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Abstract  
Results given in this report show that the minimal classification error and the “left part” of the ROC 
curve are very different things. The “left part” of the ROC curve corresponds to the highest rejection 
factor that is needed in data processing for particle physics. It is shown that one can suppress all 
background events for limited, even though large, number of background events and that the threshold 
for cutting off background events depends on the number of events considered for test. The most 
important message is that testing of separation techniques should be done with realistic numbers of 
events of both classes in the testing set. 
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Introduction 
In year 2010 we tested and compared several very different classifiers using data sets at hand 
and mostly used in previous analyses. Results show that for some data a better separation of 
signal and background can be reached using a different tool. Also, very different things are 
the minimal classification error and the “left part” of the ROC curve. The minimal 
classification error corresponds to the overall course of a ROC curve. The “left part” of the 
ROC curve corresponds to the highest rejection factor that is needed in data processing for 
particle physics. It is shown here that it is possible to suppress all background events for 
limited, even though large, number of background events. It is also shown here that the 
threshold for cutting background events1 depends on the number of events considered for test 
and not only on the number of events contained in the learning set. 
 

Data sets description 

 “Juránek 16“ and “Juránek New 16“  
Mr. Juránek generated this data in 2009. The signal and background are so called exclusive 
diffraction processes where protons will remain as a particle even after collision. They 
interact so that they interchange some colorless object (two gluons). It means that all energy 
that is interchanged (i.e. energy of that gluons) is transformed into some so-called central 
object as e.g. Higgs boson, a pair quark-antiquark, a pair of gluons or some another pair of 
particles. In this case the central object considered is the Higgs boson that decays next into a 
pair of quarks b – b-bar and the background process where the central object is a pair of 
quarks b – b-bar. The importance of this process lays in the fact that standard (no diffraction) 
production of the Higgs boson decaying into b – b-bar pair is impossible to measure in LHC 
due to extremely large QCD b – b-bar background.  

Original data set 
It consists of 16 variables as follows: 

Prot1E; Prot1px; Prot1py; Prot1pz;  
Prot2E; Prot2px; Prot2py; Prot2pz; 
Jet1E; Jet1px; Jet1py; Jet1pz;  
Jet2E; Jet2px; Jet2py; Jet2pz, 

i.e. there are four „four-jets“ for two protons and two jets measured. 
File names are lrn0.dta and tst0.dta for learning and testing set, respectively. 

New data set  
The “New” data set has the same 16 variables as the original data set but a different system of 
cuts has been previously applied. Thus the signal and background events in this data are more 
difficult to recognize.  
File names are lrn.dta and tst.dta for learning and testing set, respectively. 

                                                
1 This is analogous but has nothing to do with “cuts” approach widely used in particle physics. Most of 
separators/classifiers give a single scalar output value as a response to multivariate input data sample (event). A 
proper threshold then differentiates between classes, i.e. what is above this threshold is recognized as a signal, 
what lies below is a background. (Or vice versa depending on construction of the classifier.)  
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“Elsbieta 7“ and “Elsbieta 25“ 
 
Identification of hadronic _ decays will be the key to the possible Higgs boson discovery in the 
wide range of the MSSM parameter space. The h/H/A → ττ and H±  → τυ  aare promising 
channels in the mass range spanning from roughly 100 GeV to 800 GeV. The sensitivity 
increases with large tanβ  and decreases with rising mass of the Higgs boson. The H → ττ 
decays will give access to the Standard Model and light Minimal Supersymmetric Standard 
Model Higgs boson observability around mH = 120 GeV, with Higgs boson produced by 
vector-boson fusion. The hadronic τ identification is also very important in searching for 
supersymmetric particles, particularly at high tanβ values. 
In this data as signal, we consider reconstructed candidates from tau decays in pp → W → τν  
and pp → Z → ττ  events. As background, we consider candidates from QCD shower in the 
same pp → W → τν , pp → Z → ττ   events and in QCD dijet events (sample with pT

hard > 35 
GeV). 

