národní
úložiště
šedé
literatury

A Note on Generating P-Matrices

Rohn, Jirí
2010
Dostupný z http://www.nusl.cz/ntk/nusl-41907

Dílo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národního úložiště šedé literatury (NUŠL).
Datum stažení: 24.05.2024
Další dokumenty můžete najít prostřednictvím vyhledávacího rozhraní nusl.cz .

Institute of Computer Science Academy of Sciences of the Czech Republic

A Note on Generating P-Matrices

Jiří Rohn

Technical report No. V-1090
30.11.2010

Institute of Computer Science

 Academy of Sciences of the Czech Republic
A Note on Generating P-Matrices

Jirí Rohn ${ }^{11}$
Technical report No. V-1090

30.11 .2010

Abstract

We prove that for any $A, B \in \mathbb{R}^{n \times n}$ such that each matrix S satisfying $\min (A, B) \leq S \leq$ $\max (A, B)$ is nonsingular, all four matrices $A^{-1} B, A B^{-1}, B^{-1} A$ and $B A^{-1}$ are P-matrices. A practical method for generating P-matrices is drawn from this result.

Keywords:
P-matrix, interval matrix.

[^0]
1 Introduction

A square matrix is called a P-matrix if all its principal minors are positive. Fiedler and Pták in their now famous paper [3] proved that A is a P-matrix if and only if no $x \neq 0$ satisfies $x \circ A x \leq 0$, where "०" stands for the Hadamard product. This nice and farreaching theoretical result does not show, however, how to verify the P-property in practical computations. And indeed, Coxson proved in [2] that the problem of checking whether a given square matrix is a P-matrix is co-NP-complete. The special case of a symmetric A can be handled in polynomial time because such an A is a P-matrix if and only if it is positive definite [3], but the general case remains difficult.

The author was confronted with the problem of constructing nontrivial nonsymmetric P-matrices while working on the MATLAB/INTLAB file VERPMAT.M [5] based on a not-a-priori exponential algorithm for checking the P-property (which is going to be described elsewhere). An answer is given in the two theorems below, of which the first one is more general and the second one is more practically oriented.

2 The results

Both the results below show how a P-matrix can be constructed from two matrices satisfying certain conditions.

Theorem 1. For each $A, B \in \mathbb{R}^{n \times n}$ such that each matrix S satisfying

$$
\min (A, B) \leq S \leq \max (A, B)
$$

is nonsingular, all four matrices $A^{-1} B, A B^{-1}, B^{-1} A$ and $B A^{-1}$ are P-matrices.

Proof. Obviously, $\min (A, B) \leq \max (A, B)$. The trick is to use the interval matrix

$$
\begin{equation*}
\mathbf{A}=\{S \mid \min (A, B) \leq S \leq \max (A, B)\} \tag{2.1}
\end{equation*}
$$

Then \mathbf{A} is regular by the assumption, and Theorem 1.2 in [4] implies that both $A_{1}^{-1} A_{2}$ and $A_{1} A_{2}^{-1}$ are P-matrices for each $A_{1}, A_{2} \in \mathbf{A}$. Since both A and B belong to \mathbf{A}, the result follows.

Theorem 2. Let C be nonsingular, $D \geq 0$, and let

$$
\begin{equation*}
0 \leq \alpha<1 / \varrho\left(\left|C^{-1}\right| D\right) \tag{2.2}
\end{equation*}
$$

Then all four matrices $(C-\alpha D)^{-1}(C+\alpha D),(C-\alpha D)(C+\alpha D)^{-1},(C+\alpha D)^{-1}(C-\alpha D)$ and $(C+\alpha D)(C-\alpha D)^{-1}$ are P-matrices.

Proof. Put $A=C-\alpha D, B=C+\alpha D$, then $A \leq B$, so that $\min (A, B)=A, \max (A, B)=$ B, and the interval matrix \mathbf{A} defined in (2.1) becomes

$$
\mathbf{A}=\{S \mid C-\alpha D \leq S \leq C+\alpha D\}
$$

Now, the condition (2.2), when written in the form

$$
\varrho\left(\left|C^{-1}\right| \alpha D\right)<1
$$

is precisely Beeck's sufficient condition [1] for regularity of \mathbf{A}, and the assertion follows from Theorem 1

Theorem 22 can be used in obvious way for generating nonsymmetric P-matrices.

Bibliography

[1] H. Beeck, Zur Problematik der Hüllenbestimmung von Intervallgleichungssystemen, in Interval Mathematics, K. Nickel, ed., Lecture Notes in Computer Science 29, Berlin, 1975, Springer-Verlag, pp. 150-159. 3
[2] G. E. Coxson, The P-matrix problem is co-NP-complete, Mathematical Programming, 64 (1994), pp. 173-178. [2
[3] M. Fiedler and V. Pták, On matrices with non-positive off-diagonal elements and positive principal minors, Czechoslovak Mathematical Journal, 12 (1962), pp. 382-400. [2
[4] J. Rohn, Systems of linear interval equations, Linear Algebra and Its Applications, 126 (1989), pp. 39-78. 2
[5] J. Rohn, VERPMAT: Verified P-property of a real matrix, 2008. http://uivtx.cs.cas.cz/~rohn/matlab/verpmat.html. [2]

[^0]: ${ }^{1}$ This work was supported by the Czech Republic Grant Agency under grants 201/09/1957 and 201/08/J020, and by the Institutional Research Plan AV0Z10300504.

