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Applications of methods from theory of inverse problems to learning from data
are studied. It is shown that learning modeled as minimization of error function-
als can be reformulated in terms of inverse problems defined by evaluation and
inclusion operators. Methods from theory of inverse problems are used to create
a theoretical framework for study of behavior of error functionals, to obtain sim-
ple proofs of characterizations of their argminima, and to get some insight into
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1 Introduction
Inverse problems have been encountered in many branches of applied science and
methodology for their solutions has been well developed [4, 18, 12, 19]. Recently,
applications of concepts and methods from theory of inverse problems have also been
extended to learning from data.

Supervised learning can be formally described as an optimization problem of min-
imization of error functionals over parameterized sets of input-output functions com-
putable by a given computational model. Various learning algorithms iteratively mod-
ify parameters of the model until sufficiently small values of error functionals are
achieved and the corresponding input-output functions of the model fit well to the train-
ing data. But data are often noisy and networks perfectly fitting to randomly chosen
training samples may be too much influenced by the noise and may not perform well on
data that were not chosen for training. Thus various attempts to modify error function-
als to improve so called “generalization” capability of the model has been proposed.
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In 1990s, Girosi and Poggio [17] introduced Tikhonov regularization into learning the-
ory as a means of improving generalization. They proposed to add to error functionals
stabilizers which penalize undesired properties of input-output functions such as high-
frequency oscillations [27]. Girosi, Jones and Poggio [16] considered stabilizers penal-
izing high frequencies in the Fourier representation of a potential solution. In practical
applications, various simple stabilizers (such as norms based on derivatives [5] or `1 or
`2-norm of output weights) have been used successfully [13, 20].

Later, Girosi [15] showed that stabilizers of this type belong to a wider class formed
by the squares of norms on a special type of Hilbert spaces defined by kernels, which
are called reproducing kernel Hilbert spaces (RKHS). These spaces were formally de-
fined by Aronszajn [2], but their theory includes many earlier results by Mercer [26]
and Schönebrg [30]. In addition to providing a rich variety of stabilizers, kernels can
also increase chances for linear separation of more types of data by transforming ge-
ometry of input spaces. Aizerman, Braverman and Rozonoer [1] used kernels (under
the name potential functions) to solve classification tasks by embedding input spaces
into higher dimensional Hilbert spaces. Boser, Guyon and Vapnik [7] and Cortes and
Vapnik [8] farther developed this classification method into the concept of the sup-
port vector machine, which became a widely used classification algorithm. Cucker and
Smale [10] theoretically investigated learning as an optimization of error functionals
over RKHSs. They characterized argminima of regularized error functionals over these
spaces and used this characterization to design an alternative learning algorithm (see
also [28]).

Kůrková [21, 22] and De Vito et al. [32] proposed to represent minimizations of
error functionals as inverse problems defined by evaluation and inclusion operators. In
this paper, we father develop this representation. Investigation of learning in terms of
inverse problems leads to the choice of RKHSs as ambient function spaces because on
these spaces the evaluation and inclusion operators are continuous. We show that in
addition to continuity, these operators have on RKHSs many other useful properties
which allow easy application of methods from theory of inverse problems. Thus we
obtain simpler proofs of characterizations of argminima of error functionals than those
obtained in [10] which hold under milder conditions on kernels and their domains. We
also compare a regularized case with a non regularized one to obtains some insight
into the effect of regularization on theoretically optimal solutions. The reformulation
of learning in terms of inverse problems shows connections of modern learning theory
with many classical problems from physics.

The paper is organized as follows. Section 2 presents basic concepts and notations
on learning from data. In section 3, it is shown that minimization of error function-
als with the quadratic loss function can be reformulated in terms of inverse problems
defined by inclusion and evaluation operators. In section 3, a class of Hilbert spaces,
called reproducing kernel Hilbert spaces (RKHSs), is described and its basic proper-
ties are briefly recalled. In section 5, properties of inclusion and evaluation operators
on these spaces are investigated using methods from functional analysis. In sections 6
and 7, these properties are combined with results from theory of inverse problems to
describe theoretically optimal solutions of learning tasks and to compare regularized
and non regularized cases.
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2 Error functionals with quadratic loss functions
Learning from data has been modeled as an optimization problem of a search for a func-
tion computable by a given computational model minimizing certain error functionals
defined by the data. In learning theory, the data has been described by probability
distributions or samples of so called training data.

For X a measurable subset of Rd and Y a bounded subset of R, let ρ be a non
degenerate (no non empty open set has measure zero) probability measure on Z = X×Y
(ρ(Z) = 1). The expected error functional (sometimes also called expected risk or
theoretical error) Eρ,V determined by ρ and a loss function V : R×R→ R+ is defined
for those f in the set M (X) of all bounded ρ-measurable functions on X for which the
integral

Eρ,V ( f ) =
∫

Z
V ( f (x),y)dρ

is finite. The most common loss function is the quadratic loss defined as V (u,v) =
(u− v)2. We denote by Eρ the expected error with the quadratic loss, i.e.,

Eρ( f ) =
∫

Z
( f (x)− y)2 dρ . (1)

Various learning algorithms (such as back-propagation or genetic algorithms, see,
e.g., [13, 20]) aim to minimize a discretized version of the expected error called the
empirical error. It is determined by a sample z = {(ui,vi) ∈ X ×Y | i = 1, . . . ,m} of
input-output pairs of data. The empirical error is denoted Ez,V and defined as

Ez,V ( f ) =
1
m

m

∑
i=1

V ( f (ui),vi).

