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2M. Červinka (cervinka@utia.cas.cz), J.V. Outrata (outrata@utia.cas.cz): Institute of Information The-
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1 Introduction

In the last twenty years researchers have paid a lot of attention to optimization problems
where, among the constraints, there is a special one in the form of a variational inequality
or a complementarity problem. One speaks about an equilibrium constraint, and the overall
optimization problem coined the name mathematical program with equilibrium constraints
(MPEC). As an early version of an MPEC one can consider the Stackelberg game of two
players ([26]), and we use the respective terminology very often also in the MPEC setting.

Let us consider an abstract MPEC in the form

minimize
x

f(x, y)

subject to

y ∈ S(x)

x ∈ ω.

(1)

In (1), x ∈ Rn is the strategy of the dominant player called Leader, who acts first and aims
to minimize his objective f by using strategies from a closed set ω ⊂ Rn. The so-called
solution map S[Rn ⇒ Rm], arising in the equilibrium constraint y ∈ S(x), assigns x the
set of possible responses of his opponent(s) called Follower(s). So, y ∈ Rm stands for the
cumulative strategy of all Followers and S describes their decision rule. Unfortunately,
problem (1) is not well-posed, whenever S is not single-valued on ω. Then, namely, the
Leader can hardly optimize his choice of x, not knowing the response of his opponent(s).

To avoid this hurdle, in some situations one imposes an additional hypothesis speci-
fying the response of the Follower(s) at those x ∈ ω, where S(x) is not a singleton. We
usually assume that he (they) behave(s) with respect to the Leader’s objective either in a
cooperative or in a non-cooperative way. In the former case one speaks about the optimistic
solution concept in which the MPEC (1) is replaced by a hierarchical optimization problem
where, on the upper level, one minimizes the value function

µ(x) := inf
y∈S(x)

f(x, y)

over x ∈ ω. This allows us to convert (1) to the (well-defined) optimization problem

minimize
x,y

f(x, y)

subject to

y ∈ S(x)

x ∈ ω,

(2)

provided we accept the fact that (2) may possess more local solutions than the minimization
of µ over ω.

In (2) one minimizes f with respect to both variables x and y. A vast majority of the
MPEC literature, including the monographs [17], [21] and [9], is devoted mainly to prob-
lem (2) and its numerous variants. To introduce its counterpart, the pessimistic solution
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concept, one usually employs the value function ϑ[Rn → R̄] defined by

ϑ(x) := sup
y∈S(x)

f(x, y).

A pair (x̂, ŷ) ∈ ω × Rm is declared a (local) pessimistic solution to (1), provided

ϑ(x̂) = f(x̂, ŷ)

ϑ(x̂) ≤ ϑ(x) for all x ∈ O ∩ ω,
(3)

where O is a neighborhood of x̂.
Such a pair exists, however, only under special, rather restrictive assumptions on f

and S, such as inner semicontinuity of S, cf. [3, Corollary 3.2.2.1]. In numerous papers
by Loridan and Morgan (see e.g. [11], [12], [13]), a lot of attention has been paid to
various relaxations of condition (3), leading to more workable solution concepts for the
non-cooperative case. Such an effort is very important because a non-cooperative behavior
of the Follower(s) can frequently be observed in applications.

To illustrate the intrinsical difference between the above two solution concepts, we
present an academic example of an MPEC with a multi-valued solution map.

Example 1. Consider the problem

minimize |y|
subject to

y ∈ S(x),

(4)

where S (see Figure 1) is the solution map of the nonlinear complementarity problem
(NCP):

For a given x find y such that min{F (x, y), G(x, y)} = 0,

with

F (x, y) =

{
x if y ≥ −3

2
,

x+ (y + 3
2
)2 otherwise,

G(x, y) = (x− 1)2 − y +
1

2
.

The (optimistic) value function µ is discontinuous at x̄ = 0 which is also the first
component of the (unique) optimistic solution of the MPEC (4). On the other hand, the
(pessimistic) value function ϑ is continuous everywhere and its minimum is attained at
x̂ = 1. △

This example clearly demonstrates that when interested in pessimistic solutions of
MPECs one has to analyze primarily the value function ϑ.

Our aim in this paper is to develop a numerical procedure to the computation of an
approximate pessimistic solution to (1). As mentioned by Dempe in [8], to find a pessimistic
solution to (1) one either has to minimize a discontinuous, implicitly given value function
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Figure 1: Multifunction S from Example 1.

which is generally not lower semicontinuous, or one has to minimize its special relaxation
constructed via a modification of the equilibrium constraint. In this paper we address the
first option. To this end we propose a procedure, where we compute the values of ϑ needed
for its approximate minimization without using a first-order information.

The plan of the paper is as follows. In the next section we provide a preliminary
analysis of the problem and describe two “relaxed” solution concepts which are suitable
and reasonable to consider when a local pessimistic solution to MPEC does not exist. In
Section 3, we give a brief description of our proposed numerical method, particularly its
already existing components, BFO [22] and UFO [16]. In the final section we summarize
our numerical experience on test MPECs and comment also on combination of BOBYQA
[23] and UFO.

