
Testing Random Forests for Unix and Windows

Jiřina, Marcel
2010

Dostupný z http://www.nusl.cz/ntk/nusl-41904

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 09.04.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-41904
http://www.nusl.cz
http://www.nusl.cz

1

Institute of Computer Science
Academy of Sciences of the Czech Republic

 Testing Random Forests for Unix and Windows

 Marcel Ji�ina and Marcel Ji�ina, jr.

 Technical Report No. V-1075

 July 2010

Abstract
The Random Forest is a method and also a program for data clustering and classification. Especially in
classification the Random Forest method appears to be the best approach perhaps among all others up to now.
The message of this report is a new version of famous RandForest program written by Leo Breiman and Adele
Cutler [3]. In the original version written in Fortran 77 all information about data to be processed and details of
processing must be included in the program source text. In our modification in Fortran 90 there are binaries for
Windows and Linux and information for different tasks is passed with help of arguments. After a brief description
of our modification of RandForest the detailed manual follows. The next Chapter describes testing data corpora
used and gives results of the Random Forest program. The program source text and binaries, and results are free
under GNU General Public License.

Keywords:
Random forest, RandFor, multivariate data, Clustering, classification, data mining, probability estimation.

2

Contents

1 Introduction...3
2 Command line Random Forest program ..3

2.1 Motivation..3
2.2 Terminology...3
2.3 Important features of FORTRAN ...4
2.4 Resulting changes of the Random Forests program...4
2.5 Adds-on ...5

2.5.1 Register.txt file..5
2.5.2 ROC.txt file...5

3 The Manual ...5
4 Testing ..7

4.1 Data set corpora - tasks from UCI Machine Learning Repository7
4.2 Results ...8

5 Conclusion ..9
References ..10

6 Appendix 1 – A part of the original manual (with some corrections)..............................11
6.1 Random forests computes...11
6.2 Setting Parameters..11

6.2.1 Line 1 Describing The Data...11
6.2.2 Line 2 Setting up the run ...12
6.2.3 Line 3 Options on Variable Importance ...13
6.2.4 Line 4 Options based on proximities..13
6.2.5 Line 5 Transform to Principal Coordinates ..14
6.2.6 Line 6 Saving the forest...14
6.2.7 Line 7 Output Controls..14
6.2.8 USER WORK ...14
6.2.9 REMARKS ...15

6.3 Outline of How Random Forests Works ...16
6.3.1 Usual Tree Construction--Cart...16
6.3.2 Random Forests Construction..16
6.3.3 Random Forests Tools...16
6.3.4 Test Set Error Rate ..16
6.3.5 Class probability estimates ..17
6.3.6 Variable Importance..17

7 Appendix 2 – The progran listing with comments (shortened)18

3

Testing Random Forest for Unix and Windows
Marcel Ji�ina and Marcel Ji�ina, Jr. (marcel@cs.cas.cz)

1 Introduction
The Random Forest is a method and also a program for mdata mining and pattern
rrecognition. It comprises clustering and classification by learning. Especially in classification
the Random Forest method appears the best approach perhaps among all others up to now.
Note that „Random Forests(tm) is a trademark of Leo Breiman and Adele Cutler and is
licensed exclusively to Salford Systems for the commercial release of the software. Our
trademarks also include RF(tm), RandomForests(tm), RandomForest(tm) and Random
Forest(tm)“, see [11].
The message of this report is a new version of famous Random Forests program
“rf5new0.for“ written by Leo Breiman and Adele Cutler [3] in Fortran 77. In the original
version all information about data to be processed and details of processing must be included
in the program source text. Thus modified program must be compiled and afterwards run with
data. In our modification the program is rewritten into Fortran 90 and a user need not compile
the program. Information for different tasks is passed to program with help of arguments. The
program has one source text and binaries can run under UNIX/LINUX or under Windows
environment. A brief description of our modification of Random Forest is given first and then
the detailed manual follows. The next Chapter describes testing data corpora used and gives
results of processing by the Random Forests program. In the Appendix there is a verbatim
copy of a part of original manual with some our corrections included. The program and results
are free under GNU General Public License [6]. (In short, it is free for non-profit use, there is
no warranty, and the citation of original source [1] and of this report is mandatory when
published in any form, see below1.)

2 Command line Random Forest program
2.1 Motivation
We found the original Random Forests program rather difficult to use. The necessity to set up
(change) parameters in the source text of the FORTRAN program is rather effective for
tuning and experimentation. For user who has no knowledge about Fortran 77 programming
language and about peculiarities of the use of a compiler, it may be a stressful task. This
feeling may result in the use another classifier that is friendlier to use.

2.2 Terminology
The task computed has different parameters, e.g. the name of the training data file, the
dimensionality of the task, the number of classes when task is the classification problem, and
so like. The name of the program and parameters form a command line. When speaking about
command line, the first item in it is the name of program optionally with path. The items
following the program’s name are called arguments. In fact, arguments are the parameters in
the sense above. The meaning of arguments is given by their order or there are named

1 [] Breiman, L.: Random Forests, Machine Learning Vol. 45, No. 1, pp. 5-32. (2001)
 [] Ji�ina, M., Ji�ina, M., jr.: Testing Random Forest for Unix and Windows. Technical Report No. V-1075 , Institue of Informatics
 AS CR, Prague, Czech Republic. (2010)

4

arguments. The named argument consists of a name and of a value of parameter. Between the
name and the value some separator can be found, usualy a colon or equivalence sign.

2.3 Important features of FORTRAN
In Fortran 77 a feature of dynamic allocation does not exist. On the other hand, there is a
feature in Fortran 77 as well as in Fortran 90 that one can easily redefine dimensions of an
array, i.e. change the number of dimensions and their size in the subroutine or function. This
allows moving large part of the main progran into subroutine without changing any
declaration of arrays and variables. The cost if it is that names of all arrays and of all variables
shared with the main program must appear as formal parameters of such a subroutine. To
formal parameters of a subroutine must correspond true parameters. And this was the main
part of our effort to make the Random Forests program friendlier in the sense that it can be
used as easily as any other program run from the command line. To the same source program
there are run-time binaries for running under Windows or UNIX/Linux environment.

2.4 Resulting changes of the Random Forests program
The change from Fortran 77 to Fortran 90 can be viewed as a formal task concerning
comments (the comment line starts with letter c in Fortran 77 and with “!” in Fortran 90) and
continuation lines (instead of a new line starting with & or another character in column 6, the
& character must be the last character of the preceding line in Fortran 90).

The most important was the change of all FORTRAN parameters (the statement “parameter
(…)”) into variables. For it the declaration of parameters as variables has to be separated from
setting up their default values (all declarations must precede the first executable statement in
FORTRAN). To enable user to change parameter’s value the analysis of the command line
attributes has been included.

To allow class marks in form of a text, the analysis of class marks in the learning file and a
tranformation of them into numbers 1, 2 … was included at the beginning of the program. In a
corresponding way the procedures for reading data.train and data.test files has been modified
accordingly.

A large part of the main program has been transformed into subroutine MAIN2 without
changing any declaration of arrays and variables. The names of all arrays and of all variables
shared with the main program must appear as formal parameters of such a subroutine. To
formal parameters of a subroutine must correspond some true parameters. To construct true
parameters for arrays three vast integer, real, and double precision arrays has been declared
and necessary amount of memory assigned to them dynamically according to size of the task
solved. In Fortran 90 (not in Fortran 77) there exist a declaration ALLOCTABLE and
executable statement ALLOCATE for this purpose. The individual arrays in MAIN2
subroutine correspond to some part of one of these large arrays of the same type (integer, real
or double precision) and form true parameters dynamically at the time when subroutine
MAIN2 is called.

Parameters for print and for storing data in files have been set up to minimize reporting. At
the beginning of run some input information is printed. Then some dots appear to show that

5

program is not “dead” during long run with large data sets. Finally resulting classification
errors appears.

Two additional files “register.txt” and “ROC.txt” can be generated.

2.5 Adds-on

2.5.1 Register.txt file
In the end of run a line is written to the file “register.txt”. If no such file exists, it is generated
else a new line is appended to existing file. The line consists of names of training and testing
files, the dimensionality of the task, the number of classes, the learning classification error,
and the testing classification error.

2.5.2 ROC.txt file
If parameter ROC is set up to 1 (i.e. argument ROC=1 appears in the command line) then a
matrix of class probabilities together with the true class number and by the program found
class number appear as a file “ROC.txt”. In more detail - in the first line the names of the
training and testing files appear, the second line gives headings for data on next lines. The
third and other lines of this file give the true class number, by the program found class
number, and individual class probabilities. Each line corresponds to one sample of the testing
set (test file) in the same order as in the testing set. When there is a two class problem then
information in ROC.txt file can be used for constructing the famous ROC curve [7]. Note that
existing ROC.txt file is rewritten during the run of the program by the new one without
warning.

