
An Algorithm for Computing All Solutions of an Absolute Value Equation

Rohn, Jiřı́
2010

Dostupný z http://www.nusl.cz/ntk/nusl-41908

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 29.04.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-41908
http://www.nusl.cz
http://www.nusl.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

An Algorithm for Computing All
Solutions of an Absolute Value
Equation

Jǐŕı Rohn

Technical report No. V-1091

30.11.2010

Pod Vodárenskou věž́ı 2, 182 07 Prague 8, phone: +420 266 051 111, fax: +420 286 585 789,
e-mail:rohn@cs.cas.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

An Algorithm for Computing All
Solutions of an Absolute Value
Equation

Jǐŕı Rohn1

Technical report No. V-1091

30.11.2010

Abstract:

Presented is an algorithm which in a finite (but exponential) number of steps computes all
solutions of an absolute value equation Ax + B|x| = b (A, B square), or fails. Failure has never
been observed for randomly generated data. The algorithm can also be used for computation of
all solutions of a linear complementarity problem.

Keywords:
Absolute value equation, algorithm, all solutions, linear complementarity problem.

1This work was supported by the Czech Republic Grant Agency under grants 201/09/1957 and
201/08/J020, and by the Institutional Research Plan AV0Z10300504.

1 Introduction

We consider here the equation
Ax + B|x| = b (1.1)

(where A,B ∈ Rn×n, b ∈ Rn), called an absolute value equation. This equation was first
introduced in [7] and has been since studied by Mangasarian [2], [3], [4], Mangasarian and
Meyer [5], Prokopyev [6], and Rohn [8], [9]. In all these papers, the authors are interested
in finding some solution of (1.1); the problem of finding all solutions of (1.1) has been left
aside so far apparently because of its expectedly high computational complexity.

In this paper we describe in MATLAB-like style an algorithm named absvaleqnall (AB-
Solute VALue EQuatioN, ALL solutions) called by

[X,all]=absvaleqnall(A,B,b)
which in a finite (but exponential) number of steps produces a matrix X whose columns are
solutions of (1.1), and a ±1-number all with the following property: if all = 1, then X con-
tains all solutions of (1.1); if all = −1, then the columns of X are still solutions of (1.1), but
it is not guaranteed that all of them have been included. Among several hundred examples
computed, we have never faced the case of all = −1 for randomly generated data. After
formulating the algorithm and proving its properties just mentioned in Section 3, we present
in Section 5 a randomly generated 7× 7 example having 10 solutions and a pseudorandomly
generated 10× 10 example having 210 = 1024 solutions.

2 Notations

We use the following notations. Ak• and A•k denote the kth row and the kth column of
A, respectively. Matrix inequalities, as A ≤ B or A < B, are understood componentwise.
The absolute value of a matrix A = (aij) is defined by |A| = (|aij |). The same notations
also apply to vectors that are considered one-column matrices. I is the identity matrix and
e = (1, . . . , 1)T is the vector of all ones. For each z ∈ Rn we denote

Tz = diag (z1, . . . , zn) =

z1 0 . . . 0
0 z2 . . . 0
...

...
. . .

...
0 0 . . . zn

 .

3 The algorithm

The algorithm is described in a MATLAB-style code in Fig. 3.1. Following we prove its
main property.

Theorem 1. The algorithm (Fig. 3.1) in a finite number of steps produces a matrix X
whose columns are solutions of the equation (1.1). If all = 1, then X contains all solutions
of (1.1).

2

(01) function [X, all] = absvaleqnall (A,B, b)
(02) X = []; all = 1;
(03) n = length(b);
(04) y = 0 ∈ Rn; z = e ∈ Rn;
(05) if A + BTz is nonsingular
(06) x = (A + BTz)

−1b;
(07) C = −(A + BTz)

−1B;
(08) if Tzx ≥ 0, X = [X x]; end
(09) else
(10) all = −1; return
(11) end
(12) while y 6= e
(13) k = min{ j | yj = 0 };
(14) for j = 1 : k − 1, yj = 0; end
(15) yk = 1; zk = −zk;
(16) if 1− 2zkCkk 6= 0
(17) α = 2zk/(1− 2zkCkk);
(18) x = x + αxkC•k;
(19) C = C + αC•kCk•;
(20) if Tzx ≥ 0, X = [X x]; end
(21) else
(22) all = −1; return
(23) end
(24) end

Figure 3.1: An algorithm for computing all solutions of Ax + B|x| = b.