The following notation is employed: distΩ(·) is the distance function to a set Ω. By

x
Ω−→ x̄ we mean that x → x̄ with x ∈ Ω and by x

g−→ x̄ we mean that x → x̄ with
g(x) → g(x̄). For a real-valued function f we use the notation epi f , hypo f , Gph f and
[f ≤ a] to denote its epigraph, hypograph, graph and level sets, respectively.

For the readers’ convenience we now state the definitions of several basic notions from
modern variational analysis.

For a set Ω and a point x̄ ∈ clΩ, the Fréchet normal cone to Ω at x̄ is defined by

N̂Ω(x̄) :=

{
x∗ ∈ Rn

∣∣∣∣∣ limsup

x
Ω−→x̄

⟨x∗, x− x̄⟩
∥ x− x̄ ∥

≤ 0

}
.
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The limiting normal cone to Ω at x̄ is given by

NΩ(x̄) = Lim sup

x
Ω−→x̄

N̂Ω(x),

where the “Lim sup” stands for the Painlevé-Kuratowski upper (or outer) limit. This limit
is defined for a set-valued mapping F : Rn ⇒ Rm at a point x̄ by

Lim sup
x→x̄

F (x) := {y ∈ Rm | ∃xk → x, ∃yk → y with yk ∈ F (xk)}.

For a convex set Ω, both normal cones NΩ and N̂Ω reduce to the normal cone of convex
analysis, for which we use simply the notation NΩ.

For a function f [Rn → R], and a point x̄ ∈ Rn, the sets

∂̂f(x̄) = {y ∈ Rn | (y,−1) ∈ N̂epif (x̄, f(x̄))}

and
∂f(x̄) = {y ∈ Rn | (y,−1) ∈ Nepif (x̄, f(x̄))}

are the (lower) Fréchet and the (lower) limiting subdifferentials of f at x̄, respectively. The
upper Fréchet subdifferential of f at x̄ is given by

∂̂+f(x̄) = {y ∈ Rn | (−y, 1) ∈ N̂hypof (x̄, f(x̄))}.

Given a set-valued mapping F [Rn ⇒ Rm] and a point (x̄, ȳ) from its graph

GphF := {(x, y) ∈ Rn × Rm|y ∈ F (x)},

the Fréchet coderivative D̂∗F (x̄, ȳ)[Rm ⇒ Rn] of F at (x̄, ȳ) is defined by

D̂∗F (x̄, ȳ)(y∗) := {x∗ ∈ Rn|(x∗,−y∗) ∈ N̂GphF (x̄, ȳ)},

and the (normal) coderivative D∗F (x̄, ȳ)[Rm ⇒ Rn] of F at (x̄, ȳ) is defined by

D∗F (x̄, ȳ)(y∗) := {x∗ ∈ Rn|(x∗,−y∗) ∈ NGphF (x̄, ȳ)}.

When F is single-valued at x̄, we omit ȳ in the notation D̂∗F (x̄, ȳ) or D∗F (x̄, ȳ).
Finally, in this paper we use the notion of calmness. A single-valued mapping f [Rn →

Rm] is said to be calm at x̄ with modulus L ≥ 0 if there is a neighborhood U of x̄ such
that

|f(x)− f(x̄)| ≤ L∥x− x̄∥ for all x ∈ U .
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2 Problem analysis

Before we proceed with relaxations of the pessimistic solution concept, let us start with the
application of the upper Fréchet subdifferential condition for local minima under geometric
constraints [18, Proposition 5.2] to derive a new type of necessary optimality conditions
for pessimistic solutions of (1) only in terms of regular normal cones to GphS and ω.

Theorem 1. Let (x̂, ŷ) be a pessimistic solution to (1) such that ϑ(x̂) is finite, f be Fréchet
differentiable at (x̂, ŷ) and suppose that the map

M(x) = {y ∈ S(x)|ϑ(x) = f(x, y)}

admits a selection that is calm at (x̂, ŷ). Then one has the following inclusion

−∇xf(x̂, ŷ) + D̂∗S(x̂, ŷ)(−∇yf(x̂, ŷ)) ⊂ N̂ω(x̂). (5)

Proof. Applying [18, Proposition 5.2] to problem

minimize ϑ(x)

subject to

x ∈ ω,

(6)

we arrive at inclusions
∂̂(−ϑ)(x̂) ⊂ N̂ω(x̂),

∂̂(−ϑ)(x̂) ⊂ Nω(x̂).

It remains to apply [19, Theorem 2] which yields

∂̂(−ϑ)(x̂) = −∇xf(x̂, ŷ) + D̂∗S(x̂, ŷ)(−∇yf(x̂, ŷ)).

This concludes the proof.

The optimistic solution of (1) is in general easier to compute. Among possible applica-
tions, Theorem 1 can be used to check whether the optimistic solution of (1) satisfying the
imposed assumptions, is at the same time also the pessimistic solution of that problem.
For illustration, see the following example.