We denote by Ez the empirical error with the quadratic loss function, i.e.,

Ez( f ) =
1
m

m

∑
i=1

( f (ui)− vi)2. (2)

One of many advantages of the quadratic loss function is that it enables to refor-
mulate minimizations of expected and empirical errors as minimizations of distances
from certain “optimal” functions.

Let ρX denote the marginal probability measure on X defined for every S ⊆ X as
ρX (S) = ρ(π−1

X (S)), where πX : X×Y → X denotes the projection to X , and let L2
ρX

(X)
denote the space of all functions on X satisfying

∫
X f 2(x)dρX (x) < ∞ with the norm

defined as ‖ f‖L2
ρX

=
√∫

X f (x)2dρX (x). It is easy to see and well-known [10] that the

minimum of Eρ over the set L2
ρX

(X) is achieved at the regression function fρ defined
for every x ∈ X as

fρ(x) =
∫

Y
ydρ(y|x)(y),

where ρ(y|x) is the conditional w.r.t. x probability measure on Y . Setting σ2
ρ, we get

min
f∈L2

ρX (X)
Eρ( f ) = Eρ( fρ) = σ2

ρ.
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Moreover, for every f ∈ L2
ρX

(X)

Eρ( f ) =
∫

X
( f (x)− fρ(x))2dρX +σ2

ρ = ‖ f − fρ‖2
L2

ρX
+σ2

ρ (3)

(see,e.g., [10, p.5]). So on the space L2
ρX

(X), minimization of the expected error func-
tional Eρ with the quadratic loss is equivalent to minimization of the L2

ρX
-distance from

its minimum point fρ.
Also the empirical error functional Ez can be represented in terms of a distance

functional. For a sample z =((u1,v1), . . . ,(um,vm)), set u =(u1, . . . ,um), v =(v1, . . . ,vm),
and let ‖.‖2,m denote the weighted `2-norm on Rm defined as

‖x‖2,m =

√
1
m

m

∑
i=1

x2
i .

Then for every f ∈ L2
ρX

(X) we have

Ez( f ) = ‖( f (u1), . . . , f (um))− (v1, . . . ,vm)‖2
2,m. (4)

So minimization of the empirical error Ez over L2
ρX

(X) is equivalent to minimization
of the ‖.‖2,m-distance between the vector of the output data v = (v1, . . . ,vm) and a
vector ( f (u1), . . . , f (um)) obtained by evaluating a function f ∈ L2

ρX
(X) at the input

data u = (u1, . . . ,um).

3 Inverse problems in learning
The equivalences (3) and (4) of minimizations of the error functionals Eρ and Ez enable
investigation of learning from data in the framework of theory of inverse problems. In
this section, we describe operators defining such inverse problems and state proper-
ties of solutions of inverse problems which will be used in next sections as tools for
characterization of optimal solutions of learning tasks.

Let (H ,‖.‖H ) be a Hilbert space, such that H is a linear subspace of L2
ρX

(X)
and the norm ‖.‖H is any norm induced by an inner product (not necessarily the one
inherited from ‖.‖L2

ρX
by restricting it to H ). Let

J : (H ,‖.‖H )→ (L2
ρX

(X),‖.‖L2
ρX

)

denote the inclusion operator. By the representation (3), we have

Eρ( f ) = ‖J( f )− fρ‖2
L2

ρX
+σ2

ρ. (5)

So minimization of Eρ over H is equivalent to solution of an inverse problem defined
by the inclusion operator J for the data fρ.

For any vector u = (u1, . . . ,um)∈Rm and any space S of functions on some X ⊆Rd

such that u ∈ X , let Ju : S →Rm denote an evaluation operator defined for all f ∈ S as

Ju( f ) = ( f (u1), . . . , f (um)). (6)
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The representation (4) implies that

Ez( f ) = ‖Ju( f )− v‖2
2,m. (7)

Thus minimizing the empirical error Ez with the quadratic loss function over S is equiv-
alent to solving an inverse problem given by the evaluation operator Ju for the data v.

To describe argminima of the error functionals Eρ and Ez and argminima of some
of their regularized modifications, we take advantage of the following basic results
from theory of inverse problems from [4, pp.68-70] and [18, pp.74-76]. By R(A) is
denoted the range of an operator A : (X ,‖.‖X )→ (Y ,‖.‖Y ), by πcl R(A) the projection
on the closure of R(A) in (Y ,‖.‖Y ), and by A∗ the adjoint of A (the unique opera-
tor A∗ : (Y ,‖.‖Y ) → (X ,‖.‖X ) such that for all f ∈ X and all g ∈ Y , 〈A( f ),g〉Y =
〈 f ,A∗(g)〉X ).

Theorem 3.1 Let A : (X ,‖.‖X )→ (Y ,‖.‖Y ) be a continuous linear operator between
two Hilbert spaces. Then there exists a unique continuous linear pseudoinverse opera-
tor A+ such that
(i) if R(A) is closed, then A+ : Y → X ;
(ii) if R(A) is not closed, then A+ : Y +→X , where Y + = {g∈Y |πclR(A)(g)∈R(A)};
(iii) for every g in the domain of A+, ‖A+(g)‖X = min f o∈S(g) ‖ f o‖X , where S(g) =
argmin(X ,‖A(.)−g‖Y ), AA+(g) = πclR(A)(g), and

A+ = (A∗A)+A∗ = A∗(AA∗)+; (8)

(iv) for every γ > 0, there exists a unique operator

Aγ : Y → X

such that for every g ∈ Y , {Aγ(g)}= argmin(X ,‖A(.)−g‖2
Y + γ‖.‖2

X ) and

Aγ = (A∗A+ γIX )−1A∗ = A∗(AA∗+ γIY )−1 (9)

where IX , IY denote the identity operators on X and Y , resp.;
(v) for every g in the domain of A+, limγ→0 ‖Aγ(g)−A+(g)‖cX = 0.