3 The Manual
This part is, in fact, the help screen shown (see box below) when the program is run with less
than three arguments. The following three arguments are mandatory in the fixed order:

The first argument is the file name of the training set, optionally with a path.

The second argument is the file name of the testing set, optionally with a path.

The third argument n is the dimensionality of the task.

When there is no testing set or no training set a dummy argument is used.

Data is supposed to be organized in rows, items on the row separated by tabulator character or
by one or more spaces. Each row represents one sample, pattern, event or object. There are
n + 1 items on the row. The first n items must be numeric; the last item means a class to
which the sample belongs. The class mark need not be numeric. Alfabetic or alfanumeric
class marks are also admissible. When numeric class marks are used they need not form an
uniterrupted series 1, 2 … Our program recognizes individual classes and their total number
automatically. Also the numbers of samples (rows) in the training and testing set are
recognized automatically.

6

The other arguments in the command line can be the named arguments. The equivalence sign
is used as a separator between parameter’s name and its value. All named arguments are
optional. When not stated explicitly in the command line the default values are used.

 RandomForest modified by MJ&MJ,jr. during May and June 2010
 Fortran 90 version with dynamic memory allocation.
 Free under GNU General Public License.
 When published please cite as:
 -Breiman,L.: Random Forests, Machine Learning Vol. 45, No. 1, pp. 5-32.(2001)
 -Jirina,M., Jirina, M., jr.: Testing Random Forest for Unix and Windows.
 Technical Report No. V-1075, Institue of Informatics AS CR, Prague,
 Czech Republic (2010).

 Usage: prog.exe datatrain datatest mdim [named parameters]
 DESCRIBE DATA (with optional defaults)
 Data files: numeric with class labels as integers, reals, or
 strings.
 datatrain: training data file name
 datatest: testing data file name
 mdim: task dimensionality (number of variables)]
 Named parameters: Form: Parname=Parvalue.
 [ntrain: number of samples (cases) in the training data - NOT NECESSARY NOW!]
 [nclass: number of classes - NOT NECESSARY NOW!]
 [ntest: the number of samples (cases) in the test set. NOTE: Put
 ntest=1 if there is no test set. Putting ntest=0 may cause
 compiler complaints.
 - NOT NECESSARY NOW if data test file exists!]
 maxcat: the largest number of values assumed by a categorical
 variable in data
 labeltr=1 if the data has class labels. If not, =1 or 2 adds a
 synthetic class
 labelts=0 if the test set has no class labels, 1 if the test set
 has cl.labels

 SET RUN PARAMETERS
 mtry0=number of variables randomly selected at each node
 Default=int(sqrt(float(mdim))+0.5), (originally 2 later on 5).
 Needs tuning! Begin with this value and try a value twice as high
 and half as low. See manu
 ndsize=1=minimum node size
 jbt=500=number of trees to grow
 look=100=how often you want to check the prediction error
 lookcls=1=show on the screen or not
 jclasswt=0
 mdim2nd=0
 mselect=0

 OUTPUT CONTROLS; all defaults zero:
 ROC=1 to get data for ROC curve i.e. outputs for each test sample
 else 0. (file roc.txt); default 0.
 isumout = 0/1 1=summary to screen. Includes err rates & confusion
 matrix
 idataout = 0/1/2 1=train,2=adds test (7)
 impfastout = 0/1 1=gini fastimp(8)
 impout = 0/1/2 1=imp,2=to screen(9)
 impnout = 0/1 1=impn (10)
 interout=0/1/2 1=interaction,2=screen (11)
 iprotout=0/1/2 1=prototypes,2=screen (12)
 iproxout=0/1/2 1=prox,2=adds test(13)
 iscaleout = 0/1 1=scaling coors(14)
 ioutlierout=0/1/2 1=train,2=adds test (15)

 NAME OUTPUT FILES FOR SAVING THE FOREST STRUCTURE
 isaverf=1 savedforest

7

 isavepar=1 savedparams
 isavefill=1 savedmissfill
 isaveprox=1 savedprox

 NAME OUTPUT FILES TO SAVE DATA FROM CURRENT RUN
 idataout=1 save-data-from-run
 impfastout=1 save-impfast
 impout=1 save-importance-data
 impnout=1 save-caseimp-data
 interout=1 save-pairwise-effects
 iprotout=1 save-protos
 iproxout>=1 save-run-proximities
 iscaleout=1 save-scale
 ioutlierout>=1 save-outliers
 iviz=1 the graphics program is to be used.

Box 1. The help screen printed when the program is run with less than three arguments.

4 Testing
The testing should show the classification ability of the method for some tasks and also shows
the classification ability relative to the other published methods and the results for the same
data sets. Here we do not compare results obtained with any published result gained with
other methods. Our task is to present reproducible results and any comparisons are up to a
kind reader.

4.1 Data set corpora - tasks from UCI Machine Learning Repository
We used real-life tasks from the UCI Machine Learning Repository; see Asuncion and
Newman [8]. 24 databases have been used for the classification task into two to 26 classes.
The number of attributes not including the class mark differs from 4 to 180. Basic
characteristics of data sets are summarized in Table 1. Data originally from the UCI Machine
learning repository [8] were gained mostly from R. Paredes [5] (denoted by P in column
Source in the table). These data sets are ready for a run with a classifier. We used all data sets
in this corpus. Each task consists of 50 pairs of training and testing sets corresponding to 50-
fold cross validation. For DNA data [5], Letter data (Letter recognition [8]), and Satimage
(Statlog Landsat Satellite [8]) the single partition into training and testing sets according to
specification in [8] was used. We also added the popular Iris data set. Iris data were taken
from [8] but we use them without Setoza class, i.e. we used two classes Versicolor and
Virginica only according to Friedman [9] and then we have split remaining data into 10 pairs
for ten-fold cross validation.

Dataset
Dimension

(#
attributes)

Number
of classes

Total
samples

Learning
set size

Test set
size

Cross
validation

Source

Australian 42 2 690 551 139 50 P
Balance 4 3 625 499 126 50 P
Cancer 9 2 683 546 137 50 P
Diabetes 8 2 768 614 154 50 P

DNA 180 3 31186 2000 1186 1 P2

8

German 24 2 1000 800 200 50 P
Glass 9 6 215 169 46 50 P
Heart 25 2 270 216 54 50 P
Ionosphere 34 2 351 280 71 50 P
Iris (1) 4 2 (3) 100 (150) 90 10 10 UCI MLR
Led17 24 10 2000 1595 405 50 P
Letter 16 26 20000 16000 4000 1 UCI MLR
Liver 6 2 345 276 69 50 P
Monkey1 17 2 556 444 112 50 P
Phoneme 5 2 5404 4322 1082 50 P
Satimage 36 7 6435 4435 2000 1 UCI MLR
Segmen 19 7 2310 1848 462 50 P
Sonar 60 2 208 165 43 50 P
Vehicle 18 4 846 675 171 50 P
Vote 16 2 435 347 88 50 P
Vowel 10 11 528 418 110 50 P
Waveform21 21 3 5000 3998 1002 50 P
Waveform40 40 3 5000 3999 1001 50 P
Wine 13 3 178 141 37 50 P

Table 1. Characteristics of data sets basically from the UCI Machine learning repository
gained from or modified according to different sources. Abbreviations for sources: P –
Paredes [10]; P2 – Paredes [5]; UCI MLR - Asuncion and Newman [8]. Note (1): Iris data are
used without Setoza class, i.e. two classes Versicolor and Virginica only according to
Friedman [9].

4.2 Results
The classification errors for data sets mentioned above are given in Table 2. Errors were
computed for two values of mtry0. (mtry0 is the number of variables randomly selected at
each node). One value follows from the recommendation to use the number of variables
approximately equal to the square root of the dimensionality n (mdim) of the task. The other
value is the default value (2) found in the original program text of the RandFor program. It is
seen that differences are small and mostly in an advantage of the former option.

Data mtry0= mtry0=
set int(sqrt(n+0.5) 2

australian 0.1276 0.1277
balance 0.1838 0.1972
Cancer 0.0299 0.0302
diabetes 0.2328 0.2322
DNA 0.0540 0.0565
german 0.2386 0.2376
Glass 0.2387 0.2354
Heart 0.1811 0.1822
ionosphere 0.0644 0.0658
Iris 0.0491 0.0591

9

led17 0.0000 0.0000
Letter 0.0507 0.0373
Liver 0.2881 0.2884
monkey1 0.0152 0.0098
phoneme 0.1198 0.1184
satimage 0.0900 0.0880
segmen 0.0263 0.0252
Sonar 0.2302 0.2216
Vehicle 0.2525 0.2501
Vote 0.0347 0.0343
Vowel 0.0389 0.0401
waveform21 0.1468 0.1469
waveform40 0.1447 0.1434
Wine 0.0250 0.0244

Table 2. Summary of classification errors for 24 tasks from the UCI Machine Learning
Repository according to Table 1 and two settings of the value of the mtry0, i.e. the number of
variables randomly selected at each node.