Example 2. Consider the MPEC

minimize
x

x+ y1

subject to y ∈ S(x),

x ∈ [0, 2],

where

S(x) =

{
y ∈ R2

∣∣∣∣0 ∈
[

y2
2(x− 1)2 − 2y1 + 3y2

]
+NR2

+
(y)

}
= {y ∈ R2|0 ≤ y1 ≤ (x− 1)2, y2 = 0},
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see Figure 2.
The optimistic solution of this MPEC is attained at (x̄, ȳ) = (0, 0, 0). On the other

hand, 0 is not the first component of a pessimistic solution. Indeed, (0, 1, 0) is not a

pessimistic solution since ∇xf(0, 1, 0) = 1, D̂∗S(0, 1, 0)(−1, 0) = D∗S(0, 1, 0)(−1, 0) = {2}
and thus (5) yields

{1} ⊂ R−.

The pessimistic solution is attained at (x̂, ŷ) = (1/2, 1/4, 0). △

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

0

1
1

1

2

2

y2

S(x)

x

y1

Figure 2: Multifunction S from Example 2.

As we mentioned in the introduction, a (local) pessimistic solution to (1) exists only
under restrictive assumptions on problem data. Therefore we consider the following relax-
ation of the pessimistic solution concept.

Definition 1. (relaxed pessimistic solution to MPEC)
The pair (x̂, ŷ) ∈ ω × Rm is called a (local) relaxed pessimistic solution to (1), provided
∃xi

ω−→ x̂, yi → ŷ, yi ∈ S(xi), and a neighborhood O of x̂ such that ϑ(xi) = f(xi, yi) and
ϑ(xi) → infx∈ω∩O ϑ(x).

Clearly, possible accumulation points ỹ of {yi} do not generally fulfill the relation
ϑ(x̂) = f(x̂, ŷ) due to the possible lack of continuity of ϑ.

Assume for simplicity throughout the whole sequel that

Assumption 1. ω := {x ∈ Rn|ai ≤ xi ≤ bi}, where ai, bi ∈ R̄, i = 1, . . . , n.

Assumption 2. S is nonempty and convex-valued over ω.

Assumption 3. S is compact-valued and outer semicontinuous over ω, cf [25, Def. 5.4].

In numerous equilibrium problems, namely, the solution map S may have a difficult
structure with disconnected images, which would make the computation of the values of
ϑ impracticable. Assumption 2 is intended to prevent such situations. Assumption 3
ensures by [2, Theorem 1.4.16] that µ is lower-semicontinuous (lsc) over ω, ϑ is upper-
semicontinuous (usc) over ω and that for all x ∈ ω one has

µ(x) = min
y∈S(x)

f(x, y),

ϑ(x) = max
y∈S(x)

f(x, y).

6



In the text below we describe a class of equilibria satisfying Assumptions 2 and 3.
Let us denote by ϑ̂ the lsc regularization of ϑ, i.e., the largest lsc minorant of ϑ. Then

it is clear that under the imposed assumption x̂ is a relaxed pessimistic solution to (1) if

and only if it is a local minimum of ϑ̂ over ω. In this way ϑ̂(x̂) provides us with a lower
estimate for all values of ϑ at points x near x̂ feasible to (1). Further, under the imposed
assumptions, this type of “solution” to (1) exists whenever ω is compact.

However, the relaxed pessimistic solutions are typically not pessimistic solutions to
MPEC (1). Therefore, the Leader is usually forced to deviate slightly from his relaxed
optimal strategy and has to be content with an approximate solution.

Definition 2. ((δ, ε)-pessimistic solution to MPEC)
Let x̂ be the first component of a relaxed pessimistic solution to (1) and δ, ε > 0 be given.
We say that (x̃, ỹ) ∈ ω × Rm is a (δ, ε)-pessimistic solution to (1), provided

ϑ̂(x̃) = ϑ(x̃) = f(x̃, ỹ)

ϑ̂(x̃) ≤ ϑ(x̂) + ε

∥x̃− x̂∥ < δ.

This notion corresponds to the so-called η-solutions by Loridan and Morgan ([11]) when
δ = +∞. We include a parameter δ to this concept because in some cases the choice of
δ directly corresponds to the trust-region radius or the accuracy level for the variables in
numerical method described below.

When approximating the first component x̂ of a (relaxed) pessimistic solution we are
interested in a relationship between parameters δ and ε. Especially important is the case
when there is a real L ≥ 0 such that

|ϑ(x)− ϑ̂(x̂)| ≤ L∥x− x̂∥ (7)

for all x ∈ ω close to x̂ with ϑ(x) close to ϑ̂(x̂). In the following we show how inequality
(7) can be verified in a special class of MPECs.