4 Reproducing kernel Hilbert spaces
The representations (5) and (7) of minimizations of error functionals with the quadratic
loss function as inverse problems provide useful tools for description of optimal solu-
tions of learning tasks. However, assumptions of Theorem 3.1 require computational
models with input-output functions belonging to Hilbert spaces on which evaluation
functionals are continuous and so are also their inclusions to L2

ρX
(X).

Spaces (L2
µ (X),‖.‖L2

µ
) cannot be used as such ambient function spaces because

evaluation functionals on them are not continuous. Indeed, one can easily construct
many sequences of functions in L2

µ (X) which all have the same values of their L2
µ -

norms but their evaluations at some points diverge (for example, some sequences of
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functions converging to the Dirac delta function). On the other hand on the space C (X)
of bounded continuous functions with the supremum norm ‖.‖sup, all evaluation func-
tionals are continuous, but (C (X),‖.‖sup) is not a Hilbert space. Thus we need some
function spaces combining good properties of two types of spaces: a Hilbert space
structure as in the case of (L2

µ (X),‖.‖L2
µ
) and continuity of all evaluation functionals

as in the case of (C (X),‖.‖sup).
Fortunately, the space L2

ρX
(X) contains many subspaces with suitable inner prod-

ucts on which all evaluation functionals are continuous. Moreover, some of such spaces
contain input-output functions of widely used computational models. These spaces are
called reproducing kernel Hilbert spaces (RKHSs). They were defined by Aronszajn
[2] as Hilbert spaces of pointwise defined functions on which all evaluation functionals
are continuous. They are called RKHSs because each such space is uniquely deter-
mined by a symmetric positive semidefinite kernel. Recall that a function K : X×X →R
is called positive semidefinite if for any positive integer m, any x1, . . . ,xm ∈ X and any
a1, . . . ,am ∈ R

m

∑
i=1

m

∑
j=1

aia jK(xi,x j)≥ 0.

RKHSs became popular in soft-computing due to the use of kernels in support
vector machines [31, 9, 29] but they have been studied in mathematics since 1950 and
their theory includes many earlier results by Schönberg [30] and Mercer [26]. Since
1990s, RKHS have been used as useful ambient function spaces in data analysis [33].
For their theory see, e.g., [2, 3, 10]. Here we just recall that a RKHS determined by
K : X×X → R, denoted

HK(X),

is formed by all linear combinations of functions of the form Kx : X →R, x∈X , defined
as

Kx(y) = K(x,y)

together with limits of Cauchy sequences in the norm ‖.‖K of these linear combina-
tions. The functions Kx are called representers. The norm ‖.‖K is induced by the inner
product 〈., .〉K , which is defined on representers as

〈Kx,Ky〉K = K(x,y).

The most important property of reproducing kernel Hilbert spaces is so called re-
producing property guaranteeing that for all f ∈HK(X) and all x ∈ X

〈 f ,Kx〉K = f (x). (10)

So the representers play a similar role as the Dirac delta in the distribution theory [34],
but in contrast to the Dirac distribution, representers are real-valued functions.

A paradigmatic example of a positive semidefinite kernel is the Gaussian kernel
K(x,y) = e−‖x−y‖2

. A reproducing kernel Hilbert space defined by the Gaussian kernel
contains all linear combinations of translations of the Gaussian function. Such linear
combinations can be computed as input-output functions of an important computational
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model called network with Gaussian radial units with varying centroids and fixed width
(for a survey on properties and applications of such networks see, e.g., [20]).

A simplest type of positive semidefinite functions are product kernels which have
the form

K(x,y) = k(x)k(y)

where k : X → R is a one-variable function. Another large class of kernels are convo-
lution kernels. These kernels have the form

K(x,y) = k(x− y) (11)

where k : Rd → R is an even function. By the Bochner theorem [6], when the Fourier
transform k̃ is positive then K defined in (11) is positive semidefinite. It was shown in
[25] (see also [15]) that for such convolution kernels with k ∈ L2(Rd)∩L1(Rd), the
value of ‖ f‖2

K at any f ∈HK(Rd) can be expressed as

‖ f‖2
K =

1
(2π)d/2

∫

Rd

f̃ (ω)2

k̃(ω)
dω. (12)

Note that the set of all symmetric positive semidefinite functions is quite large as
it is closed under various operations such as finite linear combinations with positive
coefficients, pointwise limits or tensor products [3]. So norms on RKHSs offer a rich
class of stabilizers suitable for Tikhonov’s regularization of inverse problems modeling
minimization of expected and empirical error functionals.

5 Properties of inclusion and evaluation operators on
RKHSs

To apply results from theory of inverse problems to learning from data we first need to
derive some properties of evaluation and inclusion operators on RKHSs.

For X ⊆ Rd , a kernel K : X ×X → R, a σ-finite measure µ on X , define an integral
operator LK,µ = LK on the subspace of L2

µ (X) formed by those g for which for every
x ∈ X the integral

LK(g)(x) :=
∫

X
g(y)K(x,y)dµ(y) (13)

is finite.
The following proposition gives a condition on a kernel K which implies that the

reproducing kernel Hilbert space HK(X) induced by the kernel K is a subspace of
L2

µ (X) and the inclusion operator JK : (HK(X),‖.‖K)→ (L2
µ (X),‖.‖L2

µ
) is continuous.