5 Conclusion
We found the original Random Forest program rather difficult to use. The necessity to set up
(change) parameters in the source text of the FORTRAN program is rather effective for
tuning and experimentation. For user who has no knowledge about Fortran 77 programming
language and about peculiarities of the use of a compiler, it may be a stressful task. This
feeling may result in the use of another classifier that is friendlier to use.

To use a dymnamic memory allocation we had to move from Fortran 77 to Fortran 90. There
is a feature of the FORTRAN language (‘77 as well as ‘90) that one can easily redefine
dimensions of an array, i.e. change the number of dimensions and their size in the subroutine
or function. This allows moving large part of the main progran into subroutine without
changing any declaration of arrays and variables. The cost if it is that names of all arrays and
of all variables shared with the main program must appear as formal parameters of such a
subroutine. Some true parameters must correspond to formal parameters of a subroutine. And
this was the main part of our effort to make the Random Forest program friendlier in the sense
that it can be used as easily as any other program run from the command line. To the same
source program in Fortran 90 there are run-time versions of binaries for Windows or
UNIX/Linux environment.

Acknowledgements
This work was supported by the Ministry of Education of the Czech Republic under the
project Center of Applied Cybernetics No. 1M0567, and No. MSM6840770012
Transdisciplinary Research in the Field of Biomedical Engineering II. Authors are also
indebted to professor M. Said Krayem, University of Aleppo, Aleppo, Syria for his valuable
notes and discussions about problems solved in this report..

10

References
[1]Breiman, L.: Random Forests, Machine Learning Vol. 45, No. 1, pp. 5-32. (2001)
[2] Breiman, L.: Manual On Setting Up, Using, And Understanding Random Forests V3.1,
On-line http://oz.berkeley.edu/users/breiman/Using_random_forests_V3.1.pdf (2002),
read 1 June 2010)
[3] Leo Breiman and Adele Cutler: The original Fortran code of the RandFor. On-line
http://oz.berkeley.edu/users/breiman/RandomForests/cc_home.htm (read 26.5.2010).
[4] S. M. Lucas, Algoval: Algorithm Evaluation over the Web, [online], 2008, [cited
November 23, 2008]. Available: <http://algoval.essex.ac.uk/data/vector/UCI/>.
[5] R. Paredes: CPW: Class and Prototype Weights learning, [online], 2008, [cited November
23, 2008]. Available: <http://www.dsic.upv.es/~rparedes/research/CPW/index.html>.
[6] GNU General Public License. On-line http://www.gnu.org/licenses/gpl.html (read 14 June
2010)
[7] Receiver operating characteristic. On-line http://en.wikipedia.org/wiki/Receiver_operating
_characteristic (read 14 June 2010)
[8] A. Asuncion, D.J. Newman: UCI Machine Learning Repository
[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of California,
School of Information and Computer Science. (Read 14 June 2010)
[9] Friedmann, J. H.: Flexible Metric Nearest Neighbor Classification. Technical Report 113,
Dept. of Statistics, Stanford University, 1994.
[10] Paredes. R.: Data sets corpora. [online] http://algoval.essex.ac.uk/data/vector/UCI/ (Read
14 June 2010), in fact, the primary source is S. M. Lucas, Algoval: Algorithm Evaluation over
the Web, [online]. Available: http://algoval.essex.ac.uk/data/vector/UCI/ [cited 14 June 2010]
[11] http://oz.berkeley.edu/users/breiman/RandomForests/cc_home.htm [On-line], (Read
26.5.2010)

11

6 Appendix 1 – A part of the original manual (with some corrections)
Here we give Chapters 1 till 9.3 from the original manual [2]. Some places are slightly
changed to fit better to the original RandFor program as well as to our command line
controlled program.

Manual On Setting Up, Using, And Understanding Random Forests V3.1

The V3.1 version of random forests contains some modifications
and major additions to Version 3.0. It fixes a bad bug in V3.0. It
allows the user to save the trees in the forest and run other data sets
through this forest. It also allows the user to save parameters and
comments about the run.
I apologize in advance for all bugs and would like to hear about
them. To find out how this program works, read my paper "Random
Forests" Its available on the same web page as this manual. It was
recently published in the Machine Learning. Journal
The program is written in extended Fortran 77 making use of a
number of VAX extensions. It runs on SUN workstations f77 and on
Absoft Fortran 77 (available for Windows) and on the free g77
compiler. but may have hang ups on other f77 compilers. If you
find such problems and fixes for them, please let me know.
6.1 Random forests computes

• classification and class probabilities
• intrinsic test set error computation
• principal coordinates to use as variables.
• variable importance (in a number of ways)
• proximity measures between cases
• a measure of outlyingness
• scaling displays for the data

The last three can be done for the unsupervised case i.e. no class
labels. I have used proximities to cluster data and they seem to do
a reasonable job. The new addition uses the proximities to do
metric scaling of the data. The resulting pictures of the data are
interesting and useful.
The first part of this manual contains instructions on how to set up
a run of random forests V3.1. The second part contains the notes
on the features of random forests V3.1 and how they work.

6.2 Setting Parameters
The first seven lines following the parameter statement need to be
filled in by the user.

6.2.1 Line 1 Describing The Data
mdim=number of variables
nsample0=number of cases (examples or instances) in the data
nclass=number of classes
maxcat=the largest number of values assumed by a categorical
variable in the data
ntest=the number of cases in the test set. NOTE: Put ntest=1 if
there is no test set. Putting ntest=0 may cause compiler
complaints.
labelts=0 if the test set has no class labels, 1 if the test set has class

12

labels.
iaddcl =0 labeltr=1 if the train data has class labels. If not, iaddcl=1 or 2
adds a synthetic class as described below
If their are no categorical variables in the data set maxcat=1. If
there are categorical variables, the number of categories assumed
by each categorical variable has to be specified in an integer vector
called cat, i.e. setting cat(5)=7 implies that the 5th variable is a
categorical with 7 values. If maxcat=1, the values of cat are
automatically set equal to one. If not, the user must fill in the
values of cat in the early lines of code.
For a J-class problem, random forests expects the classes to be
numbered 1,2, ...,J. For an L valued categorical, it expects the
values to be numbered 1,2, ... ,L. At present, L must be less than or
equal to 32.
A test set can have two purposes--first: to check the accuracy of RF
on a test set. The error rate given by the internal estimate will be
very close to the test set error unless the test set is drawn from a
different distribution. Second: to get predicted classes for a set of
data with unknown class labels. In both cases the test set must
have the same format as the training set. If there is no class label
for the test set, assign each case in the test set label classs #1, i.e.
put cl(n)=1, and set labelts=0. Else set labelts=1.
If the data has no class labels, addition of a synthetic class enables it
it to be treated as a two-class problem with nclass=2. Setting
iaddclass=1 forms the synthetic class by independent sampling
from each of the univariate distributions of the variables in the
original data. Setting iaddclass=2 forms the synthetic class by
independent sampling from uniforms such that each uniform has
range equal to the range of the corresponding variable.

6.2.2 Line 2 Setting up the run
jbt=number of trees to grow. Default value is originally 500. If error message „segmentation fault“
appears then use a smaller value.
This is the number of trees to be grown in the run. Don't be
stingy--random forests produces trees very rapidly, and it does not
hurt to put in a large number of trees. If you want auxiliary
information like variable importance or proximities grow
a lot of trees--say a 1000 or more. Sometimes, I run out to 5000
trees if there are many variables and I want the variables
importances to be stable.
mtry0 [corrected, zero added] = number of variables randomly selected at each node
This is the only parameter that requires some judgment to set, but
forests isn't too sensitive to its value as long as it's in the right ball
park. I have found that setting mtry0 equal to the square root of mdim
gives generally near optimum results2. My advice is to begin
with this value and try a value twice as high and half as low
monitoring the results by setting look=1 and checking the internal
test set error for a small number of trees. With many noise
variables present, mtry0 has to be set higher.
look=how often you want to check the prediction error
random forests carries along an internal estimate of the test set
error as the trees are being grown. This estimate is outputted to

2 In our command line version just this is used as the default value.

13

the screen every look trees. Setting look=10, for example, gives the
internal error output every tenth tree added. If there is a labeled
test set, it also gives the test set error. Setting look=jbt+1
eliminates the output. Do not be dismayed to see the error rates
fluttering around slightly as more trees are added. Their behavior
is analagous to the sequence of averages of the number of heads in
tossing a coin.
ipi=set priors. pi is an real-valued vector of length nclass which sets prior
probabilities for classes. ipi=0 sets these priors equal to the class
proportions. If the class proportions are very unbalanced, you may
want to put larger priors on the smaller classes. If different
weightings are desired, set ipi=1 and specify the values of the {pi(j)}
early in the code. These values are later normalized, so setting
pi(1)=1, pi(2)=2 weights a class 2 instance twice as much as a class
1 instance. The error rates reported are an unweighted count of
misclassified instances.
ndsize=minimum node size; setting this to the value k means that no node with fewer
than k cases will be split. The default that always gives good
performances is ndsize=1. In large data sets, memory requirements
will be less and speed enchanced if ndsize is set larger. Usually, this
results in only a small loss of accuracy for large data sets.