Suppose that ω = Rn and

S(x) = {y|0 ∈ F (x, y) +NC(y)}, (8)

where C ⊂ Rm is a convex compact set, F [Rn × Rm → Rm] is continuously differentiable
and F (x, ·) is monotone for all x. Then S is a nonempty convex- and compact-valued outer
semicontinuous multifunction and thus equilibria, governed by the generalized equation in
(8), satisfy both Assumptions 2 and 3.

To enforce the possible satisfaction of inequality (7), however, we will further simplify
the structure of S by assuming that F is affine and C is polyhedral. Then we know from
[24, Lemma 4], cf also [21, Theorem 2.7], that there exists a finite number, say k, of convex
polyhedra Ξi such that

Gph S =
k∪

i=1

Ξi.
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For i = 1, . . . , k, let us introduce the (polyhedral) sets

Ωi := {x|∃y ∈ Rm such that (x, y) ∈ Ξi},

and with each x ∈ Rn let us associate the index set

I(x) := {i ∈ {1, . . . , k}|x ∈ Ωi}.

It follows that
ϑ(x) = max

i∈I(x)
ϑi(x),

where
ϑi(x) := max

y
{f(x, y)|(x, y) ∈ Ξi}.

By defining the maps Si[Rn ⇒ Rm] via Gph Si = Ξi, we easily infer that domSi = Ωi

and
ϑi(x) = max

y∈Si(x)
f(x, y).

By virtue of [25, Example 9.35] Si happens to be continuous relative to its domain and
thus application of [2, Theorem 1.4.16] yields continuity of function ϑi relative to Ωi.

Consider now the first component x̂ of a relaxed pessimistic solution of a respective
MPEC and put a := ϑ̂(x̂). It follows that there is a subset of I(x), say I0(x̂), such that

(x̂, a) ∈ Gph ϑi for all i ∈ I0(x̂).

Since ϑ(x) ≥ a for all x close to x̂, to prove (7), in fact, it only suffices to verify that
for each i ∈ I0(x̂), ϑi is calm at (x̂, a) from above, i.e., the one-sided inequality

ϑi(x) ≤ a+ Li∥x− x̂∥ ∀x ∈ Ωi and close to x̂ (9)

holds true.
For the calmness of ϑi from above we have the following theorem at our disposal, where

g(u) :=

{
dist{ϑ−1

i (u)}(x̂) = inf{∥x− x̂∥|ϑi(x) = u} if u > a

0 otherwise,

and for u > a
N (u) := argmin{∥x− x̂∥|ϑi(x) = u}.

Theorem 2. Let x̂ be the first component of a relaxed pessimistic solution of (1) and
i ∈ I0(x̂). Then inequality (9) is fulfilled whenever

0 /∈ Limsup
u

g−→a
g(u)>0

∪
x̃∈N (u)

{
1

α

∣∣∣∣α x̃− x̂

∥x̃− x̂∥
∈ ∂ϑi(x̃)

}
. (10)

If condition (10) holds for all i ∈ I0(x̂), then inequality (7) holds true.
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Proof. Using the convention that infimum of a function over the empty set amounts to +∞,
it is easy to see that the calmness of ϑi at (x̂, a) from above (inequality (9)) is equivalent
with the condition

dist[g≤0](u) ≤ Lig(u) ∀u close to a. (11)

To this end, we can now invoke [10, Theorem 2.1] and conclude that inequality (11) is
implied by the condition

0 /∈ Limsup
u

g−→a
g(u)>0

∂g(u). (12)

As ∥x− x̂∥ is differentiable for x ∈ ϑ−1(u), u > a, we obtain from [19, Theorem 7] that

∂g(u) ⊂
∪

x̃∈N (u)

{
y∗

∣∣∣∣ x̃− x̂

∥x̃− x̂∥
∈ D∗ϑi(x̃)(y

∗)

}
.

Thus, condition (12) is implied by

0 /∈ Limsup
u

g−→a
g(u)>0

∪
x̃∈N (u)

{
y∗

∣∣∣∣ x̃− x̂

∥x̃− x̂∥
∈ D∗ϑi(x̃)(y

∗)

}
.

It remains to express the coderivative D∗ϑi(x̃) in terms of the limiting subdifferential
∂ϑi(x̃). Clearly, by the definition of the coderivative,{

y∗
∣∣∣∣ x̃− x̂

∥x̃− x̂∥
∈ D∗ϑi(x̃)(y

∗)

}
=

{
1

α

∣∣∣∣[ α x̃−x̂
∥x̃−x̂∥
−1

]
∈ NGph ϑi

(x̃, ϑi(x̃))

}
.

We claim that if a vector of the form (d,−1)⊤ belongs to NGphϑi
(x̃, ϑi(x̃)), then d belongs

to ∂ϑi(x̃). This follows from the fact that, by the continuity of ϑi relative to Ωi, there exist
sequences xk → x̃, dk → d, µk → −1 such that

(dk, µk)
⊤ ∈ N̂Gph ϑi

(xi, ϑi(xi)) ∀k.