Proof. According to Theorem 2.1 in [1], the subalgorithm consisting solely of lines (04),
(12)-(15), and (24) is finite and constructs all the ±1-vectors z in Rn, with each two subse-
quently constructed vectors differing in exactly one entry (because of the updating in line
(15); y is an auxiliary (0, 1)-vector used for finding the k for which zk should be changed to
−zk). Thus, the while loop is finite, which proves finiteness of the whole algorithm.

Next, in part 2.2 of the proof of Theorem 3.1 in [8] it is proved that after updating in lines
(18), (19), the quantities x and C always satisfy x = (A+BTz)

−1b, C = −(A+BTz)
−1B for

the current z (invertibility of A + BTz is guaranteed by fulfillment of the condition in line
(16)). This updating is used in order to circumvent the necessity of solving a large number
of systems of linear equations.

A new column x is added to X either in line (08), or in line (20). In both cases we
have x = (A + BTz)

−1b (as we have shown in the previous paragraph) and Tzx ≥ 0, hence
Tzx = |x| and b = (A + BTz)x = Ax + BTzx = Ax + B|x|, so that x is a solution of (1.1).

Finally, if all = 1, then then the algorithm has constructed all the ±1-vectors z, and
all the matrices of the form A + BTz, z a ±1-vector, have been found nonsingular (lines
(05), (16)). Assume x is a solution of (1.1). Put zi = 1 if xi ≥ 0 and zi = −1 otherwise
(i = 1, . . . , n), then z is a ±1-vector satisfying Tzx ≥ 0, so that (A + BTz)x = A + B|x| = b

3

and x = (A + BTz)
−1b, and Tzx ≥ 0. Thus, at the moment the algorithm constructs this

vector z, the condition Tzx ≥ 0 is satisfied and x is added into X (lines (08) or (20)). This
proves that in the case of all = 1 all the solutions of the equation (1.1) have been included
into X as its columns. 2

We have this immediate consequence of the algorithm construction and of Theorem 1:

Proposition 2. In the output of the algorithm, we have all = 1 if and only if A + BTz is
nonsingular for each ±1-vector z.

This result explains why it is almost certain that we get all solutions of (1.1) for randomly
generated data: it is almost impossible to generate randomly singular matrices.

4 Numerical aspects

The algorithm works as shown in infinite precision arithmetic. However, care should be
taken in finite precision arithmetic because frequent updates of x and C may lead to essential
deterioration of their accuracy. As a remedy, we suggest changing line (20) to

(20) if Tzx ≥ 0, x = (A + BTz)
−1b; C = −(A + BTz)

−1B; X = [X x]; end
i.e., to restart x and C whenever a new column is being added into X.

5 Examples

If we generate the data in MATLAB randomly by

>> A=2*rand(n,n)-1; B=2*rand(n,n)-1; b=2*rand(n,1)-1;

(i.e., with entries randomly distributed over (−1, 1)), then, as a rule, about half of the
examples have no solution at all and if solutions exist, their number is usually relatively small
(typically less than n). However, exceptions do exist. The following randomly generated 7×7
example has 10 solutions.

>> tic, n=7; rand(’state’,671); A=2*rand(n,n)-1, B=2*rand(n,n)-1,
>> b=2*rand(n,1)-1, [x,all]=absvaleqnall(A,B,b), toc
A =

-0.1479 -0.5985 -0.2265 -0.2292 -0.2426 -0.4978 0.4772
0.3503 0.7914 -0.8554 0.2560 -0.4149 -0.3221 -0.5674

-0.8144 0.8176 -0.9111 -0.9181 0.1953 -0.9376 0.0201
0.1143 -0.8706 -0.1203 0.5198 -0.6242 -0.7633 -0.1536
0.7850 -0.7964 0.6195 -0.5218 0.9041 0.7736 0.9708

-0.4198 -0.5983 0.9180 -0.5057 -0.6677 0.1967 0.0734
-0.1962 0.6255 -0.3860 0.1035 0.4396 -0.7893 -0.9860

