národní
úložiště
šedé
literatury

A Theorem of the Alternatives for the Equation -Ax-- B- $x-=b$ Rohn, Jiří
 2010
 Dostupný z http://www.nusl.cz/ntk/nusl-41911
 Dílo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národního úložiště šedé literatury (NUŠL).
Datum stažení: 27.04.2024
Další dokumenty můžete najít prostřednictvím vyhledávacího rozhraní nusl.cz .

Institute of Computer Science Academy of Sciences of the Czech Republic

A Theorem of the Alternatives for the Equation $|A x|-|B||x|=b$

Jiří Rohn

Technical report No. V-1092
30.11 .2010

[^0]
A Theorem of the Alternatives for the Equation $|A x|-|B||x|=b$

Jirí Rohn ${ }^{11}$

Technical report No. V-1092
30.11.2010

Abstract

: A theorem of the alternatives for the equation $|A x|-|B||x|=b\left(A, B \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}\right)$ is proved and several consequences are drawn. In particular, a class of matrices A, B is identified for which the equation has exactly 2^{n} solutions for each positive right-hand side b.

Keywords:
Absolute value equation, triple absolute value equation, alternatives, solution set, interval matrix, regularity.

[^1]
1 Introduction

We consider here the equation

$$
\begin{equation*}
|A x|-|B||x|=b, \tag{1.1}
\end{equation*}
$$

where $A, B \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$, which we call a triple absolute value equation. This equation could also be written in the form

$$
\begin{gathered}
|A x|-C|x|=b, \\
C \geq 0,
\end{gathered}
$$

but we prefer the one-line expression (1.1). As far as known to us, nobody has studied this equation as yet.

In the main result of this paper we show that for each $A, B \in \mathbb{R}^{n \times n}$ exactly one of the following two alternatives holds: (i) for each $b>0$ the equation (1.1) has exactly 2^{n} solutions and the set $\{A x||A x|-|B|| x \mid=b\}$ intersects interiors of all orthants of \mathbb{R}^{n}, (ii) the equation (1.1) has a nontrivial solution for some $b \leq 0$. In Corollary 2 we show that, even more, if the property mentioned in (i) holds for some $b_{0}>0$, then it is shared by any $b>0$, and in Corollary 3 we prove that if A is nonsingular and the condition

$$
\begin{equation*}
\varrho\left(\left|A^{-1}\right||B|\right)<1 \tag{1.2}
\end{equation*}
$$

is satisfied, then (i) holds, so that for each $b>0$ the equation (1.1) has exactly 2^{n} solutions. As it will be shown later, these results follow from necessary and/or sufficient conditions for regularity/singularity of interval matrices when applied to the interval matrix $[A-|B|, A+$ $|B|]$. In turn, our results enable us to add three more such necessary and sufficient conditions to the list of forty of them surveyed in [11] (Proposition 7 below).

Nearest in form to the equation (1.1) is the absolute value equation

$$
\begin{equation*}
A x+B|x|=b \tag{1.3}
\end{equation*}
$$

which has been resently studied by Mangasarian [2], [3], 4], Mangasarian and Meyer [5], Prokopyev [7], and Rohn [10], [12]. There is, however, a big difference between these two equations: while the equation (1.3) has under the condition (1.2) exactly one solution for each b, the equation (1.1) under the same condition has exactly 2^{n} solutions for each $b>0$. This sharp difference between both the equations is to be ascribed to the absence/presence of the absolute value of the term $A x$.

The particular circumstances of discovery of the main theorem are briefly mentioned in the personal note in Section 8.

2 Notations

We use the following notations. Matrix inequalities, as $A \leq B$ or $A<B$, are understood componentwise. The absolute value of a matrix $A=\left(a_{i j}\right)$ is defined by $|A|=\left(\left|a_{i j}\right|\right)$. The same notations also apply to vectors that are considered one-column matrices. For each $y \in\{-1,1\}^{n}$ we denote

$$
T_{y}=\operatorname{diag}\left(y_{1}, \ldots, y_{n}\right)=\left(\begin{array}{cccc}
y_{1} & 0 & \ldots & 0 \\
0 & y_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & y_{n}
\end{array}\right)
$$

and $\mathbb{R}_{y}^{n}=\left\{x ; T_{y} x \geq 0\right\}$ is the orthant prescribed by the ± 1-vector y. Notice that $T_{y}^{-1}=T_{y}$ for such a $y . \varrho(A)$ stands for the spectral radius of A. Given $A, B \in \mathbb{R}^{n \times n}$, the set

$$
[A-|B|, A+|B|]=\{S| | S-A|\leq|B|\}
$$

is an interval matrix; it is called regular if each $S \in[A-|B|, A+|B|]$ is nonsingular, and it is said to be singular otherwise (i.e., if it contains a singular matrix).