Using [18, Theorem 1.80] we now infer that for all k sufficiently large one has

(dk, µk)
⊤ ∈ N̂epiϑi

(xi, ϑi(xi))

and so, consequently,
(d,−1)⊤ ∈ Nepiϑi

(x̃, ϑi(x̃)),

i.e., d ∈ ∂ϑi(x̃). The statement has been established.

Remark. Note that (11) amounts to the (local) error bound property of g at a and the set
on the right-hand side of (12) is the (limiting) outer subdifferential of g at a introduced in
[10].

We illustrate the application of Theorem 2 by means of the following example.
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Example 3. Consider the MPEC

minimize
x

(x2 − x)y1 + y2

subject to

y ∈ S(x),

(13)

where

S(x) =

{
y ∈ R2

∣∣∣∣0 ∈
[
x
0

]
+NΩ(y)

}
,

with
Ω = {(y1, y2) ∈ R2

+|y1 ≤ 1, y1 + 2y2 ≤ 2}.
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Figure 3: The graph of multifunction S in Example 3.

Clearly, the graph of S consists of three polyhedral pieces (see Figure 3)

Ξ1 ={(x, y1, y2)|x ≤ 0, y1 = 1, y2 ∈ [0, 0.5]};
Ξ2 ={(x, y1, y2)|x = 0, (y1, y2) ∈ Ω};
Ξ3 ={(x, y1, y2)|x ≥ 0, y1 = 0, y2 ∈ [0, 1]}
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and, consequently,

ϑ1(x) =

{
x2 − x+ 1

2
for x ≤ 0;

−∞ otherwise;

ϑ2(x) =

{
1 for x = 0;

−∞ otherwise;

ϑ3(x) =

{
1 for x ≥ 0;

−∞ otherwise.

In this case, one has x̂ = 0 with a = 1
2
, I(x̂) = {1, 2, 3} and I0(x̂) = {1}. Since S1

corresponding to Ξ1 is continuous relative to R−, and for u > 1
2
one hasN (u) =

√
u− 1

4
+ 1

2
,

the set on the right-hand side of (10) amounts to

Limsup
u↘ 1

2

u̸= 1
2

{
1

α

∣∣∣∣α = 2x− 1, u = x2 − x+
1

2

}

= Limsup
x↗0
x̸=0

{
1

2x− 1

}
∪ Limsup

x↘1
x ̸=1

{
1

2x− 1

}
= {−1, 1}.

Theorem 2 thus yields the calmness of ϑ1 at (0, 1
2
) from above and we infer that the

respective function ϑ(·) = maxi=1,2,3 ϑi(·) satisfies inequality (7). △
We have included the above example to our collection of test problems for the numerical

method proposed in Section 3. For numerical results see Table 2.
Inequality (7) signalizes a numerically important fact that by decreasing δ we may

theoretically compute a (δ, ε)-pessimistic solution, whose objective value is arbitrarily close

to the unattainable value ϑ̂(x̂). Note that the (restrictive) assumptions imposed on F and C
are needed only to achieve the favorable disjunctive structure of Gph S with the respective
functions ϑi continuous relative to Ωi. Such a structure can be obtained, however, also in
other situations.

3 Numerical method

Our aim is to suggest a numerical procedure for the computation of (δ, ε)-pessimistic so-
lutions to (1), an approximation of relaxed pessimistic solution. To this end we split the
pessimistically formulated MPEC into the outer and the inner optimization problems.

For solving the inner optimization problem

maximize
y

f(x, y)

subject to

y ∈ S(x)

(14)

11



with a fixed x we use a suitable optimization method from the interactive system UFO.
As explained in the previous sections, the optimal value function of this problem, ϑ(x), is
generally an usc function. Thus, for the outer optimization problem

minimize
x

ϑ(x)

subject to

x ∈ ω,

(15)

we use the code BFO by P. Toint for derivative free minimization of (possibly discontinuous)
functions. To find (ε, δ)-pessimistic solutions to MPECs, we have combined these two
algorithms into one code. Alternatively, we also replaced BFO by the algorithm BOBYQA
developed by M.J.D. Powell. A brief description of these algorithms follows.

UFO [16] is an interactive system for universal functional optimization written in For-
tran that serves for solving both dense medium-size and sparse large-scale optimization
problems. It can be used for formulation and solution of particular optimization prob-
lems, for preparation of specialized optimization routines and for designing and testing
new optimization methods. One can generate a large number of modifications of a given
method and find the most suitable implementation. The optimization methods can be
implemented with various strategies for a step-size selection. It contains line-search meth-
ods, general trust-region methods, special trust-region methods for nonlinear least squares,
Marquardt-type methods for nonlinear least squares and filter-type methods for nonlinear
programming problems including Fletcher-Leyffer filters, barrier filters and Markov filters.
Moreover, various direct solvers for different matrix representations and various iterative
solvers with different preconditioners can be used for the computation of a descent direc-
tion.