6.2.3 Line 3 Options on Variable Importance
imp=1 turns on the variable importances methods described below.
impstd=1 gives the standard imp output
impmargin=1 gives, for each case, a measure of the effect of
noising up each variable
impgraph=1 gives for each variable, a plot of the effect of
the variable on the class probabilities.
impstd=1 computes and prints the following columns to a file
i) variable number
variables importances computed as:
ii) The % rise in error over the baseline error.
iii) 100* the change in the margins averaged over all cases
iv) The proportion of cases for which the margin is decreased
minus the proportion of increases.
v) The gini increase by variable for the run
impgraph=1 computes and prints out the columns for each
variable m--
i) variable number i.e. m
ii) sorted values of x(m) from lowest to highest
iii-iii+nclass) effect of x(m) on the probabilities of class j.

6.2.4 Line 4 Options based on proximities
iprox=1 turns on the computation of the intrinsic proximity
measures between any two cases . This has to be turned on for
the following options to work.
noutlier=1 computes an outlyingness measure for all cases in the
data. If iaddcl=1 then the outlyingness measure is computed only
for the original data. The output has the columns :
i) class
ii) case number
iii) measure of outlyingness
iscale=1 computes scaling coordinates based on the proximity
matrix. If iaddcl is turned on, then the scaling is outputted only for

14

the original data. The output has the columns:
i) case number
i) true class
iii) predicted class.
iv) 0 if ii)=iii), 1 otherwise
v-v+msdim) scaling coordinates
mdimsc is the number of scaling coordinates to be extracted.
Usually 4-5 is sufficient

6.2.5 Line 5 Transform to Principal Coordinates
ipc=1 takes the x-values and computes principal coordinates from
the covariance matrix of the x's. These will be the new variables for
RF to operate on. This will not work right if some of the variables
are categorical.
mdimpc: This is the number of principal components to extract.
It has to be <=mdim.
norm=1 normaizes all of the variables to mean zero and sd one
before computing the principal components.

6.2.6 Line 6 Saving the forest
isavef=1 saves all the trees in the forest to a file named eg. A.
isavep=1 creates a file B that contains the parameters used
in the run and allows up to 500 characters of text description
about the run.
irunf=1 reads file A and runs new data down the forest.
ishowp=1 reads file B and prints it to the sccreen
The calling code and files names required (except for the name of
A) are at the end of the main program. The name for A is entered
at the beginning of the program.

6.2.7 Line 7 Output Controls
Note: user must supply file names for all output listed below
or send it to the screen.
nsumout=1 writes out summary data to the screen. This includes
errors rates and the confusion matrix
infout=1 prints the following columns to a file
i) case number
ii) 1 if predicted class differs from true class, 0 else
iii) true class label
iv) predicted class label
v) margin=true class prob. minus the max of the other class prob.
vi)-vi+nclass) class probabilities
ntestout=1 prints the follwing coumns to a file
i) case number in test set
ii) true class (true class=1 if data is unlabeled)
iii) predicted class
iv-iv+nclass) class probabilities
iproxout=1 prints to file
i) case #1 number
ii) case #2 number
iii) proximity between case #1 and case #2

6.2.8 USER WORK
The user has to construct the read-in the data code of which I have
left an example. This needs to be done after the dimensioning of

15

arrays. If maxcat >1 then the categorical values need to be filled in.
If ipi=1, the user needs to specify the relative weights of the classes.
File names need to be specified for all output. This is important
since a chilling message after a long run is "file not specified" or
something similar.

6.2.9 REMARKS
The proximities can be used in the clustering program of your
choice. Their advantage is that they are intrinsic rather than an ad
hoc measure. I have used them in some standard and home-brew
clustering programs and gotten reasonable results. The proximities
between class 1 cases in the unsupervised situation can be used to
cluster. Extracting the scaling coordinates from the proximities and
plotting scaling coordinate i versus scaling coordinate j
gives illuminating pictures of the data. Usually, i=1 and j=2 give the
most information (see the notes below).
There are four measures of variable importance: They complement
each other. Except for the 4th they are based on the test sets left out
on each tree construction. On a microarray data with 5000
variables and less than 100 cases, the different measures single out
much the same variables (see notes below). But I have found one
synthetic data set where the 3rd measure was more sensitive than
the first three.
Sometimes, finding the effective variables requires some hunting. If
the effective vzriables are clear-cut, then the first measure will find
them. But if the number of variables is large compared to the
number of cases, and if the predictive power of the individual
variables is small, the other measures can be useful.
Random forests does not overfit. You can run as many trees as you
want. Also, it is fast. Running on a 250mhz machine, the current
version using a training set with 800 cases, 8 variables, and mtry=1,
constructs each tree in .1 seconds. On a training set with 2200
cases, 11 variables, and mtry=3, each tree is constructed in .2
seconds. It takes 4 seconds per tree on a training set with 15000
cases and 16 variables with mtry=4, while also making computations
for a 5000 member test set.
The present version of random forests does not handle missing
values. A future version will. It is up to the user to decided how to
deal with these. My current preferred method is to replace each
missing value by the median of its column and each missing
categorical by the most frequent value in that categorical. My
impression is that because of the randomness and the many trees
grown, filling in missing values with a sensible values does not effect
accuracy much.
For large data sets, if proximities are not required, the major
memory requirement is the storage of the data itself, and the three
integer arrays a,at,b. If there are less than 64,000 cases, these latter
three may be declared integer*2 (non-negative). Then the total
storage requirement is about three times the size of the data set. If
proximities are calculated, storage requirements go up by the
square of the number of cases times eight bytes (double precision).

16

6.3 Outline of How Random Forests Works

6.3.1 Usual Tree Construction--Cart
Node=subset of data. The root node contains all data.
At each node, search through all variables to find
best split into two children nodes.
Split all the way down and then prune tree up to
get minimal test set error.

6.3.2 Random Forests Construction
Root node contains a bootstrap sample of data of same size as
original data. A different bootstrap sample for each tree to be
grown.
An integer K is fixed, K<<number of variables. K is the only
parameter that needs to be specified. Default is the square root of
number of variables.
At each node, K of the variables are selected at random. Only these
variables are searched through for the best split. The largest tree
possible is grown and is not pruned.
The forest consists of N trees. To classify a new object having
coordinates x, put x down each of the N trees. Each tree gives a
classification for x .
The forest chooses that classification having the most out of N
votes.
Transformation to Principal Coordinates
One of the users lent us a data set in which the use of a few
principal components as variables reduced the error rate by
2/3rds. On experimenting, a few other data sets were found where
the error rate was significantly reduced by pre-transforming to
principal coordinates As a convenience to users, a pretransformation
subroutine was incorporated into this version.

6.3.3 Random Forests Tools
The design of random forests is to give the user a good deal of
information about the data besides an accurate prediction.
Much of this information comes from using the "out-of-bag" cases
in the training set that have been left out of the bootstrapped
training set.
The information includes:
a) Test set error rate.
b) Variable importance measures
c) Intrinsic proximities between cases
d) Scaling coordinates based on the proximities
e) Outlier detection
The following explains how these work and give applications, both
for labeled and unlabeled data.

6.3.4 Test Set Error Rate
In random forests, there is no need for cross-validation or a
separate test set to get an unbiased estimate of the test set error. It
is gotten internally, during the run, as follows:
Each tree is constructed using a different bootstrap sample from
the original data. About one-third of the cases are left out of the
bootstrap sample and not used in the construction of the kth tree.
Test Set Error Rate

17

Put each case left out in the construction of the kth tree down the
kth tree to get a classification.
In this way, a test set classification is gotten for each case in about
one-third of the trees. Let the final test set classification of the
forest be the class having the most votes.
Comparing this classification with the class label present in the data
gives an estimate of the test set error.

