k ∈ Lj , as a
subset: D′j =

⋃
i{t|t = (id,W ) ∈ Di, k ∈ Lj , and Uk ⊆

W} = {t|t = (id,W ) ∈ D, exists k ∈ Lj , Uk ⊆ W}. The
all-to-all scatter is done in bP2 c communication rounds.

We can consider the scatter as a round-robin tour-
nament of P players [16]. Making the schedule of the
database exchange (tournament) is the following pro-
cedure: if P is odd, a dummy processor(player) can
be added, whose scheduled opponent waits for the next
round and the processors(player) performs P communi-
cation rounds(plays). For example let have 14 proces-
sors, in the first round the following processors exchange
their database portions:

1 2 3 4 5 6 7
14 13 12 11 10 9 8

The processors are paired by the numbers in the
columns. That is, database parts are exchanged be-
tween processors p1 and p14, p2 and p13, etc. In the

2all-to-all scatter is a well known communication operation:

each processor pi sends a message mij to processor pj such that
mij 6= mik, i 6= k

second round one processor is fixed (number one in this
case) and the other are rotated clockwise:

1 14 2 3 4 5 6
13 12 11 10 9 8 7

This process is iterated until the processors are
almost in the initial position:

1 3 4 5 6 7 8
2 14 13 12 11 10 9

8.4 Detailed description of Phase 4 The input
to this phase, for processor pq, 1 ≤ q ≤ P, is the
database partition Dq (the database partition that is
the input of the whole method, the database partition),
D′q (computed in Phase 3), the set Q = {(Uk,Σk)|Uk ⊆
B,Σk ⊆ B, Uk ∩ Σk = ∅} of prefixes Uk and the
extensions Σk, and the sets of indexes Lq of prefixes
Uk and extensions Σk assigned to processor pq.

In Phase 4, we execute an arbitrary algorithm for
mining of FIs. The sequential algorithm is run on
processor pq for every prefix and extensions (Uk,Σk) ∈
Q, k ∈ Lq assigned to the processor, i.e., pq enumerates
all itemsets W ∈ [Uk|Σk], (Uk,Σk) ∈ Q. Therefore, the
datastructures used by a sequential algorithm, must be
prepared in order to execute the sequential algorithm
for mining of FIs with particular prefix and extensions.
To make the parallel execution of a DFS algorithm
fast, we prepare the datastructures by simulation of
the execution of the sequential DFS algorithm, e.g., to
enumerate all FIs in a PBEC [Uk|Σk] Phase 4 simulates
the sequential branch of a DFS algorithm for mining
of FIs up to the point the sequential algorithm can
compute the FIs in [Uk|Σk].

8.5 The Parallel-FIMI-Reservoir method This
method samples F̃ using the reservoir sampling. The
reservoir sampling samples F̃ uniformly. To make the
method faster, the reservoir sampling is executed in par-
allel. The method is summarized in the Parallel-
FIMI-Reservoir method, see Method 1. The advan-
tage of the Parallel-FIMI-Reservoir method over
the two previous methods are the following: 1) the
Parallel-FIMI-Reservoir method does not need to
compute the MFIs and therefore does not need an ad-
ditional very quick algorithm for mining MFIs; 2) the
number of MFIs can be very large, since we do not need
to computed the MFIs, we do not need to store the MFIs
in main memory and therefore it has lower memory con-
sumption; 3) it creates uniform sample, so the error of
estimate of relative size of a PBEC is guaranteed by
Theorem 5.2.

Even that we have bounds on the estimate of
the relative size of each PBEC, it is hard to make
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tight bounds on the error of the union of the PBECs.
Therefore, we show the speedups of our new method
and leave the theoretical analyse of the estimate of the
relative size of a union of PBECs as an opened problem,
showing only experimental results of the quality of the
estimates.

Method 1 The Parallel-FIMI-Reservoir method
Parallel-FIMI-ReservoirIn: Double min support∗,

In: Doubles εD̃, δD̃, εF̃s
, δF̃s

,
In: Doubles ρ, α,
Out: Set F)

1: for all pi do-in-parallel
// Phase 1: sampling.

2: Read Di and set ND̃ ←
1

2ε2
D̃

ln 2
δD̃

.

3: Creates a sample D′i ⊆ Di and broadcast it to
each other processor.

4: D̃ ←
⋃
iD
′
i.

5: Execute in parallel an arbitrary algorithm for
mining of FIs on database D̃ in parallel and create
the sample F̃s using the Vitter-Reservoir-
Sampling.
// Phase 2: partitioning.