4

B =
-0.8464 -0.5703 -0.9208 -0.0867 0.2831 0.9318 0.8203
-0.7984 0.3861 -0.1074 -0.1288 0.8478 0.8475 0.8466
0.3445 0.4156 0.7606 -0.4585 0.9195 0.0428 0.0485

-0.1394 0.8962 -0.2990 -0.2622 -0.6214 -0.5709 -0.1978
0.8221 0.1798 -0.2713 0.9308 -0.9663 0.9149 -0.0731
0.8508 -0.2720 -0.7906 -0.8783 0.5006 -0.9402 0.6437
0.7253 0.0865 0.5792 -0.1374 -0.0348 0.4932 -0.2036

b =
-0.6525
0.3719
0.6019

-0.3199
0.2327

-0.3168
0.5135

x =
0.2842 -1.9018 0.1484 -0.6615 -4.3204 -1.8897 0.2118
0.2852 -0.3674 0.4041 0.5318 -0.2405 0.4361 0.3700

-0.0841 -0.7374 0.7863 0.5816 -1.2114 -0.3516 0.1697
-0.0106 2.2570 0.1354 0.9473 6.0074 2.5083 0.0233
0.2235 -1.0900 -0.1987 -0.3510 -2.2160 -0.7775 0.2024
0.0125 0.4788 -0.3220 -0.2792 -0.1360 -0.0891 -0.0745
0.0045 0.8552 0.2679 0.6275 2.8807 1.2929 0.0600

0.1584 0.1048 0.2798
0.3711 0.3815 0.2885
0.1642 0.2708 -0.0792

-0.1676 -0.2813 -0.0201
0.1049 -0.0257 0.2208

-0.0478 -0.0703 0.0114
-0.0899 -0.1583 -0.0032

all =
1

Elapsed time is 0.118065 seconds.

(Computation has been performed on a not-too-fast netbook.) The following pseudoran-
domly generated 10 × 10 example (notice premultiplication by 0.1 in A, taking the inverse
of B, and positivity of b) has 210 = 1024 solutions. We write down neither the data that can
be reconstructed because rand(’state’,1) is used, nor the solution matrix x which is too
large; we output in the variable sols the number of columns of x only.

5

>> tic, n=10; rand(’state’,1); A=0.1*(2*rand(n,n)-1); B=rand(n,n);
>> B=inv(B); b=rand(n,1); [x,all]=absvaleqnall(A,B,b);
>> sols=size(x,2), all, toc
sols =

1024
all =

1
Elapsed time is 0.243606 seconds.

6 Computation of all solutions of a linear complementarity
problem

A linear complementarity problem

x+ = Mx− + q

can be recast as an absolute value equation

(I + M)x + (I −M)|x| = 2q

and solved as such. In this way, our algorithm can be used for computation of all its solutions.

6

Bibliography

[1] M. Fiedler, J. Nedoma, J. Ramı́k, J. Rohn, and K. Zimmermann, Linear Optimization
Problems with Inexact Data, Springer-Verlag, New York, 2006. 3

[2] O. Mangasarian, Absolute value equation solution via concave minimization., Optimiza-
tion Letters, 1 (2007), pp. 3–8. 2

[3] O. Mangasarian, Absolute value programming, Computational Optimization and Appli-
cations, 36 (2007), pp. 43–53. 2

[4] O. L. Mangasarian, A Generalized Newton Method for Absolute Value Equations, Opti-
mization Letters, 3 (2009), pp. 101–108. 2

[5] O. L. Mangasarian and R. R. Meyer, Absolute value equations, Linear Algebra Appl., 419
(2006), pp. 359–367. 2

[6] O. Prokopyev, On Equivalent Reformulations for Absolute Value Equations, Comput.
Optim. Appl., 44 (2009), pp. 363–372. 2

[7] J. Rohn, Systems of linear interval equations, Linear Algebra and Its Applications, 126
(1989), pp. 39–78. 2

[8] J. Rohn, An algorithm for solving the absolute value equation,
Electronic Journal of Linear Algebra, 18 (2009), pp. 589–599.
http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol18 pp589--
599.pdf. 2, 3

[9] J. Rohn, An algorithm for solving the absolute value equation: An
improvement, Technical Report 1063, Institute of Computer Science,
Academy of Sciences of the Czech Republic, Prague, January 2010.
http://uivtx.cs.cas.cz/∼rohn/publist/absvaleqnreport.pdf. 2

7