6.3.5 Class probability estimates
At run's end, for each case, the proportion of votes for each class is
recorded. For each member of a test set (with or without class
labels), these proportions are also computed. By a stretch of
terminology , we call these class probability estimates. These should
not be interpreted as the underlying distributional probabilities. But
they contain useful information about the case.
The margin of a case is the proportion of votes for the true class
minus the maximum proportion of votes for the other classes. The
size of the margin gives a measure of how confident the
classification is.

6.3.6 Variable Importance
Because of the need to know which variables are important in the
classification, random forests has four different ways of looking at
variable importance. Sometimes influential variables are hard to
spot--using these four measures provides more information.
Measure 1
To estimated the importance of the mth variable. In the left out
cases for the kth tree, randomly permute all values of the mth
variable Put these new covariate values down the tree and get
classifications.
Proceed as though computing a new internal error rate. The amount
by which this new error exceeds the original test set error is defined
as the importance of the mth variable.
Measures 2 and 3
For the nth case in the data, its margin at the end of a run is the
proportion of votes for its true class minus the maximum of the
proportion of votes for each of the other classes. The 2nd measure
of importance of the mth variable is the average lowering of the
margin across all cases when the mth variable is randomly permuted
as in method 1.
The third measure is the count of how many margins are lowered
minus the number of margins raised.
Measure 4
The splitting criterion used in RF is the gini criterion--also used in
CART. At every split one of the mtry variables is used to form the
split and there is a resulting decrease in the gini. The sum of all
decreases in the forest due to a given variable, normalized by the
number of trees, froms measure 4.
We illustrate the use of this information by some examples. Some of
these were done on version 1 so may differ somewhat from the
version 3 output.
[The remaining part with examples is omitted here.]

18

7 Appendix 2 – The progran listing with comments (shortened)

 program rf5new
! MODIFIED by MJ&MJ,jr, marcel@cs.cas.cz
! May, June 2010. Important changes when transfered into Fortran 90
! made inside can be found by searching for '2010'.
! Suitable for numerical data and class labels as strings.
! Classes need not be numbered 1,2,...nclass (=NoOfClasses).
! Representation of the class labels as strings, integers or reals
! is admissible.
!
! [My file numbers are 33 for register.txt and 34 for reading train
! and test data files in the "main2".]
!
! ORIGINAL
! Copyright 2002-2003 Leo Breiman and Adele Cutler
! This is free open source software but its use,in part or
! in whole,in any commercial product that is sold for profit
! is prohibited without the written consent of Leo Breiman
! and Adele Cutler.
! We very much appreciate bug notices and suggested improvements.
! leo@stat.berkeley.edu adele@math.usu.edu
! SET ALL PARAMETERS FIRST GROUP BELOW. GENERALLY,
! SETTING PARAMETERS TO ZERO TURNS THE CORRESPONDING
! OPTION OFF.
! ALL RELEVANT OUTPUT FILES MUST BE GIVEN NAMES--SEE BELOW.
!
! WORKING VARIABLES DECLARATIONS
 character msg1*39, msg2*39, txt*39,ParName*39,parstr*39,pb*39,chr
 character*25 stri(100),stri1,stri2 !27.5.2010
 real xx
! ATTRIBUTES DECLARATIONS
 character*255 datatrain, datatest
 integer mdim,ntrain,nclass,maxcat,ntest,&
 labelts,labeltr,mtry0,ndsize,jbt,look,lookcls,&
 jclasswt,mdim2nd,mselect,imp,interact,impn,&
 nprox,nrnn,noutlier,nscale,nprot,missfill,iviz,&
 isaverf,isavepar,isavefill,isaveprox,&
 irunrf,ireadpar,ireadfill,ireadprox,&
 isumout,idataout,impfastout,impout,impnout,interout,&
 iprotout,iproxout,iscaleout,ioutlierout
 integer nsample,nrnodes,mimp,near,&
 ifprot,ifscale,iftest,mdim0,ntest0,nprot0,nscale0,&
 ROC
!
 integer Sizereal, Sizeint, Sizedouble
 real, DIMENSION(:), ALLOCATABLE::aa !!! 11.6.2010
 integer, DIMENSION(:), ALLOCATABLE:: im
 REAL(8), DIMENSION(:), ALLOCATABLE::dd
!
! ===
! print help: <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 if (iargc().LT.3) then
! TEXTS
 write(*,*)
 write(*,*)'RandomForest modified by MJ during May and June 2010'
 write(*,*)' Fortran 90 version with dynamic memory allocation.'
 write(*,*)' Free under GNU General Public License.'
 write(*,*)' When published please cite as:'
 write(*,*)' -Breiman,L.: Random Forests, Machine Learning Vol. 45, No. 1, pp.

5-32.(2001)'
 write(*,*)' -Jirina,M., Jirina, M., jr.: Testing Random Forest for Unix and

Windows.'

19

 write(*,*)' Technical Report No. V-1075, Institue of Informatics AS CR,
Prague,'
 write(*,*)' Czech Republic (2010).'
 write(*,*)
 msg1='Usage: prog.exe datatrain datatest mdim '
 msg2=' [named parameters]'
 write(*,*)msg1,msg2
 msg1='DESCRIBE DATA (with optional defaults)'
 write(*,*)msg1
 msg1='Data files: numeric with class labels a'
 msg2='s integers, reals, or strings.'
 write(*,*)msg1,msg2
 msg1='datatrain: training data file name'
 write(*,*)msg1
 msg1='datatest: testing data file name'
 write(*,*)msg1
 msg1='mdim: task dimensionality (number of v'
 msg2='ariables)]'
 write(*,*)msg1,msg2
 msg1='Named parameters: Form: Parname=Parvalu'
 msg2='e.'
 write(*,*)msg1,msg2
 msg1='[ntrain: number of samples (cases) in t'
 msg2='he training data - NOT NECESSARY NOW!] '
 write(*,*)msg1,msg2
 msg1='[nclass: number of classes - NOT NECESS'
 msg2='ARY NOW!]'
 write(*,*)msg1,msg2
 msg1='[ntest: the number of samples (cases) i'
 msg2='n the test set. NOTE: Put ntest=1 if '
 write(*,*)msg1,msg2
 msg1=' there is no test set. Putting ntest=0'
 msg2=' may cause compiler complaints.'
 write(*,*)msg1,msg2
 msg1=' - NOT NECESSARY NOW if data test file'
 msg2=' exists!]'
 write(*,*)msg1,msg2
 msg1='maxcat: the largest number of values as'
 msg2='sumed by a categorical variable in data'
 write(*,*)msg1,msg2
 msg1='labeltr=1 if the data has class labels.'
 msg2=' If not, =1 or 2 adds a synthetic class'
 write(*,*)msg1,msg2
 msg1='labelts=0 if the test set has no class '
 msg2='labels, 1 if the test set has cl.labels'
 write(*,*)msg1,msg2
 write(*,*)
!
 msg1='SET RUN PARAMETERS'
 write(*,*)msg1
! 123567801234567890123456789012345678901
 msg1='mtry0=number of variables randomly sele'
 msg2='cted at each node'
 write(*,*)msg1,msg2
 msg1=' Default=int(sqrt(float(mdim))+0.5), (o'
 msg2='riginally 2 later on 5). Needs tuning!'
 write(*,*)msg1,msg2
 msg1=' Begin with this value and try a value '
 msg2='twice as high and half as low. See manu'
 write(*,*)msg1,msg2
 msg1='ndsize=1=minimum node size'
 write(*,*)msg1
 msg1='jbt=500=number of trees to grow'
 write(*,*)msg1
 msg1='look=100=how often you want to check th'
 msg2='e prediction error'
 write(*,*)msg1,msg2
 msg1='lookcls=1=show on the screen or not'