6: p1 creates PBECs [Uk] such that |[Uk]∩F̃s|
|F̃s|

< α· 1P .

7: p1 creates Lj , 1 ≤ j ≤ P using the LPT-
Makespan algorithm.

8: // Phase 3: data re-distribution.
9: Redistribute the database partition Di

10: // Phase 4: parallel computation of FIs.
11: compute support of W ⊆ Uk in Di and send the

supports to p1
12: p1 outputs W
13: all pi executes an arbitrary algorithm for mining

of FIs in parallel that computes supports of
Supp(W,D′q),W ∈

⋃
k∈Lq

[Uk|Σk], (Uk,Σk) ∈ Q.
14: end for

9 Database replication

At the begginning of the computation, each processor pi
has a database partition Di such that Di ∩Dj = ∅ and
|Di| ≈ |D|/P . That is: the database is almost perfectly
distributed among the processors. In Phase 3, we have
to redistribute the database D so each processor can
compute its FIs.

We define the database replication factor as a real
number that determines the number of copies of a
database that is spread among the processors. Let D′i
is the database partition received by pi in Phase 3. The
database replication factor is defined as:

∑P
i=1 |D′i|
|D|

At the begginning of the computation the replica-
tion factor is almost 1 (an ideal case). The question is,
how the replication factor changes after the database
redistribution in Phase 3. Unfortunatelly, the database
replication factor for artificial datasets is almost ≈ P ,
i.e., each processor having almost the whole database
D. Minimalization of the database replication factor is
a hard optimalization task.

10 Experimental evaluation

We have measured the speedup of our new method, the
Parallel-FIMI-Reservoir method, on a cluster of
workstations using three datasets.

The cluster of workstations was interconnected with
the Infiniband network. Every node out of 8 nodes in
the cluster has two dual-core 2.6GHz AMD Opteron
processors and 8GB of main memory.

We have implemented the Parallel-FIMI-Par
method and the Parallel-FIMI-Reservoir method
in C++ using the g++ compiler version 4.4.3 and
STLPort library (an implementation of Standart Tem-
plate Libarary). The sequential algorithm used in the
Parallel-FIMI-Reservoir method is the Eclat al-
gorithm. We have also implemented a modified Eclat
algorithm, used in Phase 1 for making the sample us-
ing the Vitter-Reservoir-Sampling algorithm. As
the algorithm for mining of MFIs in Phase 1 of the
Parallel-FIMI-Par method was used the fpmax*
[17]. We have also implemented a modified fpmax* al-
gorithm that executes in parallel.

The datasets were generated using the IBM
database generator. We have used datasets with 500k
transactions and supports for each dataset such that
the sequential run of the Eclat algorithm is between 100
and 12000 seconds (≈ 3.3 hours) and two cases with
running time 33764 (9.37 hours) and 132186 (36.71
hours) seconds. The IBM generator is parametrized
by the average transaction length TL (in thousands),
the number of items I (in thousands), by the number
of patterns P used for creation of the parameters, and
by the average length of the patterns PL. To clearly
differentiate the parameters of a database we are
using the string T[number in thousands]I[items

count in 1000]P[number]PL[number]TL[number],
e.g. the string T500I0.4P150PL40TL80 labels a
database with 500K transactions 400 items, 150
patterns of average length 40 and with average trans-
action length 80. All experiments were performed
with various values of the support parameter on 2,
4, 6, and 10 processors. We have used the follow-



“kesslr˙soda”
2010/12/17
page 10i

i
i

i

i
i

i
i

ing datasets: T500I0.1P100PL20TL50 with minimal
supports 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18;
T500I0.4P250PL10TL120 with minimal supports
0.2, 0.25, 0.26, 0.27, 0.3; and T500I1P100PL20TL50 with
minimal supports 0.02, 0.03, 0.05, 0.07, 0.09.

10.1 The error of the estimate of the relative
size of a union of PBECs In Section 5.2, we have
discussed that we have to bound the error of the
estimate the union of PBECs. We need to have the

size
|
⋃

j∈Li
[Uj ]∩F|
|F| ≈ 1/P . Therefore, we show a graph

of the errors
∣∣∣ 1P − |⋃j∈Li

[Uj ]∩F|
|F|

∣∣∣. This graph is the very

important for our work because it shows the probability
of the error of the whole process, i.e., the error of the
estimation of the union of PBECs using D̃ and F̃s.