3 Theorem of the alternatives

To simplify formulations, let us say that the equation (1.1) is exponentially solvable for a particular right-hand side b if it has exactly 2^{n} solutions and the set

$$
\begin{equation*}
\{A x||A x|-|B|| x \mid=b\} \tag{3.1}
\end{equation*}
$$

intersects interiors of all orthants of \mathbb{R}^{n}. The following theorem is the main result of this paper.

Theorem 1. For each $A, B \in \mathbb{R}^{n \times n}$ exactly one of the following two alternatives holds:
(i) the equation (1.1) is exponentially solvable for each $b>0$,
(ii) the equation (1.1) has a nontrivial solution for some $b \leq 0$.

Proof. Consider the following two options for the interval matrix $[A-|B|, A+|B|]$:
(i') $[A-|B|, A+|B|]$ is regular,
(ii') $[A-|B|, A+|B|]$ is singular.
We shall prove that the assertions (i), (ii) are equivalent to (i'), (ii'), respectively. Since exactly one of (i'), (ii') always holds, the same will be true for (i), (ii).
$(\mathrm{i}) \Rightarrow\left(\mathrm{i}^{\prime}\right)$. Let (i) hold. Take any $b_{0}>0$, then for each ± 1-vector $y \in \mathbb{R}^{n}$ there exists a solution x_{y} of the equation $|A x|-|B \| x|=b_{0}$ such that $A x_{y} \in \mathbb{R}_{y}^{n}$. Since x_{y} satisfies $\left|A x_{y}\right|=|B|\left|x_{y}\right|+b_{0}>|B|\left|x_{y}\right|$, the condition (v) of Theorem 3.1 in $[9]$ is met and consequently the interval matrix $[A-|B|, A+|B|]$ is regular.
$\left(i^{\prime}\right) \Rightarrow(\mathrm{i})$. If (i') holds, then for each ± 1-vector y the interval matrix

$$
\left[A-\left|-T_{y}\right| B| |, A+\left|-T_{y}\right| B| |\right]=[A-|B|, A+|B|]
$$

is regular, hence by Proposition 4.2 in [10] the equation

$$
\begin{equation*}
A x-T_{y}|B \| x|=T_{y} b \tag{3.2}
\end{equation*}
$$

has a unique solution x_{y}. This x_{y} then satisfies

$$
\begin{equation*}
T_{y} A x_{y}-\left|B \| x_{y}\right|=b \tag{3.3}
\end{equation*}
$$

which implies

$$
\begin{equation*}
T_{y} A x_{y}=|B|\left|x_{y}\right|+b \geq b>0 \tag{3.4}
\end{equation*}
$$

hence $A x_{y}$ belongs to the interior of \mathbb{R}_{y}^{n} and $T_{y} A x_{y}=\left|A x_{y}\right|$, which in view of (3.3) means that x_{y} is a solution of (1.1). Conversely, let x solve (1.1). Put $y_{i}=1$ if $(A x)_{i} \geq 0$ and $y_{i}=-1$ otherwise $(i=1, \ldots, n)$, then $T_{y} A x=|A x|$, so that x is a solution of

$$
T_{y} A x-|B||x|=b
$$

and thus also of (3.2). Because of the above-stated uniqueness of solution of (3.2), this implies that $x=x_{y}$. In this way we have proved that the solution set of (1.1) consists precisely of the points x_{y} for all possible ± 1-vectors $y \in \mathbb{R}^{n}$. Thus to prove that (1.1) has exactly 2^{n} solutions, it will suffice to show that all the x_{y} 's are mutually different. To this end, take two ± 1-vectors y and $y^{\prime}, y \neq y^{\prime}$. Then $y_{i} y_{i}^{\prime}=-1$ for some i. From (3.4) it follows that $y_{i}\left(A x_{y}\right)_{i}>0$ and $y_{i}^{\prime}\left(A x_{y^{\prime}}\right)_{i}>0$ and by multiplication $y_{i}\left(A x_{y}\right)_{i} y_{i}^{\prime}\left(A x_{y^{\prime}}\right)_{i}>0$, hence $\left(A x_{y}\right)_{i}\left(A x_{y^{\prime}}\right)_{i}<0$, which clearly shows that $x_{y} \neq x_{y^{\prime}}$.
$($ ii) \Leftrightarrow (ii'). Existence of a nontrivial solution of (1.1) for some $b \leq 0$ is equivalent to existence of a nontrivial solution of the inequality

$$
\begin{equation*}
|A x| \leq|B||x|, \tag{3.5}
\end{equation*}
$$

which, by Proposition 2.2 in [10], is in turn equivalent to singularity of the interval matrix $[A-|B|, A+|B|]$.