20

 write(*,*)msg1
 msg1='jclasswt=0'
 write(*,*)msg1
 msg1='mdim2nd=0'
 write(*,*)msg1
 msg1='mselect=0'
 write(*,*)msg1
 write(*,*)
!
 msg1='OUTPUT CONTROLS; all defaults zero:'
 write(*,*)msg1
 msg1='ROC=1 to get data for ROC curve i.e. ou'
 msg2='tputs for each test sample else 0. (fil'
 write(*,*)msg1,msg2,'e roc.txt; default 0.'
 msg1='isumout = 0/1 1=summary to screen. In'
 msg2='cludes err rates & confusion matrix'
 write(*,*)msg1,msg2
 msg1='idataout = 0/1/2 1=train,2=adds test'
 msg2='(7)'
 write(*,*)msg1,msg2
 msg1='impfastout = 0/1 1=gini fastimp(8)'
 write(*,*)msg1
 msg1='impout = 0/1/2 1=imp,2=to screen(9)'
 write(*,*)msg1
 msg1='impnout = 0/1 1=impn (10)'
 write(*,*)msg1
 msg1='interout=0/1/2 1=interaction,2=screen'
 msg2='(11)'
 write(*,*)msg1,msg2
 msg1='iprotout=0/1/2 1=prototypes,2=screen'
 msg2='(12)'
 write(*,*)msg1,msg2
 msg1='iproxout=0/1/2 1=prox,2=adds test(13)'
 write(*,*)msg1
 msg1='iscaleout = 0/1 1=scaling coors(14)'
 write(*,*)msg1
 msg1='ioutlierout=0/1/2 1=train,2=adds test'
 msg2='(15)'
 write(*,*)msg1,msg2
 write(*,*)
!
 msg1='NAME OUTPUT FILES FOR SAVING THE FOREST'
 msg2=' STRUCTURE'
 write(*,*)msg1,msg2
 msg1='isaverf=1 savedforest'
 write(*,*)msg1
 msg1='isavepar=1 savedparams'
 write(*,*)msg1
 msg1='isavefill=1 savedmissfill'
 write(*,*)msg1
 msg1='isaveprox=1 savedprox'
 write(*,*)msg1
 write(*,*)
 msg1='NAME OUTPUT FILES TO SAVE DATA FROM CUR'
 msg2='RENT RUN'
 write(*,*)msg1,msg2
!
 msg1='idataout=1 save-data-from-run'
 write(*,*)msg1
 msg1='impfastout=1 save-impfast'
 write(*,*)msg1
 msg1='impout=1 save-importance-data'
 write(*,*)msg1
 msg1='impnout=1 save-caseimp-data'
 write(*,*)msg1
 msg1='interout=1 save-pairwise-effects'
 write(*,*)msg1
 msg1='iprotout=1 save-protos'

21

 write(*,*)msg1
 msg1='iproxout>=1 save-run-proximities'
 write(*,*)msg1
 msg1='iscaleout=1 save-scale'
 write(*,*)msg1
 msg1='ioutlierout>=1 save-outliers'
 write(*,*)msg1
 msg1='iviz=1 the graphics program is to be us'
 msg2='ed.'
 write(*,*)msg1,msg2
 write(*,*)

 stop
 endif
!
! DEFAULTS of fixed parameters: <<<<<<<<<<<<<<<<<<<
! datatrain='data.train'
! datatest='data.test'
! mdim=9
!
! evaluate fixed parameters:
 call getarg(1, datatrain)
 call getarg(2, datatest)
 call getarg(3, txt)
 read(txt, '(I10)') mdim
!
! ==
! DEFAULTS: <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
! ntrain=169
! nclass=6
 maxcat=1
 ntest=-45
 labeltr=1
 labelts=1
! ELIMINATE SOME OF "DEFAULTS" 28 May 2010
! write(*,*)'task dimension is ',mdim
! ntrain=169 testing end of file: <<<<<<<<<<<<<<<<<<<<
! nclass=6 and setting the number of classes
 open(34,file=datatrain,status='old')

 do n=1,100
 stri(n)=' '
 enddo
 stri2=' '
 nclass=0
 do n=1,10000
 read(34,*,END=11) (xx,m=1,mdim),stri1
! write(*,*)'stri1=',stri1(1:1),'=xx'
 do j=1,25
 chr=stri1(j:j)
! write(*,*)'chr=',chr,'=='
 read(chr,'(I1)',ERR=6)i !o to i tu vubec nejde, obvykle nula
 enddo
 6 if(j.EQ.1) then ! 9.6.2010
 j=2
 endif
 stri2=stri1(1:j-1)
! write(*,*)'j=',j,'x',stri2,'y'
 do i=1,100
! write(*,*)'i=',i,'x',stri2,'y',stri(i),'z'
 if(stri2.EQ.stri(i))then
! write(*,*)j,'then','y',i
 goto 10
 else
 if(i.GT.nclass)then!new class is added
 nclass=nclass+1
 stri(nclass)=stri2
! write(*,*)j,'else','y',nclass

22

 goto 10
 endif
 endif
 enddo
 10 continue
 enddo
 close(34)
 11 continue
 ntrain=n-1
 LLL=mylen(datatrain)
 KKK=mylen(datatest)
 write(*,*)'Learn:',datatrain(1:LLL),' test:',datatest(1:KKK)
 msg1='No. of rows of the lrn file, no.of lab:'
 write(*,*)msg1, ntrain, nclass

! ntest=45 testing end of file: <<<<<<<<<<<<<<<<<<<<<<
 open(34,file=datatest,status='old')
 do i=1,1000000
 read(34,*,END=20) (stri(j),j=1,mdim)
 enddo
 20 close(34)
 ntest=i-1
 msg1='No. of rows of the tst file is:'
 write(*,*)msg1, ntest
!
!
!
!
! ---
! OUTPUT CONTROLS
!cc parameter(
 isumout = 1!0/1 1=summary to screen
 idataout= 0!0/1/2 1=train,2=adds test(7)
 impfastout= 0!0/1 1=gini fastimp (8)
 impout= 0!0/1/2 1=imp,2=to screen(9)
 impnout= 0!0/1 1=impn (10)
 interout= 0!0/1/2 1=interaction,2=screen(11)
 iprotout= 0!0/1/2 1=prototypes,2=screen(12)
 iproxout= 0!0/1/2 1=prox,2=adds test(13)
 iscaleout= 0!0/1 1=scaling coors (14)
 ioutlierout= 0!0/1/2 1=train,2=adds test (15)
!
! ---
! CONTROL PARAMETERS
!
!cc parameter(
! SET RUN PARAMETERS
 ROC=0
 mtry0=int(sqrt(float(mdim))+0.5) !2 later on 5
! write(*,*)'mtry0=',mtry0
 ndsize=1
 jbt=500
 look=100
 lookcls=0
 jclasswt=0
 mdim2nd=0
 mselect=0
! jbt=number of trees to grow
! mtry=number of variables randomly selected at each node
! look=how often you want to check the prediction error
! ndsize=minimum node sizec
!
! SET IMPORTANCE OPTIONS
 imp=1
 interact=0
 impn=1
!

23

! SET PROXIMITY COMPUTATIONS
 nprox=1
 nrnn=ntrain
!
! SET OPTIONS BASED ON PROXIMITIES
 noutlier=0
 nscale=0
 nprot=0
!
! REPLACE MISSING VALUES
 code=-999
 missfill=0
!
! GRAPHICS
 iviz=0
!
! SAVING A FOREST
 isaverf=0
 isavepar=0
 isavefill=0
 isaveprox=0
!
! RUNNING A SAVED FOREST
 irunrf=0
 ireadpar=0 !to read parameters, see line 1463 (starts with '888')
 ireadfill=0
 ireadprox=0
!
!
! ==
! evaluate named parameters <<<<<<<<<<<<<<<<<<<<<<<<<<
 do i=4,iargc()
 call getarg(i, txt)
 j=len(txt)-1
 do while (txt(j:j) .ne. '=')
 j = j - 1
 enddo
 if (j.GT.0) then
 ParName=txt(1:j-1)
 k=1
 do while (txt(k:k) .ne. ' ')
 k = k + 1
 enddo
 parstr=txt(j+1:k-1)
 pb='ntrain'
 if(ParName.eq.pb) read(parstr, '(I10)') ntrain
 pb='nclass'
 if(ParName.eq.pb) read(parstr, '(I10)') nclass
 pb='maxcat'
 if(ParName.eq.pb) read(parstr, '(I10)') maxcat
 pb='ntest'
 if(ParName.eq.pb) read(parstr, '(I10)') ntest
 pb='labeltr'
 if(ParName.eq.pb) read(parstr, '(I10)') labeltr
 pb='labelts'
 if(ParName.eq.pb) read(parstr, '(I10)') labelts
 pb='mtry0'
 if(ParName.eq.pb) read(parstr, '(I10)') mtry0
!
 pb='lookcls'
 if(ParName.eq.pb) read(parstr, '(I10)') lookcls
 pb='isumout'
 if(ParName.eq.pb) read(parstr, '(I10)') isumout
 pb='idataout'
 if(ParName.eq.pb) read(parstr, '(I10)') idataout
 pb='impfastout'
 if(ParName.eq.pb) read(parstr, '(I10)') impfastout
 pb='impout'