Recall that every bounded linear operator T : (X ,‖ · ‖X ) → (Y ,‖ · ‖Y ) between
two Hilbert spaces has an adjoint operator T ∗ : (Y ,‖ · ‖Y ) → (X ,‖ · ‖X ) [14]. An
operator T is called a Hilbert-Schmidt operator if for any orthonormal basis {e j | j ∈ I}
of (X ,‖.‖X ), ∑ j∈I ‖T (e j)‖2

Y < ∞.

Proposition 5.1 Let X ⊆Rd be measurable, µ be a σ-finite measure on X, K : X×X →
R be a symmetric positive semidefinite kernel such that

∫
X K(x,x)dµ(x) < ∞. Then
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(i) HK(X) ⊆ L2
µ (X) and the inclusion operator JK : (HK(X),‖.‖K)→ (L2

µ (X),‖.‖L2
µ
)

is continuous;
(ii) LK = J∗K : (L2

µ (X),‖.‖L2
µ
)→ (HK(X),‖.‖K) and so LK is continuous;

(iii) JK is a Hilbert-Schmidt operator and both JK and LK are compact.

Proof. (i) By the reproducing property (10) and the Cauchy-Schwartz inequality, for
every f ∈HK(X) we have

‖JK( f )‖2
L2

µ
=

∫

X
f (x)2dµ(x) =

∫
〈 f ,Kx〉2K dµ(x)≤ ‖ f‖2

K

∫

X
K(x,x)dµ(x). (14)

When
∫

X K(x,x)dµ(x) < ∞, (14) implies f = JK( f ) ∈ L2
µ (X) and continuity of JK .

(ii) Every continuous linear operator between two Hilbert spaces has a continuous
adjoint operator (see,e.g., [14]) and so JK has an adjoint J∗K . It follows from the repro-
ducing property (10) and the definition of an adjoint operator that for all x ∈ X and all
g ∈ L2

µ (X),

J∗K(g)(x) = 〈J∗K(g),Kx〉K = 〈g,JK(Kx)〉L2
µ

=
∫

X
g(y)K(x,y)dµ(y) = LK(g)(x)

and so LK = J∗K : (L2
µ (X),‖.‖L2)→ (HK(X),‖.‖K).

(iii) By the reproducing property (10) and the assumption
∫

X K(x,x)dµ(x) < ∞, for
every orthonormal basis {ei | i ∈ I} of HK(X) we have

∑
i∈I
‖JK(ei)‖2

L2
µ
= ∑

i∈I

∫

X
ei(x)2 dµ(x) =

∫

X
∑
i∈I
〈ei,Kx〉K ei(x)dµ(x) =

∫

X
K(x,x)dµ(x) < ∞.

Thus JK is a Hilbert-Schmidt operator which implies that its adjoint is a Hilbert-
Schmidt operator too and that both these operators are compact [14, p.187] ¤

Note that for any convolution kernel K(x,y) = k(x−y), the assumption of Proposi-
tion 5.1 ∫

X
K(x,x)dµ(x) =

∫

X
k(0)dµ(x) = k(0)µ(X) < ∞

holds if and only if µ(X) is finite.
In learning theory, it is assumed that the measure ρ is a probabilistic measure and

hence ρX (X) = 1. Thus for any bounded kernel K, we have
∫

X K(x,x)dρX (x) < ∞. So
by Proposition 5.1(ii), for every bounded symmetric positive semidefinite kernel K, the
integral operator LK : (L2

ρX
,‖.‖L2

ρX
)→ (HK(X),‖.‖K) is a compact operator.

To derive some useful properties of RKHSs, we apply spectral theory to the opera-
tor

TK := JK LK : (L2
µ (X),‖.‖L2

µ
)→ (L2

µ (X),‖.‖L2
µ
)

obtained by composing LK with JK . The next theorem summarizes some properties of
the operators JK and TK .
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Theorem 5.2 Let X ⊆Rd be measurable, µ be a σ-finite measure on X, K : X×X →R
be a symmetric positive semidefinite kernel such that

∫
X K(x,x)dµ(x) < ∞. Then

(i) TK : (L2
µ (X),‖.‖L2

µ
)→ (L2

µ (X),‖.‖L2
µ
) is a compact, self-adjoint, and positive oper-

ator;
(ii) there exists at most countable orthonormal family {ψ j | j ∈ I} in (L2

µ (X),‖.‖L2
µ
)

formed by eigenfunction of TK with the corresponding family of non negative eigenval-
ues {λ j | j ∈ I} ordered non increasingly, which in the case of I infinite converges to
zero, such that for every f ∈ L2

µ (X),

TK( f ) = ∑
j∈I

λ j 〈 f ,ψ j〉L2
µ

ψ j; (15)

and
K(x,y) = ∑

j∈I
λ jψ j(x)ψ j(y); (16)

(iii) {√λ jψ j | j ∈ I} is an orthonormal basis of (HK(X),‖.‖K) and ∑ j∈I λ j < ∞;
(iv) clL2

µ
R(JK) = clL2

µ
JK(HK(X)) = { f ∈ L2

µ (X) | f = ∑ j∈I〈 f ,ψ j〉L2
µ
ψ j};

(v) R(JK) is closed if and only if I is finite.