In Figures 3 and 4 is shown the probability of the
errors for our three datasets. On the x-axis is the error
and on the y-axis is the probability of the error. We
have made the experiments with database sample sizes
|D̃| = 42586, shown as red curves, and |D̃| = 14450,
shown as blue curves. We have chosen the size of the
sample |F̃s| = 1001268 (solid line) and |F̃s| = 26492
(dashed line). We have chosen P = 5 and P = 10. Each
line is a mixture of measurements for different values of
minimal support, i.e., we have measured the size of a
union of PBECs for different values of minimal support
for each dataset and made the graphs from all these
measurements. From the graphs can be seen that the
most important factor of the precision of the estimate
is the size of the database sample. Having a bigger
database sample implies smaller probabbility of the
error. From the graphs can be also seen in most cases
that having a very large sample F̃s gives only slightly
smaller probability of the error or no improvement at
all.

10.2 Evaluation of the speedup Figure 1 clearly
demonstrate that for reasonably large and reasonably
structured datasets, the speedup is linear with average
speedup ≈ 6 on 10 processors with maximum value of
speedup ≈ 8.6 on 10 processors. The numeric values of
the speedup are located in Table 1.

In [4], we have evaluated the Parallel-FIMI-
Par as faster then the Parallel-FIMI-Seq method.
We can compare the speedup of the Parallel-FIMI-
Reservoir method with the Parallel-FIMI-Par
method. In the Parallel-FIMI-Par method we have
used the Eclat algorithm in Phase 4 and the fpmax*
[17] algorithm in Phase 1 as the algorithm for mining of
MFIs. The speedup of Parallel-FIMI-Par method
is shown in Figure 1 the numerical average speedup val-
ues are located in Table 1. We can see that the speedup

of the Parallel-FIMI-Par is a bit smaller then the
speedup of Parallel-FIMI-Reservoir. Additionally,
in some cases, we were not able to finish the execution of
the Parallel-FIMI-Par due to large amount of mem-
ory used by the MFIs. In such cases the speedup is
shown to be 0.

In the two cases with the computational time > 9
hours the algorithm exhibits very good performance
with speedup 8 for P = 10.

11 Conclusion and future work

In this paper, we have proposed a static load-balancing
method for parallel mining of all FIs. Our method
needs a sequential algorithm for mining of all FIs
and a reservoir sampling algorithm. In our previous
papers, we have proposed another two methods that
are based on the modified coverage algorithm. We have
demostrated that our new method has a clear advantage
of being less memory consuming and having a better
speedup than our two previous methods.

There is still a room for improvement. Instead of
using a modified sequential algorithm for mining of all
FIs in Phase 1, we can use a faster algorithm that does
not need to count the support of all FIs. It is possible
that we can use a modified algorithm for mining of MFIs
that enumerates all FIs, but counts support only for
handsome of FIs in order to take the sample of all FIs.
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Figure 1: Speedup of the Parallel-FIMI-Reservoir method parametrized with the Eclat algorithm, measured
on the T500I0.1P100PL20TL50, T500I0.4P250PL20TL80, T500I1P100PL20TL50 (from left to right)
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Figure 2: Speedup of the Parallel-FIMI-Par method parametrized with the Eclat algorithm, measured on the
T500I0.1P100PL20TL50, T500I0.4P250PL20TL80, T500I1P100PL20TL50 (from left to right)
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Figure 3: Error of the estimation of the relative size of a union of a PBECs, for P = 10. The datasets
T500I0.1P100PL20TL50, T500I0.4P250PL20TL80, T500I1P100PL20TL50 (from left to right)
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Figure 4: Error of the estimation of the relative size of a union of a PBECs, for P = 5. The datasets
T500I0.1P100PL20TL50, T500I0.4P250PL20TL80, T500I1P100PL20TL50 (from left to right)

datafile/Parallel-FIMI-Reservoir 2 4 6 10
T500I0.1P50PL10TL40 1.523 2.633 3.380 5.342
T500I0.4P250PL20TL80 1.637 2.644 4.135 6.191
T500I1P100PL20TL50 1.240 2.010 2.340 2.544
Total average 1.466 2.428 3.285 4.692

datafile/Parallel-FIMI-Par 2 4 6 10
T500I0.1P50PL10TL40 1.596 2.668 3.438 5.135
T500I0.4P250PL20TL80 1.039 1.954 2.726 3.422
T500I1P100PL20TL50 1.227 1.714 1.876 1.401
Total average 1.304 2.112 2.679 3.193

Table 1: Numerical values of average speedup of the Parallel-FIMI-Reservoir and Parallel-FIMI-Par
methods for number of processors P = 2, 4, 6, 10