24

 if(ParName.eq.pb) read(parstr, '(I10)') impout
 pb='impnout'
 if(ParName.eq.pb) read(parstr, '(I10)') impnout
 pb='interout'
 if(ParName.eq.pb) read(parstr, '(I10)') interout
 pb='iprotout'
 if(ParName.eq.pb) read(parstr, '(I10)') iprotout
 pb='iproxout'
 if(ParName.eq.pb) read(parstr, '(I10)') iproxout
 pb='iscaleout'
 if(ParName.eq.pb) read(parstr, '(I10)') iscaleout
 pb='ioutlierout'
 if(ParName.eq.pb) read(parstr, '(I10)') ioutlierout
!
 pb='isaverf'
 if(ParName.eq.pb) read(parstr, '(I10)') isaverf
 pb='isavepar'
 if(ParName.eq.pb) read(parstr, '(I10)') isavepar
 pb='isavefill'
 if(ParName.eq.pb) read(parstr, '(I10)') isavefill
 pb='isaveprox'
 if(ParName.eq.pb) read(parstr, '(I10)') isaveprox
!
 pb='idataout'
 if(ParName.eq.pb) read(parstr, '(I10)') idataout
 pb='impfastout'
 if(ParName.eq.pb) read(parstr, '(I10)') impfastout
 pb='impout'
 if(ParName.eq.pb) read(parstr, '(I10)') impout
 pb='impnout'
 if(ParName.eq.pb) read(parstr, '(I10)') impnout
 pb='interout'
 if(ParName.eq.pb) read(parstr, '(I10)') interout
 pb='iprotout'
 if(ParName.eq.pb) read(parstr, '(I10)') iprotout
!
 pb='iproxout'
 if(ParName.eq.pb) read(parstr, '(I10)') iproxout
 pb='iscaleout'
 if(ParName.eq.pb) read(parstr, '(I10)') iscaleout
 pb='ioutlierout'
 if(ParName.eq.pb) read(parstr, '(I10)') ioutlierout
 pb='iviz'
 if(ParName.eq.pb) read(parstr, '(I10)') iviz
 pb='jbt'
 if(ParName.eq.pb) read(parstr, '(I10)') jbt
 pb='ROC'
 if(ParName.eq.pb) read(parstr, '(I10)') ROC
!
 endif
 enddo
! msg1=datatrain
! msg2=datatest
! write(*,*)msg1,msg2
! write(*,*)nclass
! write(*,*)
! ==
!
!

! ---
! DERIVED PARAMETERS (DO NOT CHANGE)
!
!cc parameter(
 nsample=(2-labeltr)*ntrain
 nrnodes=2*nsample+1
 mimp=imp*(mdim-1)+1
 ifprot=nprot/(nprot-.1)

25

 ifscale=nscale/(nscale-.1)
 iftest=ntest/(ntest-.1)
 nprot0=(1-ifprot)+nprot
 nscale0=(1-ifscale)+nscale
 ntest0=(1-iftest)+ntest
 mdim0=interact*(mdim-1)+1
 near=nprox*(nsample-1)+1
!
! ===
! ********* ARRAYS FOR THE MAIN2 SUBROUTINE ***********
! ===
!
! compute beginnings of REAL arrays
 IIx=1
 IIxts=IIx+mdim*nsample
 IIv5=IIxts+mdim*ntest0
 IIv95=IIv5+mdim
 IItgini=IIv95+mdim
 IIzt=IItgini+mdim
 IIavgini=IIzt+mdim
 IIvotes=IIavgini+mdim
 IIeffect=IIvotes+mdim0*jbt
 IIteffect=IIeffect+mdim0*mdim0
 IIhist=IIteffect+mdim0*mdim0
 IIg=IIhist+(1+mdim0)*mdim0
 IIfill=IIg+mdim0
 IIrinpop=IIfill+mdim
 IIdgini=IIrinpop+near*jbt
 IIxbestsplit=IIdgini+nrnodes
 IItnodewt=IIxbestsplit+nrnodes
 IItw=IItnodewt+nrnodes
 IItn=IItw+nrnodes
 IIv=IItn+nrnodes
 IIwin=IIv+nsample
 IItemp=IIwin+nsample
 IIq=IItemp+nrnn
 IIdevout=IIq+nclass*nsample
 IIclasswt=IIdevout+nclass
 IIwr=IIclasswt+nclass
 IItmissts=IIwr+nclass
 IItmiss=IItmissts+nclass
 IItclasspop=IItmiss+nclass
 IIwl=IItclasspop+nclass
 IIrmedout=IIwl+nclass
 IItclasscat=IIrmedout+nclass
 IIqts=IItclasscat+nclass*maxcat
 IIclasspop=IIqts+nclass*ntest0
 IIsignif=IIclasspop+nclass*nrnodes
 IIzscore=IIsignif+mimp
 IIsqsd=IIzscore+mimp
 IIavimp=IIsqsd+mimp
 IIqimp=IIavimp+mimp
 IIqimpm=IIqimp+nsample
 IItout=IIqimpm+nsample*mimp
 IIouttr=IItout+near
 IIxc=IIouttr+near
 IIdn=IIxc+maxcat
 IIcp=IIdn+maxcat
 IIcm=IIcp+maxcat
 IIvotecat=IIcm+maxcat
 IIfreq=IIvotecat+maxcat
 IIwc=IIfreq+maxcat
 IIoutts=IIwc+nsample
 IIpopclass=IIoutts+ntest0
 IIprotlow=IIpopclass+nprot0*nclass
 IIprot=IIprotlow+mdim*nprot0*nclass
 IIprothigh=IIprot+mdim*nprot0*nclass
 IIprotfreq=IIprothigh+mdim*nprot0*nclass

26

 IIrpop=IIprotfreq+mdim*nprot0*nclass*maxcat
 IIprotv=IIrpop+nrnodes
 IIwtx=IIprotv+mdim*nprot0*nclass
 IIprotvlow=IIwtx+nsample
 IIprotvhigh=IIprotvlow+mdim*nprot0*nclass
 Sizereal=IIprotvhigh+mdim*nprot0*nclass
!
! compute beginnings of INTEGER arrays
 IIcat=1
 IIiv=IIcat+mdim
 IImsm=IIiv+mdim
 IImuse=IImsm+mdim
 IIirnk=IImuse+mdim
 IImissing=IIirnk+mdim*jbt
 IIa=IImissing+mdim*near
 IIasave=IIa+mdim*nsample
 IIb=IIasave+mdim*nsample
 IIcl=IIb+mdim*nsample
 IIout=IIcl+nsample
 IInodextr=IIout+nsample
 IInodexvr=IInodextr+nsample
 IIjin=IInodexvr+nsample
 IIjoob=IIjin+nsample
 IIpjoob=IIjoob+nsample
 IIndbegin=IIpjoob+nsample
 IIjvr=IIndbegin+near*jbt
 IIjtr=IIjvr+nsample
 IIjest=IIjtr+nsample
 IIibest=IIjest+nsample
 IIisort=IIibest+nrnn
 IIloz=IIisort+nsample
 IIta=IIloz+near*nrnn
 IIncase=IIta+nsample
 IIidmove=IIncase+nsample
 IIkpop=IIidmove+nsample
 IIjests=IIkpop+nrnodes
 IIjts=IIjests+ntest0
 IIiwork=IIjts+ntest0
 IInodexts=IIiwork+near
 IIclts=IInodexts+ntest0
 IIimax=IIclts+ntest0
 IIjinb=IIimax+ntest0
 IIbestsplitnext=IIjinb+near*jbt
 IIbestvar=IIbestsplitnext+nrnodes
 IIbestsplit=IIbestvar+nrnodes
 IInodestatus=IIbestsplit+nrnodes
 IInodepop=IInodestatus+nrnodes
 IInodestart=IInodepop+nrnodes
 IInodeclass=IInodestart+nrnodes
 IIparent=IInodeclass+nrnodes
 IItreemap=IIparent+nrnodes
 IIncts=IItreemap+2*nrnodes
 IInc=IIncts+nclass
 IImtab=IInc+nclass
 IIncn=IImtab+nclass*nclass
 IIits=IIncn+near
 IIjpur=IIits+nsample
 IInpend=IIjpur+nrnn
 IIinear=IInpend+nclass
 IInrcat=IIinear+nrnn
 IIkcat=IInrcat+maxcat
 IIncatsplit=IIkcat+maxcat
 IInbestcat=IIncatsplit+maxcat
 IIncp=IInbestcat+maxcat*nrnodes
 IInodexb=IIncp+near
 IInpcase=IInodexb+near*jbt
 IIncount=IInpcase+near*jbt
 IInod=IIncount+near*jbt