Proof. (i) By Proposition 5.1 (iii), JK and LK are compact and thus also TK is compact.
As TK = JK LK = JK J∗K , it is self-adjoint. We have 〈TK( f ), f 〉L2

µ
= 〈JKLK( f ), f 〉L2

µ
=

〈LK( f ),LK( f )〉K ≥ 0 and so TK is positive.
(ii) The representation (15) of TK follows from the Spectral theorem [11, p. 683],

which holds for all compact self-adjoint operators.
(iii) For all j ∈ I, λ jψ j = TK(ψ j) = JKLK(ψ j) and thus ψ j ∈HK(X) and LK(ψ j) =

λ jψ j. So we have 1 = 〈JK(ψ j),ψ j〉L2
µ

= 〈ψ j,LK(ψ j)〉K = 〈ψ j,λ jψ j〉K = λ j ‖ψ j‖2
K .

As JK and LK are adjoints we have for all i, j ∈ I such that i 6= j, 〈λiψi,ψ j〉K =
〈LK(ψi),ψ j〉K = 〈ψi,JK(ψ j)〉L2

µ
= 〈ψi,ψ j〉L2

µ
= 0. Thus {√λ jψ j | j ∈ I} is an or-

thonormal family in HK(X). By (ii) and the reproducing property (10), all representers
Kx can be expressed as Kx = ∑ j∈I λ jψ j(x)ψ j = ∑ j∈I λ j 〈Kx,ψ j〉K ψ j = ∑ j∈I〈Kx,

√
λ jψ j〉K

√
λ j ψ j

and so {√λ jψ j | j ∈ I} is a basis of HK(X). By Proposition 5.1 (iii), JK is a Hilbert-
Schmidt operator. Thus ∑ j∈I λ j = ∑ j∈I ‖JK(

√
λ jψ j)‖2

L2
µ

< ∞.

(iv) By (ii) and (iii), {ψ j | j ∈ I} is an orthonormal basis of (clL2
µ

R(JK),‖.‖L2
µ
).

Thus for every f ∈ L2
µ (X), f ∈ clL2

µ
R(JK) if and only if f = ∑ j∈I〈 f ,ψ j〉L2

µ
ψ j.

(v) By (iii), for every f ∈ R(JK) = JK(HK(X)), ∑ j∈I λ j〈 f ,ψ j〉2K < ∞. As JK and LK

are adjoints, we have ∑ j∈I
1
λ j
〈 f ,λ jψ j〉2K = ∑ j∈I

1
λ j
〈 f ,LK(ψ j)〉2K = ∑ j∈I

1
λ j
〈 f ,ψ j〉2L2

µ
<

∞. Thus by (iv), if clL2
µ

R(JK) = R(JK) then for all f ∈ L2
µ (X), ∑ j∈I〈 f ,ψ j〉2L2

µ
< ∞

implies ∑ j∈I
1
λ j
〈 f ,ψ j〉2L2

µ
< ∞. This property holds if and only if I is finite. ¤

Recall that kernels with the representation K(x,y) = ∑ j∈I λ jψ j(x)ψ j(y) with I finite
are called degenerate.
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Corollary 5.3 Let X ⊆Rd be measurable, µ be a σ-finite measure on X, K : X×X →R
be a symmetric positive semidefinite kernel such that

∫
X K(x,x)dµ(x) < ∞. If K is

degenerate, then the domain of the pseudoinverse operator J+
K of the inclusion operator

JK : (HK(X),‖.‖K)→ (L2
µ (X),‖.‖L2

µ
) is the whole space L2

µ(X). If K is non degenerate,

then the domain of J+
K is the subspace { f ∈ L2

µ (X) | ∑ j∈I
1
λ j
〈 f ,ψ j〉2L2

µ
< ∞}.

Proof. If K is degenerate, then by Theorem 5.2 (v), R(JK) is closed and thus by Theo-
rem 3.1 (i), the domain of J+

K is the whole space L2
µ (X). If K is non degenerate, then by

Theorem 5.2 (v), R(JK) is not closed and so by Theorem 3.1 (ii), the domain of J+
K is

the subspace { f ∈ L2
µ (X) |πclR(JK)( f ) ∈ JK(HK(X))}. By Theorem 5.2 (iv), it is equal

to the subspace { f ∈ L2
µ (X) | ∑ j∈I

1
λ j
〈 f ,ψ j〉2L2

µ
< ∞}. ¤

The next proposition describes properties of evaluation operators on RKHSs.

Proposition 5.4 Let X ⊆Rd , K : X×X →R be a symmetric positive semidefite kernel.
Then for every positive integer m and every u ∈ Xm

(i) Ju : (HK(X),‖.‖K)→ (Rm,‖.‖2,m) is continuous;
(ii) R(Ju) is closed in (Rm,‖.‖2,m);
(iii) Ju is compact;
(iv) the adjoint J∗u : (Rm,‖.‖2,m)→ (HK(X),‖.‖K) satisfies for all x∈X and all w∈Rm,

J∗u (w)(x) =
1
m

m

∑
i=1

wiK(x,ui).

Proof. (i) Continuity of Ju follows from the definition of a RKHS.
(ii) Every linear subspace of a finite dimensional space is closed and so is R(Ju).
(iii) As every continuous operator with a finite range is compact [14, p. 188], so is

Ju.
(iv) By the reproducing property (10) and the definition of an adjoint operator, for

every x ∈ X and every w ∈ Rm we have J∗u (w)(x) = 〈J∗u (w),Kx〉K = 〈w,Ju(Kx)〉2,m =
1
m ∑m

i=1 wiK(x,ui). ¤

6 Minimization of expected error
In this section we apply results from theory of inverse problems to inclusion and eval-
uation operators on reproducing kernel Hilbert spaces.