25 variables set 
In this set a more variables i.e. a more detailed description of decay processes are used. The 
25 variables consist of six „four-jets“ and lepton. The learning and testing data sets 
L-data_05_05_30_09_11_21.dat and T-data_05_05_30_09_11_21.dat  

Seven variables data set 
In our test we used data tau-3Pwtoenu-0-200-GeV-lrn.dta and tau-3Pwtoenu-0-200-GeV-
tst.dta having 7 variables. We do not describe them in detail here as it may be found in [4]. 
This data uses three-prong candidates that are seeded by the bary-center of three nearby 
tracks. At the same time, full scale from zero to 200 GeV Higgs boson mass is used, i.e. no 
cuts are used.  

“Magic“ 
For description of data we cite [5] here verbatim as follows: “Ground-based atmospheric 
Cherenkov telescopes using the imaging technique are a comparatively recent addition to the 
panoply of instruments used by astrophysicists. The first results were demonstrated in 1989. 
They observe high-energy gamma rays, taking advantage of the radiation emitted by charged 
particles as they are produced abundantly inside the electromagnetic showers initiated by the 
gammas, and developing in the atmosphere. This Cherenkov radiation (of visible to UV 
wavelengths) leaks through the atmosphere and gets recorded in the detector, allowing 
reconstruction of shower parameters.  
For our case study, we used data sets generated by a Monte Carlo program, Corsika, described 
in ref. The program was run with parameters allowing to observe events with energies down 
to well below 50 GeV.  
Subsequently, the analysis is simplified, with hopefully little or no loss of information, by 
converting the pixel image of a shower into few image parameters as described earlier. These 
parameters constitute the only image characteristics to be used.  
The data consist of two classes: gammas (signal) and hadrons (background). Events were 
generated at shower energies from 10 GeV up to about 30 TeV, and for zenith angles from 
zero to 20 degrees. The samples used by all methods are identical, and consist of 12332 
gamma events and 6688 hadron events. Each event is characterized by the following ten 
parameters:  
1 length : major half axis of ellipse [mm] 
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2 width: minor half axis of ellipse [mm] 
3 size: 10-log of sum of content of all pixels [photon count] 
4 conc2 : ratio of sum of two highest pixels over size [ratio] 
5 conc1 : ratio of brightest pixel over size [ratio] 
6 pdist: distance from brightest pixel to center, along major axis [mm] 
7 m3long: 3rd root of third moment along major axis [mm] 
8 m3trans: 3rd root of third moment along minor axis [mm] 
9 alpha: angle of major axis with vector to origin [deg] 
10 dist: distance from origin to center of ellipse [mm] 
All multivariate methods studied here use identical disjoint training (learning) and control 
(test) samples.“ The data sets used are magic.dat and magic.dat for learning and testing set, 
respectively. 
 

“�ezní�ek” 
This data is quite large consisting of 109 289 events. There are four original data sets 
signal_small.txt, background_small.txt, and signal_big.txt, background_big.txt. There are 
9790 signal events and 99499 background events.  
The first pair consists of 54 variables that were mostly used in other analyses. The second pair 
of data has 68 variables more, i.e. total 122 variables. Additional variables can improve 
classification, but, on the other hand, are highly correlated with the basic set of 54 variables. 
Twelve variables of that set of 54 variables are integers, but it makes no problem. 
In detailed analysis of individual variables we found that four of them bring no new 
information that resulted in the use of 118 variables only.  
Tests were performed with “big” data, i.e. data with resulting 118 variables. Thus we tested 
ability of classifiers to process data with more than 100 variables. 
The learning data file Lear1kB.txt has 1000 events, 500 of background, and 500 of signal. The 
testing data file Test1kB.txt consists of all remaining events, and short version Test1kB10k.txt 
has 10000 events (5000 signal events, 5000 background events). In Results section The short 
version is denoted “Rezn10k”, long version simply “Reznicek”. In both cases the learning set 
is the same, the Lear1kB.txt. In some tests the testing data set was limited to 100000 events 
by deleting some background events. 
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Classifiers/separators used 
To make terminology clear, we use word classifier for tool that is able to recognize samples, 
i.e. events of two or more kinds, classes. Separators discriminate between two classes only. 
For our needs all devices work as separators as we have two classes, signal and background 
only. Generally we can speak about classifiers.  
In this study we used 18 different classifiers/separators and their variants as follows 
 
Method Description 
10-bins Bayes – naïve Classical Bayes naïve classifier that uses ten-bins histograms of 

individual variables and not any approximation by a distribution 
density function. 