This proves the theorem.

4 Consequences

We can draw some consequences from Theorem 1 and its proof.
Corollary 2. If the equation (1.1) is exponentially solvable for some $b_{0}>0$, then it is exponentially solvable for each $b>0$.

Proof. Indeed, in the proof of Theorem [1, implication "(i) $\Rightarrow\left(\mathrm{i}^{\prime}\right)$ ", we showed that exponential solvability of the equation (1.1) for some $b_{0}>0$ implies regularity of $[A-|B|, A+|B|]$ and thus, by " $(\mathrm{i}$ ' $) \Rightarrow(\mathrm{i})$ ", also exponential solvability for each $b>0$.

Corollary 3. If A is nonsingular and

$$
\begin{equation*}
\varrho\left(\left|A^{-1}\right||B|\right)<1 \tag{4.1}
\end{equation*}
$$

holds, then the equation (1.1) is exponentially solvable for each $b>0$.
Proof. By the well-known Beeck's result in [1] the condition (4.1) implies regularity of the interval matrix $[A-|B|, A+|B|]$ and thus, by the equivalence "(i) \Leftrightarrow (ii)" established in the proof of Theorem 1, it also implies exponential solvability of (1.1) for each $b>0$.

Corollary 4. If A is nonsingular and

$$
\begin{equation*}
\max _{j}\left(\left|A^{-1}\right||B|\right)_{j j} \geq 1 \tag{4.2}
\end{equation*}
$$

holds, then the equation (1.1) is not exponentially solvable for any $b>0$.

Proof. It follows from [8], Corollary 5.1, (iii) that the condition (4.2) implies singularity of the interval matrix $[A-|B|, A+|B|]$, which, by the proof of Theorem 1 and by Corollary 2, precludes exponential solvability of (1.1) for any $b>0$.

For $A, B \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$, denote

$$
X(A, B, b)=\{x| | A x|-|B|| x \mid=b\}
$$

i.e., the solution set of (1.1) (attention: not to be mixed with (3.1)). Observe that if $x \in$ $X(A, B, b)$, then $-x \in X(A, B, b)$, hence the solutions appear in $X(A, B, b)$ in pairs $(x,-x)$. Thus, unless $b=0$, the cardinality of $X(A, B, b)$, if finite, is even.

Corollary 5. If the equation $|A x|-|B||x|=b_{0}$ is exponentially solvable for some $b_{0}>0$, then for each $b>0$ we have

$$
X(A, B, b)=\left\{x_{y} \mid y \in\{-1,1\}^{n}\right\}
$$

where for each $y \in\{-1,1\}^{n}, x_{y}$ is the unique solution of the absolute value equation

$$
\begin{equation*}
T_{y} A x-|B||x|=b \tag{4.3}
\end{equation*}
$$

Proof. This has been proved in the "(i') $\Rightarrow(\mathrm{i})$ " part of the proof of Theorem 1.

Corollary 6. Under the assumptions of Corollary [5, we have $x_{-y}=-x_{y}$ for each $y \in$ $\{-1,1\}^{n}$.

Proof. Since x_{y} is a solution of (4.3), it follows that $-x_{y}$ solves the equation

$$
T_{-y} A x-|B \| x|=b
$$

and in view of the uniqueness of solution of this equation we have that $x_{-y}=-x_{y}$.
The equation (4.3) can be solved in a finite number of steps by a very efficient algorithm absvaleqn described in [12]. Corollary (6) reduces the number of x_{y} 's to be computed from 2^{n} to 2^{n-1} (e.g., it suffices to consider only the y 's with $y_{n}=1$).

5 Example

The following computation was performed in MATLAB. Using the randomly generated data

```
>> n=3; rand('state',1); A=2*rand(n,n)-1, B=2*rand(n,n)-1, b=rand(n,1),
A =
    0.9056 0.1963 0.6736
    0.4081 0.6815 0.0374
    0.9078 -0.1144 -0.9556
```

```
B =
    -0.2482
b =
    0.0345
    0.7153
    0.7687
```

we obtain the solution set consisting of two solutions
$\mathrm{X}=$
$18.4720-18.4720$
$27.7448-27.7448$
$6.0199-6.0199$
After scaling the matrix B by

```
>>B=0.1*B
B =
\begin{tabular}{rrr}
-0.0248 & -0.0601 & 0.0820 \\
0.0797 & -0.0394 & 0.0051 \\
-0.0142 & 0.0077 & -0.0386
\end{tabular}
```