First, we show that the expected error Eρ achieves its minimum over a RKHS
HK(X) if and only if the projection f̄ρ of the regression function fρ on the L2

ρX
-closure

of HK(X) is contained in HK(X).

Theorem 6.1 Let X ⊆ Rd be measurable, Y ⊂ R bounded, ρ be a non degenerate
probability measure on X ×Y , K : X ×X → R be a symmetric positive semidefinite
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kernel such that
∫

X K(x,x)dρX (x) < ∞, {λ j | j ∈ I} and {ψ j | j ∈ I} be eigenvalues and
eigenfunctions, resp., of the operator TK : (L2

ρX
(X),‖.‖L2

ρX
)→ (L2

ρX
(X),‖.‖L2

ρX
), and

f̄ρ = ∑ j∈I〈 fρ,ψ j〉L2
ρX

ψ j. Then

(i) in the case of K is degenerate, f̄ρ ∈ HK(X) and min f∈HK(X) Eρ( f ) = Eρ( f̄ρ) =
‖ f̄ρ− fρ‖2

L2
ρX

+σ2
ρ;

(ii) in the case of K is non degenerate, Eρ achieves minimum over HK(X) if and only
if f̄ρ ∈ HK(X) which is equivalent to ∑ j∈I

1
λ j
〈 fρ,ψ j〉2L2

ρX
< ∞. If f̄ρ ∈ HK(X), then

min f∈HK(X) Eρ( f ) = Eρ( f̄ρ) = ‖ f̄ρ− fρ‖2
L2

ρX
+σ2

ρ.

Proof. By the representation (3), any argminimum of Eρ over HK(X) is a pseudoso-
lution of an inverse problem defined by the operator JK for the data fρ and Eρ( f ) =
‖ f̄ρ− fρ‖2

L2
ρX

+σ2
ρ. Then the statement follows from Corollary 5.3. ¤

As ρX (X) = 1, for every bounded kernel K, in particular for every convolution ker-
nel, we have

∫
X K(x,x)dρX (x) < ∞. Thus we can apply Theorem 6.1 to minimization

of an expected error functional Eρ over any RKHS HK(X) where K is a bounded or
convolution kernel.

By Theorem 6.1, the expected error Eρ achieves its minimum over HK(X) only
when the projection f̄ρ of the regression function fρ to the L2

ρX
-closure of HK(X) be-

longs to HK(X). The next theorem shows that when a stabilizer γ‖.‖2
K is added to the

expected error Eρ, then the modified functional always achieves a minimum at a unique
function in HK(X). Let

Eρ,γ,K = Eρ + γ‖.‖2
K

denote the Tikhonov regularization of the expected error Eρ with the stabilizer ‖.‖2
K

and the parameter γ.
To describe argminima of Eρ,γ,K over HK(X), we introduce a modified kernel Kγ :

X ×X → R, which is defined for all x,y ∈ X as

Kγ(x,y) =
∞

∑
j∈I

λ j

λ j + γ
ψ j(x)ψ j(y), (17)

where λ j and ψ j are the eigenvalues and eigenfunctions, resp., of the operator TK de-
scribed in Theorem 5.2 (ii). Let

LKγ : (L2
µ (X),‖.‖L2

µ
)→ (HKγ(X),‖.‖Kγ)

denote the integral operator with the kernel Kγ. The next proposition states some prop-
erties of Kγ and LKγ .

Proposition 6.2 Let X ⊆ Rd and K : X ×X be is a symmetric positive semidefinite
kernel. Then for all γ > 0, Kγ : X ×X → R is a symmetric positive semidefinite kernel.
If X is measurable and µ is a σ-finite measure on X, then LKγ maps L2

µ (X) to HK(X),
i.e., R(LKγ)⊆HK(X).
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Proof. By Theorem 5.2 (ii), all λ j are non negative and so we have

Kγ(x,y) = ∑
j∈I

λ j

λ j + γ
ψ j(x)ψ j(y)≤ 1

γ ∑
j∈I

λ jψ j(x)ψ j(y) =
1
γ

K(x,y)

for all x,y ∈ X . Thus the sum of the series (17) is finite. Moreover, for all j ∈ I, the
functions λ j

λ j+γ ψ j(x)ψ j(y) are positive semidefinite because they are product kernels. It
is easy to check that a pointwise limit of a sequence of positive semidefinite functions
is positive semidefinite. Thus Kγ is a symmetric positive semidefinite kernel.

For all f ∈ L2
µ (X), LKγ( f ) = ∑ j∈I

λ j
λ j+γ 〈 f ,ψ j〉L2

µ
ψ j. By Theorem 5.2 (ii), LKγ( f ) ∈

HK(X) if and only if ∑ j∈I
1
λ j

(
λ j

λ j+γ 〈 f ,ψ j〉L2
µ

)2
< ∞. We have ∑ j∈I

1
λ j

(
λ j

λ j+γ 〈 f ,ψ j〉L2
µ

)2
≤

∑ j∈I
λ j
γ2 〈 f ,ψ j〉2L2

µ
≤ λ1

γ2 ∑ j∈I〈 f ,ψ j〉2L2
µ

= λ1
γ2 ‖ f‖2

L2
µ

< ∞ and so R(LKγ)⊆HK(X). ¤

Theorem 6.3 Let X ⊆ Rd be measurable, Y ⊂ R be bounded, K : X ×X → R be a
continuous symmetric positive semidefinite kernel, ρ be a non degenerate probability
measure on X ×Y . Then for every γ > 0, there exists a unique function f γ ∈ HK(X)
minimizing Eρ,γ,K such that
(i) f γ = LKγ( fρ);
(ii) Eρ( f γ)−Eρ( fρ) = ‖ f γ− fρ‖2

L2
ρX

;

(iii) limγ→0 ‖ f γ− fρ‖L2
ρX

= 0.