The inner problem, typically an optimization problem with variational inequality con-
straints, is difficult to solve by standard methods since the Mangasarian-Fromowitz con-
straint qualification is not satisfied at any feasible point. For the numerical experiments
described in the next section we have used two approaches. First, we have considered the
inner problem as a nonlinear program and used the standard interior-point method [14].
Trust-region realization and line-search approach with suitable restarts were used for the
direction determination, cf. [1], [4], [6]. After setting up several parameters, mainly the
maximal stepsize and the trust-region radius, we have managed to obtain quite a good
solution of the inner problems for fixed x. In the second approach we considered the
inner constraints as complementarity constraints and used a recently developed method
which is based on the interior-point approach and uses an exact penalty function to remove
complementarity constraints, cf. [15].

BFO [22] is a “Brute-Force Optimizer”, written in Matlab, for unconstrained or bound-
constrained optimization in continuous and/or discrete variables, where the number of
variables is small (not larger than 10). The derivatives of the objective are assumed to
be unavailable or inexistent. Objective function values and a starting point x0 must be
provided by the user.

The algorithm proceeds by evaluating the objective function at points differing from

12



the current iterate by a positive (forward) and a negative (backward) step in each variable.
The corresponding stepsizes are computed on a grid given by varying fractions of the
user-specified increments. For continuous variables, these fractions are decreased (yielding
a finer grid) as soon as no progress can be made from the current point and until the
desired accuracy is reached. For discrete variables, the user-supplied increment may not
be reduced.

The algorithm is stopped as soon as no progress can be made from the current iterate by
taking forward and backward steps of length of the specified accuracy levels for continuous
variables and of length of the specified increments for discrete variables. However, this
may be insufficient to guarantee that the computed point is a local minimizer when the
objective function is not differentiable.

The Fortran code BOBYQA [23] is a bound-constrained optimization algorithm for
computing a local minimum of a function F of several variables. The function values of F
can also be specified by a “black box” and the information about its derivatives need not
be available.

BOBYQA is based on finding interpolation points u1, . . . , um and computing quadratic
approximations Qk of F that satisfy Qk(ui) = F (ui), i = 1, . . . ,m. At each iteration, a new
point xk+1 = xk + dk is computed and one of the interpolation points, say uj, is replaced
by xk+1. Thus only one interpolation point is altered on each iteration. A direction vector
dk is chosen by minimizing Qk(xk+d) subject to the prescribed bounds on variables under
the condition d ≤ ∆k, where ∆k is the current trust-region radius. At each iteration, as
a new point of a minimizing sequence x∗

k we take the point which minimizes F among all
current interpolation points.

BOBYQA consists of a very accurate and efficient system of updating the approximation
models and it maintains a “good” set of interpolation points. This makes BOBYQA
numerically very stable and not sensitive to a reasonable level of computational errors in
values of the objective. However, BOBYQA does not make use of the problem structure
and the established local convergence rate is closer to linear than to quadratic. For this
reason, the algorithm sometimes prefers the early termination, i.e., it stops when we are still
far from an optimal solution but the cost for maintaining the “good” set of interpolation
points is too high or the approximation is poor, see [7, Section 1.3].

From the above discussion it is clear that there are no guarantees for convergence either
for the combination of BFO and UFO or for the combination of BOBYQA and UFO. If the
computational precision in UFO is maintained high enough (by several orders higher than
in BFO or BOBYQA), the convergence rate of the combination of codes depends mainly
on performance of the derivative-free optimization tool. Then, e.g. in cases when no early
termination occurs in BOBYQA, we are able to compute an approximation of the relaxed
pessimistic solution by choosing the final trust-region radius as δ.

Our final note is about the special situations when the map S happens to be continuous
over ω (in the set-valued sense). Then ϑ is continuous over ω as well and the notions
of relaxed pessimistic and (δ, ε)-pessimistic solutions become superfluous. Our proposed
procedure will then generate pessimistic solutions in the sense of (3).
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4 Numerical experiments

We have performed tests on several examples of small dimension by using the codes BFO
and BOBYQA for the outer problem and the UFO system for the inner problem. Examples
4 and 5 refer to the example in [9, Section 5.1], the former being the pessimistic and the
latter being the optimistic formulation of the same problem. By including Example 5 in
our collection of test problems we intend to show that our proposed method could be used
also for computation of optimistic solutions to (1). Example 6 is a simple MPEC from
[20] and [21] where the solution map is single-valued and continuous at each point relative
to ω and by this example we test whether our method can compute the solutions (in the
original sense) to (1). Example 7 is of similar nature as Examples 3 and 4 but with x ∈ R3.
In Example 8 we propose a more general framework for constructing test problems in the
form of pessimistically formulated MPECs of arbitrary dimension.

In all our computations we have considered δ, the final precision level given consecu-
tively by the values 10−2, 10−3, 10−4 and 10−5 and the accuracy level 10−7 for computations
of the value functions by UFO.

For each reported results on test problems, we also include the number of objective
function evaluations neval (number of UFO calls), see Tables 2-6. Note that the higher
dimension, the more UFO calls is required by BFO and hence this procedure might be
untractable for large complicated problems for which each UFO computation takes more
then just a fraction of a second.