Chi2 combined with IINC A special method that generates two-dimensional maps of events 
for both classes [6]. Classes are then separated by the use of 
simple IINC method. 

1-NN method L1 Nearest neighbor method [3] with L1 (Manhattan) metrics 
1-NN method L2 The same with L2 (Euclidean) metrics 
5-NN method L1 Five nearest neighbors method [3] with L1 (Manhattan) metrics 
5-NN method L2 The same with L2 (Euclidean) metrics 
0-NN method (sqrt(n)) L1 Nearest neighbors method with neighborhood size given by 

square root of the number of samples of the learning set with L1 
(Manhattan) metrics 

0-NN method (sqrt(n)) L2 The same with L2 (Euclidean) metrics 
IINC (1/I) method L1 Inverse Indexes of Neighbors Classifier [7], [8]. Relatively 

simple method derived on the bases of estimating multifractal 
dimensions (Hurst exponents) and Zipfian distribution. Here with 
L1 (Manhattan) metrics  

IINC (1/I) methodL2 The same with L2 (Euclidean) metrics 
Qcregre standard L1 Method that uses a constant when a multifractal dimension 

(Hurst exponent, distribution mapping exponent) is computed for 
a given event (sample) [9]. Here with L1 (Manhattan) metrics 

Qcregre standard L2 The same with L2 (Euclidean) metrics 
DME-local standard L1 Distribution mapping exponent method [10] that polynomially 

transforms a true probability distribution to be locally uniform 
and then estimates a class to which an event belongs. With L1 
(Manhattan) metrics 

DME-local standard L2 The same with L2 (Euclidean) metrics 
CD-global standard L1 Method that polynomially transforms a true probability 

distribution to be uniform-like. For it uses (global) correlation 
dimension as an exponent and then estimates a class to which an 
event belongs [11]. With L1 (Manhattan) metrics 

CD-global standard L2 The same with L2 (Euclidean) metrics 
Random Forest (RandFor) The well-known method by Leo Breiman and Adele Cutler [1], 

[2] 
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Results 

Summary of results 
The summary is given in the following Table. Note that Table below gives the overall 
minimal classification error in individual entries. The classification error is maximized 
without respect to the value of the rejection factor really needed in evaluating events. At the 
same time, it sometimes happens that a classifier becomes stupid interchanging classes and 
thus giving classification error close to 50 % that would correspond to purely random 
decision.  
 
           D   a   t   a       s   e   t       Method 

Method Metrics Jur16 
Jur 

New16 Elsb25 Elsb7 Magic Rezn10k 
Reznice

k Mean 
10-bins Bayes - naive NA 25.77% 49.70% 40.28% 30.84% 16.68% 1.29% 1.76% 23.84% 
Chi2 combined with IINC L2 24.74% 43.50% 43.07% 27.94% 38.34% 2.34% 0.69% 25.80% 
1-NN method L1 36.48% 49.70% 43.33% 28.37% 32.59% 4.81% 9.16% 29.28% 
1-NN method L2 40.82% 49.60% 44.85% 28.28% 33.69% 5.49% 8.95% 30.40% 
5-NN method L1 34.95% 49.10% 47.65% 24.44% 26.08% 5.29% 8.80% 28.28% 
5-NN method L2 36.73% 48.90% 45.11% 23.61% 26.47% 5.80% 8.93% 28.21% 
0-NN method (sqrt(n)) L1 32.91% 48.40% 41.68% 22.21% 22.70% 5.15% 9.78% 26.21% 
0-NN method (sqrt(n)) L2 35.20% 49.60% 42.57% 21.72% 22.80% 5.53% 12.08% 27.38% 
IINC (1/i) method L1 33.80% 49.60% 41.42% 22.70% 28.01% 5.76% 8.45% 26.97% 
IINC (1/i) method L2 35.46% 49.20% 37.99% 22.12% 28.79% 6.88% 9.50% 26.93% 
QCregre standard L1 33.67% 47.40% 43.96% 21.51% 17.06% 5.59% 9.89% 25.58% 
QCregre standard L2 36.10% 49.40% 45.24% 21.75% 20.20% 4.51% 6.42% 26.23% 
DME-local standard L1 34.06% 49.10% 40.79% 23.12% 24.65% 4.96% 8.55% 26.46% 
DME-local standard L2 36.48% 50.00% 39.14% 23.12% 25.07% 5.86% 10.15% 27.12% 
CD-global standard L1 37.76% 49.80% 39.77% 35.66% 28.79% NA NA 38.43% 
CD-global standard L2 38.65% 48.90% 39.52% 36.09% 29.75% NA NA 39.02% 
RandomForest NA 9.95% 38.40% 37.23% 21.54% 16.01% 0.85% 1.02% 17.86% 
Data set mean error (measures 
difficulty): NA  33.18% 48.90% 43.88% 26.76% 25.75% 4.67% 7.13% 28.62% 
 