Proof. (i) By the representation (3), the argminimum of Eρ,γ,K over HK(X) is equal to
the regularized solution of the inverse problem given by the operator JK with the stabi-
lizer ‖.‖2

K and the parameter γ for the data fρ. By Proposition 5.1 (i) JK is continuous
and so by Theorem 3.1, f γ = Jγ

K( fρ) where Jγ
K = J∗K(JKJ∗K + γIL2

ρX
)−1.

By Proposition 5.1 (ii), J∗K = LK and so we have Jγ
K = LK(TK + γIL2

ρX
)−1. By The-

orem 5.2(ii), Jγ
K has eigenvalues λ j

λ j+γ and hence Jγ
K is equal to the operator LKγ . By

Proposition 6.2, R(LKγ)⊆HK(X) and so LKγ( fρ) ∈HK(X).
(ii) By the representation (3), Eρ( f γ)−Eρ( fρ) = ‖ f γ− fρ‖2

L2
ρX

.

(iii) For every γ > 0, we have ‖ fρ−LKγ( fρ)‖L2
ρX

= ‖∑ j∈I(1− λ j
λ j+γ )〈 fρ,ψ j〉L2

ρX
ψ j‖L2

ρX

= ‖∑ j∈I
γ

λ j+γ 〈 fρ,ψ j〉L2
ρX

ψ j‖L2
ρX
≤ γ

λ1+γ‖∑ j∈I〈 fρ,ψ j〉L2
ρX

ψ j‖L2
ρX

= γ
λ1+γ‖ f̄ρ‖L2

ρX
. Thus

limγ→0 ‖ f γ− fρ‖L2
ρX

= limγ→0 ‖LKγ( fρ)− fρ‖L2
ρX

= 0. ¤

By Theorem 6.3, for every γ > 0 there exists a unique function f γ minimizing the
regularized expected error Eρ,γ,K over HK(X). This function is the image of the re-
gression function fρ under the integral operator LKγ which maps L2

ρX
(X) to HK(X).

The regularization modifies coefficients w j = 〈 fρ,ψ j〉L2
ρX

in the representation f̄ρ =

∑ j∈I wiψ j of the projection f̄ρ of the regression function fρ on the L2
ρX

-closure of
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HK(X). Regularization replaces these coefficients with coefficients w jλ j
λ j+γ . For a fixed

regularization parameter γ > 0, the function αγ( j) = λ j
λ j+γ is decreasing monotonically

to 0, so higher frequency coefficients are more reduced. For each j ∈ I, limγ→0
w jλ j
λ j+γ =

w j and so with the regularization parameter γ decreasing to zero, the coefficients w jλ j
λ j+γ

converge to w j.
The role of kernel norms as stabilizers in Tikhonov’s regularization can be in-

tuitively well understood in the case of convolution kernels, i.e., kernels K(x,y) =
k(x−y) defined as translations of a function k∈L2(Rd)∩L1(Rd) for which the Fourier
transform k̃ is positive. It was shown in [25] (see also [15]) that for such kernels, the
value of the stabilizer ‖.‖2

K at any f ∈HK(Rd) can be expressed as

‖ f‖2
K =

1
(2π)d/2

∫

Rd

f̃ (ω)2

k̃(ω)
dω.

So when lim‖ω‖→∞ 1/k̃(ω) = ∞, the stabilizer ‖.‖2
K plays a role of a high-frequency fil-

ter. Examples of convolution kernels with positive Fourier transforms are the Gaussian
and the Bessel kernel (the kernel induced by βr with β̂r(s) = (1+‖s‖2)−r/2).

The characterization of the regularized solution f γ given in Theorem 6.3 (i) was
derived earlier in [10, pp.27-28] using properties of operators with fractional powers
for the case of X compact and K continuous. However, in [10], it was formulated as

f γ = (I + γT−1
K ) fρ. (18)

The formulation (18) might be misleading as for a non degenerate kernel K the inverse
L−1

K is defined only on a subspace of L2
ρX

(X) which cannot be complete. Indeed if it
were complete, then by the Banach open map theorem [14], L−1

K would be bounded.
But for a non degenerate kernel, the eigenvalues 1

λ j
of the inverse operator L−1

K diverge.
Our formulation

f γ = LKγ( fρ)

given in Theorem 6.3 in terms of the integral operator LKγ with a modified kernel Kγ is
rigorous and includes also non compact and non continuous cases. Moreover, as our
proof takes advantage of results from theory of inverse problems, it is quite short and
simple.

7 Minimization of empirical error
The next theorem describes minima od empirical error functional Ez and its regularized
modification. We denote by

Ez,γ,K = Ez + γ‖.‖2
K

the Tikhonov regularization of the empirical error Ez with the stabilizer ‖.‖2
K and the

regularization parameter γ. For a kernel K : X×X →R and a vector u∈ Xm, we denote
by K [u] the Gram matrix of the kernel K with respect to the vector u, i.e., the matrix

K [u]i, j = K(ui,u j),
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by Km[x] the matrix 1
m K [u], and by Im the identity m×m matrix.