Example 4. ([9]) (pessimistic formulation)

min
x∈[−2,2]

max
y∈S(x)

x2 + y2, (16)

where
S(x) = {y|0 ∈ −x+N[0,1](y)}.

For this problem, the pessimistic value function has the form

ϑ(x) =

{
x2 with y = 0 for x < 0;

x2 + 1 with y = 1 for x ≥ 0.

We can see that there is no solution of problem (16) in the sense of (3). However, x̂ = 0
is the first component of the relaxed pessimistic solution. The results are displayed in
Table 3. △

Example 5. ([9]) (optimistic formulation)

min
x∈[−2,2]

min
y∈S(x)

x2 + y2, (17)

where S is the same multifunction as in Example 4. The optimistic value function has in
this problem the form

µ(x) =

{
x2 with y = 0 for x ≤ 0;

x2 + 1 with y = 1 for x > 0.
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Thus its global optimistic solution is attained at (x̄, ȳ) = (0, 0). The numerical results are
the same as in Example 4 and can also be found in Table 3. This follows from the fact
that the respective optimistic and pessimistic value functions differ only at x = 0 and thus
from the same starting point BFO proceeds in both problems identically, provided it avoids
the origin where φ(0) ̸= ϑ(0). For comparison, in Table 3 we display the results of both
these problems for two different starting points. As expected, the choice of initial point x0

influences significantly the computation of a solution. △

Example 6. ([20], [21]) (An MPEC with a single-valued solution map at each feasible
point)

Consider an oligopolistic market model with 5 firms producing a homogeneous product
and attempting to maximize their profits; see, e.g., [20] and [21]. Let x ∈ R denote the
production of the Leader and let yi ∈ R, i = 1, . . . , 4, be the production of the ith Follower.

Let

T = x+
4∑

i=1

yi

denote the overall production on the market, and let p : intR+ → intR+ be the so-called
inverse demand curve that assigns T the price at which consumers are willing to purchase.
The MPEC formulation of the problem of the Leader can be written in the form

minimize c0(x)− xp(T )

subject to 0 ∈ F (x, y) +NR4
+
(y)

x ≥ 0,

where

F (x, y) =

 ∇c1(y1)− p(T )− y1∇p(T )
...

∇c4(y4)− p(T )− y4∇p(T )

 .

Let the production cost functions ci, i = 0, . . . , 4, be in the form

ci(z) = biz +
βi

1 + βi

K
− 1

βi
i (z)

1+βi
βi ,

where bi, Ki and βi, i = 0, . . . , 4, are positive parameters given by Table 1.
Further, let

p(T ) = 5000
1
γ T− 1

γ ,

with a parameter γ ≥ 1 termed demand elasticity. The numerical results, cf Table 4, can
be compared to [21, Table 12.4] where the chosen accuracy is 5× 10−4. △
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Leader Follower 1 Follower 2 Follower 3 Follower 4
bi 2 8 6 4 2
Ki 5 5 5 5 5
βi 1.2 1.1 1.0 0.9 0.8

Table 1: Parameter specification for the production costs

Example 7. (A pessimistically formulated MPEC with a relaxed pessimistic solution)

min
x∈R3

max
y∈S(x)

1

2
∥x∥2 + 1

2
∥y∥2 , (18)

where
S(x) = {y ∈ R3|0 ∈ By + x+N∆3(y)}. (19)

In (19) ∆3 is the standard 3-simplex in R3 and B is the symmetric positive semidefinite
matrix  1 −1

2
−1

2

−1
2

1 −1
2

−1
2

−1
2

1

 .

The solution map S is multi-valued only at x = (0, 0, 0) which is thus the only point
of discontinuity of ϑ. There is no solution of problem (18) in the sense of (3). However,
x̂ = (0, 0, 0) is the first component of the relaxed pessimistic solution of (18). For numerical
results for Example 7, see Table 5. △

Example 8. (A pessimistically formulated MPEC of an arbitrary dimension with a relaxed
pessimistic solution)

min
x∈Rn

max
y∈S(x)

1

2
∥x− a∥2 + y1, (20)

where
S(x) ={y ∈ Rn|0 ∈ x+NC(y), C = {y|a⊤y = c, 0 ≤ y ≤ ξ}}

=arg min
y∈Rn

{x⊤y|a⊤y = c, 0 ≤ y ≤ ξ}, (21)

a ∈ Rn
+, ξ ∈ Rn

+ and c ∈ R+ are given constants. In our numerical simulations, for a chosen
dimension n ≥ 3 of the problem, we randomly generated ai > 0, i = 1, . . . , n, and c > 0 and
set ξi =

7c
10ai

, i = 1, . . . , n. Clearly, in each such a problem of arbitrary dimension n ≥ 3
the mapping S is multivalued at x = a which is also the first component of the relaxed
pessimistic solution of (20).