we find that the solution set now consists of $2^{3}=8$ solutions

```
X =
    0.3921 -0.3921 0.1794 -0.1794 0.3679 -0.3679
    0.9521 -0.9521 1.0756 -1.0756 -1.3774 1.3774
    -0.5830 0.5830 -0.8066 0.8066 -0.3196 0.3196
    0.5740 -0.5740
    -1.5452 1.5452
    -0.0991 0.0991
```

and the set (3.1)

```
>> AX=A*X
AX =
    0.1492 -0.1492 -0.1697 0.1697 -0.1526 0.1526
    0.7870 -0.7870 0.7761 -0.7761 -0.8005 0.8005
    0.8041 -0.8041 0.8107 -0.8107 0.7968 -0.7968
    0.1497 -0.1497
    -0.8224 0.8224
    0.7925 -0.7925
```

intersects interiors of all the orthants. Hence, the equation $|A x|-|0.1 \cdot B||x|=b$ is exponentially solvable for this right-hand side b (and thus it is exponentially solvable for each $b^{\prime}>0$).

6 Regularity conditions

Checking regularity of interval matrices is a co-NP-complete problem [6]. Forty necessary and sufficient regularity conditions were surveyed in [11]; the results of this paper enable us to add three more items to the list.

Proposition 7. For a square interval matrix $[A-\Delta, A+\Delta]$, the following assertions are equivalent:
(a) $[A-\Delta, A+\Delta]$ is regular,
(b) the equation

$$
\begin{equation*}
|A x|-\Delta|x|=b \tag{6.1}
\end{equation*}
$$

is exponentially solvable for each $b>0$,
(c) the equation (6.1) is exponentially solvable for some right-hand side $b_{0}>0$,
(d) the equation

$$
|A x|-\Delta|x|=e
$$

is exponentially solvable.
Proof. In the light of Theorem 1 and Proposition 7 we see that $(\mathrm{a}) \Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{d}) \Rightarrow(\mathrm{c}) \Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{a})$ holds, which proves the mutual equivalence of all the assertions.

7 Conclusion

We have investigated the case of $b>0$. For a general right-hand side b there seems not to be an easy clue to the cardinality of the solution set of (1.1). This should be a subject of further research.

8 Personal note

I am a little ashamed to admit that I discovered Theorem 1 during the Christmas Eve mass on December 24, 2006 in St Francis Church in Prague.

Bibliography

[1] H. Beeck, Zur Problematik der Hüllenbestimmung von Intervallgleichungssystemen, in Interval Mathematics, K. Nickel, ed., Lecture Notes in Computer Science 29, Berlin, 1975, Springer-Verlag, pp. 150-159.
[2] O. Mangasarian, Absolute value equation solution via concave minimization., Optimization Letters, 1 (2007), pp. 3-8. 2]
[3] O. Mangasarian, Absolute value programming, Computational Optimization and Applications, 36 (2007), pp. 43-53. 2]
[4] O. L. Mangasarian, A Generalized Newton Method for Absolute Value Equations, Optimization Letters, 3 (2009), pp. 101-108. 22
[5] O. L. Mangasarian and R. R. Meyer, Absolute value equations, Linear Algebra Appl., 419 (2006), pp. 359-367. 2
[6] S. Poljak and J. Rohn, Checking robust nonsingularity is NP-hard, Mathematics of Control, Signals, and Systems, 6 (1993), pp. 1-9.
[7] O. Prokopyev, On Equivalent Reformulations for Absolute Value Equations, Comput. Optim. Appl., 44 (2009), pp. 363-372. [2]
[8] J. Rohn, Systems of linear interval equations, Linear Algebra and Its Applications, 126 (1989), pp. 39-78.
[9] J. Rohn, Regularity of interval matrices and theorems of the alternatives, Reliable Computing, 12 (2006), pp. 99-105. 3
[10] J. Rohn, An algorithm for solving the absolute value equation, Electronic Journal of Linear Algebra, 18 (2009), pp. 589-599. http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol18_pp589\% --599.pdf. 2, 3, 3, 4
[11] J. Rohn, Forty necessary and sufficient conditions for regularity of interval matrices: A survey, Electronic Journal of Linear Algebra, 18 (2009), pp. 500-512. http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol18_pp500\% --512.pdf. 2, 7
[12] J. Rohn, An algorithm for solving the absolute value equation: An improvement, Technical Report 1063, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, January 2010. http://uivtx.cs.cas.cz/~rohn/publist/absvaleqnreport.pdf. 2, [5]

[^0]: Pod Vodárenskou věží 2, 18207 Prague 8, phone: +420 266051 111, fax: +420286585789 ,
 e-mail:rohn@cs.cas.cz

[^1]: ${ }^{1}$ This work was supported by the Czech Republic Grant Agency under grants 201/09/1957 and 201/08/J020, and by the Institutional Research Plan AV0Z10300504.