In this table the last column gives the “Method Mean”. It is the mean value of the 
classification error over all seven data sets (problems) considered. The smaller the Method 
Mean the better method from general point of view. The last row in the table shows the Data 
set mean error. This value is the mean classification error over all classification methods 
including their variants for a particular data set. Comparing values on the last row of the table 
we see that data set Rezn10k appears most easily to separate. On the contrary the data set 
Jur New 16 appears as the most difficult to separate.  
All distance-based methods are considered in two variants according to metrics used. We 
tested them with L1 (Manhattan) metrics and with standard L2 (Euclidean) metrics. Small 
differences show a slight advantage of L1 metrics over L2 metrics in most cases. 
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“Juránek 16“  
Original data set. 
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ROC curve for data “Juránek 16”, smoothed. 
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ROC curve for data “Juránek 16”, not 
smoothed, the left end detail. Red crosses 
indicate individual events. 

 
In a more detailed analysis one can find results according to table: 
 
Background events after separator 0 1 2 
Rejection factor ∞ 392 196 
Background error 0 0.002551 0.0051 
Signal efficiency  0.025 0.073 0.104 
Threshold 0.94 0.921 0.903 
 
This means e.g. that for threshold 0.94 all background events can be rejected and, at the same 
time we get 2.5 % of original signal events. When we wish to get at least 10 % of signal 
events then we must accept 0.5 % of background events going through separator (now with 
threshold 0.903). 
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“Juránek New 16“ 
The data set but with heavier cuts applied previously. 
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ROC curve for data “Juránek New 16”, 
smoothed. 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

 
ROC curve for data “Juránek New 16”, not 
smoothed, the left end detail. Red crosses 
indicate individual events. 

 
In a more detailed analysis one can find results according to table: 
 
Background events after separator 0 1 4 
Rejection factor ∞ 500 125 
Background error 0 0.0020 0.008 
Signal efficiency  0.012 0.58 0.066 
Threshold 0.801 0.743 0.732 
 
This means e.g. that for threshold 0.801 all background events can be rejected and, at the 
same time we get 1.2 % of original signal events. When we wish to get at least 6.6 % of signal 
events then we must accept 0.08 % of background events going through separator (now with 
threshold 0.732). 
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“Elsbieta 25“ 
25 variables set. It is extremely difficult to separate signal from background in this data as 
seen in the following Figure.  
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ROC curve for data “Elsbieta 25”, smoothed. 
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ROC curve for data “Elsbieta 25”, not 
smoothed, the left end detail. Red crosses 
indicate individual events. 

 
In a more detailed analysis one can find results according to table: 
 
Background events after separator 0 1 2 
Rejection factor ∞ 473 236.5 
Background error 0 0.002114 0.004228 
Signal efficiency  0.00319 0.0191 0.025556 
Threshold 0.728 0.700 0.660 
 
This means e.g. that for threshold 0.728 all background events can be rejected but at the same 
time we get 0.319 %, i.e. approximately one of 300 of signal events only. When we wish to 
get, say, at least 2.5 % of signal events then we must accept 0.4228 % of background events 
going through separator (with threshold 0.660). 
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“Elsbieta 7“ 
Seven variables data set. This data is interesting by the fact, that the best separator is the 
“QCregre” method that uses a constant when a multifractal dimension is computed for a given 
event with L1 (Manhattan) metrics. 
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ROC curve for data “Elsbieta 7”, smoothed. 
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ROC curve for data “Elsbieta 7”, not 
smoothed, the left end detail. Red crosses 
indicate individual events. 