Tests on randomly generated pessimistic MPECs (20) were performed with the final
precision level δ = 10−5 for dimensions n = 5, 7 and 10, respecting the upper bound for
dimension of x in BFO. In Table 6 we report results for one randomly generated problem
for each chosen dimension.

Observe that this example also fulfills all assumptions imposed in Theorem 2. △
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x0 = −0.1
accuracy level x̃ ϑ(x̃) neval

10−2 -1.3188E-03 5.013205E-01 35
10−3 -4.7665E-04 5.004769E-01 39
10−4 -1.9561E-05 5.000196E-01 44
10−5 -4.8948E-06 5.000050E-01 49

Table 2: Results for Example 3 using BFO and UFO

x0 = 1 x0 = −1
accuracy level x̃ ϑ(x̃) neval x̃ ϑ(x̃) neval

10−2 -2.6602E-03 7.0768E-06 41 -4.8018E-03 2.3057E-05 45
10−3 -3.0889E-04 9.5415E-08 53 -3.4369E-04 1.1812E-07 57
10−4 -2.0862E-05 4.3521E-10 65 -6.7267E-06 4.5248E-11 72
10−5 -2.1996E-06 4.8381E-12 70 -5.1346E-07 2.6364E-13 73

Table 3: Results for Examples 4 and 5 using BFO and UFO

x0 = 150
accuracy level x̃ ϑ(x̃) neval

10−2 99.532339 958.634749 54
10−3 99.534400 958.634749 70
10−4 99.534471 958.634749 70
10−5 99.534471 958.634749 72

Table 4: Results for Example 6 using BFO and UFO

x0 = (1, 1, 1)
accuracy level x̃1 x̃2 x̃3 ϑ(x̃) neval

10−2 4.0030E-03 2.8674E-03 7.1296E-04 1.2377E-05 192
10−3 -6.8044E-05 3.1937E-04 -7.1007E-06 5.9399E-08 260
10−4 1.1433E-06 -1.9192E-06 3.1330E-05 4.9512E-10 294
10−5 2.6704E-06 1.2923E-06 2.3969E-06 7.2732E-12 376

Table 5: Results for Example 7 using BFO and UFO

For the combination of BOBYQA and UFO, the choices of values of RHOBEG and RHOEND,
the initial and final values of a trust-region radius for BOBYQA, and of initial point x0,
are crucial. In all our computations we have set the number of interpolation points of
BOBYQA to m = 2n+1, where n is the dimension of x. Since BOBYQA can be used only
for problems with n ≥ 2, we have introduced, where necessary, an artificial variable which,
however, does not enter the objective. Even though BOBYQA was designed primarily for
minimization of continuous objectives, for all our test problems we have obtained merely
the same (satisfactory) results as with the combination of BFO and UFO. Hence we do
not report these results in separate tables here.
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n = 5 n = 7 n = 10
ϑ(x̃) 4.7291E-11 3.5892E-11 1.4816E-10

x̃1 − a1 6.6631E-06 2.1495E-06 9.4760E-06
x̃2 − a2 7.4962E-07 3.7293E-06 2.0207E-06
x̃3 − a3 2.0791E-06 -4.5862E-06 -5.3025E-06
x̃4 − a4 -5.5591E-06 7.9849E-07 -1.4967E-06
x̃5 − a5 -3.7941E-06 -2.3226E-06 -4.5371E-06
x̃6 − a6 - -3.3658E-06 -1.6041E-07
x̃7 − a7 - -3.8577E-06 3.8176E-06
x̃8 − a8 - - -2.5545E-06
x̃9 − a9 - - 9.4421E-06
x̃10 − a10 - - 6.3944E-06

ỹ1 2.5960E-16 2.8052E-16 1.6464E-13
neval 729 1450 2198

Table 6: Results for Example 8 using BFO and UFO

The iteration process of BOBYQA is different from that of BFO. We also observed that
for a given MPEC, the minimization process of BOBYQA for an usc value function ϑ and a
lsc value function φ differs and it is much faster for the latter case. Thus, unlike reported in
Table 2, the algorithm composed of BOBYQA and UFO, achieved the prescribed accuracy
level in Example 5 in significantly less number of iterations than in Example 4, given the
same starting point. A possible explanation may lie in the construction of the quadratic
interpolation of the objective.

5 Conclusion

A numerical procedure has been proposed for the computation of approximate pessimistic
solutions to a class of MPECs. The two main blocks of this procedure consist of standard
codes for derivative-free optimization and for the solution of special MPECs. They may
be replaced by different codes serving the same purpose. We have tested our procedure on
several small-dimensional academic examples of MPECs.

By using tools of modern variational analysis, a method has been suggested for local
analysis of the pessimistic value function ϑ around the relaxed pessimistic solution. This
method enables a post-optimal analysis of the behavior of ϑ in simple examples of a special
structure. Since local analysis of usc functions is a rather new topic, this result has only
a preliminary character. It offers, however, an interesting new research area in variational
analysis, not restricted only to the pessimistic solution concept for MPECs.
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