Theorem 7.1 Let X ⊆Rd , K : X×X →R be a symmetric positive semidefinite kernel,
m be a positive integer, z = (u,v) with u = (u1, . . . ,um) ∈ Xm, v = (v1, . . . ,vm) ∈ Rm,
then
(i) there exists an argminimum f + of Ez over HK(X), which satisfies

f + = J+
u (v) =

m

∑
i=1

ciKui , (19)

where
c = (c1, . . . ,cm) = K [u]+v,

and for all f o ∈ argmin(HK(X),Ez), ‖ f +‖K ≤ ‖ f o‖K;
(ii) for all γ > 0, there exists a unique argminimum f γ of Ez,γ,K over HK(X), which
satisfies

f γ = Jγ
u(v) =

m

∑
i=1

cγ
i Kui , (20)

where
cγ = (cγ

1, . . . ,c
γ
m) = (Km[u]+ γIm)−1 v ;

(iii) limγ→ ‖ f γ− f +‖K = 0.

Proof. (i) By the representation (7), argminimum of Ez over HK(X) is a pseudosolution
of an inverse problem given by the operator Ju for the data v. By Proposition 5.4 (i) and
(ii), Ju is continuous and has a closed range, thus we can apply Theorem 3.1(i) to obtain
J+

u = J∗u (JuJ∗u )+. Proposition 5.4(iii) implies that JuJ∗u : Rm → Rm can be expressed by
the matrix Km[u]. So f + = J+

u (v) = ∑m
i=1 ciKui , where c = Km[u]+v.

(ii) By Theorem 3.1 (ii), f γ = Jγ
u(v) = J∗u (JuJ∗u + γIm)−1v, where Im denotes the

identity operator on Rm. Thus f γ = ∑m
i=1 cγ

i Kui , where cγ = (Km[u]+ γIm)−1v.
(iii) By Theorem 3.1 (v), limγ→ ‖ f γ− f +‖K = limγ→ ‖Jγ

u(v)− J+
u (v)‖K = 0 ¤

Theorem 7.1 shows that for every symmetric positive semidefinite kernel K and
every sample of empirical data z, there exists a function f + minimizing the empiri-
cal error functional Ez over the whole space HK(X). This function is formed by a
linear combination of the representers Ku1 , . . . ,Kum of the input data u1, . . . ,um. Such
pseudosolution f + can be interpreted as an input-output function of a network with
one hidden layer with kernel units and a single linear output unit. The coefficients
c = (c1, . . . ,cm) of the linear combination (corresponding to the output weights of the
network) satisfy c = Km[u]+v, so the output weights can be obtained by solving the
system of linear equations.

However, as the operator Ju has finite dimensional range, it is compact and thus
its pseudoinverse J+

u is unbounded. So the optimal solution of minimization od the
empirical error Ez is unstable with respect to a change of output data v. Stability can
be improved by replacing the pseudosolution f + = J+

u (v) with the regularized solution
f γ = Jγ

u(v), which is a linear combination of the same functions Ku1 , . . . ,Kum . But
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the coefficients of these two linear combinations are different: in the regularized case
cγ = (Km[u]+ γI )−1 v, while in the non-regularized one c = Km[u]+v.

Note that for any convolution kernel K(x,y) = k(x−y) with k(0) = 1, all functions
of the form f = ∑m

i=1 wiKui , which are computable by one-hidden layer networks with
kernel units computing translations of k, satisfy

‖ f‖K ≤
m

∑
i=1
|wi|‖Kui‖K =

m

∑
i=1
|wi|K(ui,ui) =

m

∑
i=1
|wi|k(0) =

m

∑
i=1
|wi|.

So

‖ f‖2
K ≤

(
m

∑
i=1
|wi|

)2

. (21)

In practical learning tasks, an output-weight regularization (which penalizes input-
output functions with large `1 or `2-norms of output-weight vectors) has been widely
used for its simplicity [13]. The inequality (21) shows that an output-weight regular-
ization also penalizes solutions with large ‖.‖K-norms.

For X compact and K continuous, Theorem 7.1(ii) was derived by several authors
using Fréchet derivatives (see, e.g., [33] [10], [28]). It became well-known under the
name “Representer Theorem”. Our proof of Theorem 7.1 shows that one can obtain
the characterization (20) easily as a straightforward consequence of theory of inverse
problems. Moreover, Theorem 7.1 characterizes argminima of empirical error also
for non continuous kernels or kernels defined on non compact domains such as Rd .
Theorem 7.1 also provides a comparison of a regularized case with a non regularized
one. It shows that regularization merely modifies coefficients of the linear combination
of functions composing the argminimum. In the non regularized case, the coefficients
are obtained from the vector v of output data by applying to it the Moore-Penrose
pseudoinverse of the Gram matrix Km[u], while in the regularized case, the coefficients
are obtained by applying to v the inverse of the modified matrix Km[u] + γIm. So
the regularization merely changes amplitudes, but it preserves the finite set of basis
functions from which the solution is composed.

In learning from large sets of data, typically networks with much smaller number
n of computational units than the size m of the training sample are used. Various
learning algorithms minimize error functionals over sets of functions formed by linear
combinations of n computational units, where n ¿ m. In [23, 24], we derived some
estimates of speed of convergence of minima of error functionals over networks with
increasing number of units. Theory of inverse problems provides tools for comparison
of these minima with the global ones over the whole RKHSs.
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[23] V. Kůrková and M. Sanguineti. Error estimates for approximate optimization by the ex-
tended Ritz method. SIAM Journal on Optimization, 15:461–487, 2005.

16
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