 
In a more detailed analysis one can find results according to table: 
 
Background events after separator 0 2 3 
Rejection factor ∞ 819.5 546 
Background error 0 0.00122 0.00183 
Signal efficiency  0.193 0.196 0.201 
Threshold 0.954 0.902 0.869 
 
This means e.g. that for threshold 0.954 all background events can be rejected and, at the 
same time we get 19.3 % of original signal events. The ROC curve is rather flat in region 
considered, see Figure above at the right hand side. Then lowering the threshold helps a little 
to get more signals and causes a rejection factor less than 1000.  
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 “Magic“ 
The data se is available at the UCI Machine Learning Repository. 
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ROC curve for data “Magic”, smoothed. 
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ROC curve for data “Magic”, not smoothed, 
the left end detail. Small red crosses indicate 
individual events. 

 
In a more detailed analysis one can find results according to table: 
 
Background events after separator 0 1 2 
Rejection factor ∞ 347 173.5 
Background error 0 0.002882 0.005764 
Signal efficiency  0.142 0.161 0.22 
Threshold 0.805 0.787 0.737 
 
This means e.g. that for threshold 0.805 all background events can be rejected and, at the 
same time we get 14.2 % of original signal events. When we wish to get 22 % of signal events 
then we must accept 0.576 % of background events going through separator (now with 
threshold 0.737). 
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“�ezní�ek” 
This data is interesting by nearly “ideal” ROC curve. Signal and background events are 
relatively easy to separate. 
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The upper left (!) corner of the 
ROC curve for data “Reznicek 
1kB10k”, smoothed. 

 
In a more detailed analysis one can find results according to table: 
 

10 000 testing events data set 

Background events  
after separator 0 2 3 4 

Rejection factor ∞ 2500 1666.667 1250 
Background error 0 0.0004 0.0006 0.0008 
Signal efficiency  0.9494 0.9604 0.9624 0.9694 
Threshold 0.831 0.795 0.789 0.767 
 
This means e.g. that for threshold 0.831 all background events can be rejected and, at the 
same time we get 94.9 % of original signal events.  
 
For all data (109269 events) results are summarized in the following table. 
 

All 109 269 testing events data set 
Background events  
after separator 0 1 2 3 

Rejection factor ∞ 99499 49749.5 33166.3 
Background error 0 1.01E-05 2.01E-05 3.02E-05 
Signal efficiency  0.58223 0.62809 0.66834 0.83207 
Threshold 0.995 0.993 0.991 0.963 
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This means e.g. that one can get from total 109289 events (9790 sign., 99499 backg.) 4978 
signals and no background, i.e. all background events can be rejected and 50.8 % of signal 
events remain. At the cost of nonzero background error equal to 0.00003 (0.003 %) one can 
obtain 83.2 % signal efficiency. 
It is interesting that classifier better in the sense of giving a smaller overall classification error 
gives worse results in the same region as follows. 
 

100 000 testing events data set 
Background events  
after separator 

0 1 2 3 

Rejection factor ∞ 90210 45105 30070 
Background error 0 1.1E-05 2.2E-05 3.3E-05 
Signal efficiency  0.48764 0.49612 0.52431 0.55312 
Threshold 0.62395 0.62049 0.61077 0.40032 
 
As seen, results are roughly by ten per cent worse than in the previous case. 
 

Discussion 
Even generally the best classifier can be „beaten“ by another method in case of a particular 
data set. In such a case one can find that rather simple algorithm can outperform a highly 
sophisticated one. From it follows that one has to have a set of classifiers. For particular data 
one should optimize results first by selection a proper classifier. Then eventually optimize its 
parameters, as usually default parameters are rather close to those needed for the best result.  
Comparing tables in Chap. Dealing with data “�ezni�ek” for small (10 000 events) and large 
(108289 or 100 000 events) testing data sets and the same separator/classifier we see that the 
threshold is shifted to larger value for larger data set. It means more severe cutting of 
background events (that is ok) but at the same time also more severe cutting of signal events. 
Thus keeping background events eliminated results in lower acceptance (efficiency) of signal 
events. Fortunately it is not linear. Here background eliminated is ten times larger whereas 
signal events acceptance is reduced approx. to half only.  
The most important message is that testing of separation techniques should be done with 
realistic numbers of events of both classes in the testing set.  
In an opposite case one cannot extrapolate results until some asymptotic to realistic case is 
found. Not to be so strict, the best separation tool for a particular case remains the best one for 
different data set size with high probability.   
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