27

 Sizeint=IInod+nrnodes
!
! compute beginnings of double precision arrays
 KKprox=1
 KKy=KKprox+near*nrnn
 KKu=KKy+near
 KKdl=KKu+near
 KKxsc=KKdl+nscale0
 KKred=KKxsc+near*nscale0
 KKee=KKred+near
 KKev=KKee+near
 KKppr=KKev+near*nscale0
 Sizedouble=KKppr+near
! test the total length
!
 write(*,*)'Sizereal=',Sizereal,' Sizeint=',Sizeint,&
 ' Sizedouble=',Sizedouble
!!! 11.6.2010
ALLOCATE (aa(Sizereal)) ! Allocate heap space.
ALLOCATE (im(Sizeint)) ! Allocate heap space.
ALLOCATE (dd(Sizedouble)) ! Allocate heap space.
! ---
!
! ===
! *************** CALLING MAIN2 SUBROUTINE ****************
! ===
!
 call main2(datatrain, datatest,&
 mdim,ntrain,nclass,maxcat,ntest,&
 labelts,labeltr,mtry0,ndsize,jbt,look,lookcls,&
 jclasswt,mdim2nd,mselect,imp,interact,impn,&
 nprox,nrnn,noutlier,nscale,nprot,missfill,iviz,&
 isaverf,isavepar,isavefill,isaveprox,&
 irunrf,ireadpar,ireadfill,ireadprox,&
 isumout,idataout,impfastout,impout,impnout,interout,&
 iprotout,iproxout,iscaleout,ioutlierout,&
 nsample,nrnodes,mimp,near,&
 ifprot,ifscale,iftest,mdim0,ntest0,nprot0,nscale0,&
! My control:
 ROC,&
! REAL arrays
 aa(IIx),&
 aa(IIxts),&
 aa(IIv5),&
 aa(IIv95),&
 aa(IItgini),&
 aa(IIzt),&
 aa(IIavgini),&
 aa(IIvotes),&
 aa(IIeffect),&
 aa(IIteffect),&
 aa(IIhist),&
 aa(IIg),&
 aa(IIfill),&
 aa(IIrinpop),&
 aa(IIdgini),&
 aa(IIxbestsplit),&
 aa(IItnodewt),&
 aa(IItw),&
 aa(IItn),&
 aa(IIv),&
 aa(IIwin),&
 aa(IItemp),&
 aa(IIq),&
 aa(IIdevout),&
 aa(IIclasswt),&
 aa(IIwr),&
 aa(IItmissts),&

28

 aa(IItmiss),&
 aa(IItclasspop),&
 aa(IIwl),&
 aa(IIrmedout),&
 aa(IItclasscat),&
 aa(IIqts),&
 aa(IIclasspop),&
 aa(IIsignif),&
 aa(IIzscore),&
 aa(IIsqsd),&
 aa(IIavimp),&
 aa(IIqimp),&
 aa(IIqimpm),&
 aa(IItout),&
 aa(IIouttr),&
 aa(IIxc),&
 aa(IIdn),&
 aa(IIcp),&
 aa(IIcm),&
 aa(IIvotecat),&
 aa(IIfreq),&
 aa(IIwc),&
 aa(IIoutts),&
 aa(IIpopclass),&
 aa(IIprotlow),&
 aa(IIprot),&
 aa(IIprothigh),&
 aa(IIprotfreq),&
 aa(IIrpop),&
 aa(IIprotv),&
 aa(IIwtx),&
 aa(IIprotvlow),&
 aa(IIprotvhigh),&
!
! INTEGER arrays
 im(IIcat),&
 im(IIiv),&
 im(IImsm),&
 im(IImuse),&
 im(IIirnk),&
 im(IImissing),&
 im(IIa),&
 im(IIasave),&
 im(IIb),&
 im(IIcl),&
 im(IIout),&
 im(IInodextr),&
 im(IInodexvr),&
 im(IIjin),&
 im(IIjoob),&
 im(IIpjoob),&
 im(IIndbegin),&
 im(IIjvr),&
 im(IIjtr),&
 im(IIjest),&
 im(IIibest),&
 im(IIisort),&
 im(IIloz),&
 im(IIta),&
 im(IIncase),&
 im(IIidmove),&
 im(IIkpop),&
 im(IIjests),&
 im(IIjts),&
 im(IIiwork),&
 im(IInodexts),&
 im(IIclts),&
 im(IIimax),&

29

 im(IIjinb),&
 im(IIbestsplitnext),&
 im(IIbestvar),&
 im(IIbestsplit),&
 im(IInodestatus),&
 im(IInodepop),&
 im(IInodestart),&
 im(IInodeclass),&
 im(IIparent),&
 im(IItreemap),&
 im(IIncts),&
 im(IInc),&
 im(IImtab),&
 im(IIncn),&
 im(IIits),&
 im(IIjpur),&
 im(IInpend),&
 im(IIinear),&
 im(IInrcat),&
 im(IIkcat),&
 im(IIncatsplit),&
 im(IInbestcat),&
 im(IIncp),&
 im(IInodexb),&
 im(IInpcase),&
 im(IIncount),&
 im(IInod),&
!
!!! DOUBLE precision arrays
 dd(KKprox),&
 dd(KKy),&
 dd(KKu),&
 dd(KKdl),&
 dd(KKxsc),&
 dd(KKred),&
 dd(KKee),&
 dd(KKev),&
 dd(KKppr)&
)
!
 return
 end ! OF THE MAIN
!
!
!
!
!
!
! ===
! ******* MAIN REWRITTEN AS A SUBROUTINE MAIN2 *********
! ===
!
 subroutine main2(datatrain, datatest,&
 mdim,ntrain,nclass,maxcat,ntest,&
 labelts,labeltr,mtry0,ndsize,jbt,look,lookcls,&
 jclasswt,mdim2nd,mselect,imp,interact,impn,&
 nprox,nrnn,noutlier,nscale,nprot,missfill,iviz,&
 isaverf,isavepar,isavefill,isaveprox,&
 irunrf,ireadpar,ireadfill,ireadprox,&
 isumout,idataout,impfastout,impout,impnout,interout,&
 iprotout,iproxout,iscaleout,ioutlierout,&
 nsample,nrnodes,mimp,near,&
 ifprot,ifscale,iftest,mdim0,ntest0,nprot0,nscale0,&
! my control:
 ROC,&
! real arrays
 x,xts,v5,v95,tgini,zt,avgini,&
 votes,effect,teffect,hist,g,fill,rinpop,&

30

 dgini,xbestsplit,tnodewt,&
 tw,tn,v,win,temp,q,devout,classwt,wr,&
 tmissts,tmiss,tclasspop,wl,rmedout,tclasscat,qts,&
 classpop,signif,zscore,sqsd,avimp,qimp,qimpm,tout,&
 outtr,xc,dn,cp,cm,votecat,freq,wc,outts,&
 popclass,protlow,prot,prothigh,protfreq,rpop,&
 protv,wtx,protvlow,protvhigh,&
! integer arrays
 cat,iv,msm,&
 muse,irnk,missing,a,&
 asave,b,&
 cl,out,nodextr,nodexvr,&
 jin,joob,pjoob,ndbegin,&
 jvr,jtr,jest,ibest,&
 isort,loz,&
 ta,ncase,idmove,kpop,&
 jests,jts,iwork,&
 nodexts,clts,imax,jinb,&
 bestsplitnext,bestvar,bestsplit,&
 nodestatus,nodepop,nodestart,&
 nodeclass,parent,treemap,&
 ncts,nc,mtab,ncn,&
 its,jpur,npend,inear,&
 nrcat,kcat,ncatsplit,&
 nbestcat,ncp,nodexb,&
 npcase,ncount,nod,&
! DOUBLE precision arrays
 prox,&
 y,&
 u,&
 dl,&
 xsc,&
 red,&
 ee,&
 ev,&
 ppr&
)
!
 character*255 datatrain, datatest
!
 integer mdim,ntrain,nclass,maxcat,ntest,&
 labelts,labeltr,mtry0,ndsize,jbt,look,lookcls,&
 jclasswt,mdim2nd,mselect,imp,interact,impn,&
 nprox,nrnn,noutlier,nscale,nprot,missfill,iviz,&
 isaverf,isavepar,isavefill,isaveprox,&
 irunrf,ireadpar,ireadfill,ireadprox,&
 isumout,idataout,impfastout,impout,impnout,interout,&
 iprotout,iproxout,iscaleout,ioutlierout,&
 nsample,nrnodes,mimp,near,&
 ifprot,ifscale,iftest,mdim0,ntest0,nprot0,nscale0,&
 ROC
!
 character*25 stri(100),stri1,stri2 !27.5.2010
 character chr
 real code,xx

! ---
! DIMENSIONING OF ARRAYS
!
 real x(mdim,nsample),xts(mdim,ntest0),v5(mdim),v95(mdim),&
 tgini(mdim),zt(mdim),avgini(mdim),&
 votes(mdim0,jbt),effect(mdim0,mdim0),teffect(mdim0,mdim0),&
 hist(0:mdim0,mdim0),g(mdim0),fill(mdim),rinpop(near,jbt),&
 dgini(nrnodes),xbestsplit(nrnodes),tnodewt(nrnodes),&
 tw(nrnodes),tn(nrnodes),v(nsample),win(nsample),temp(nrnn),&
 q(nclass,nsample),devout(nclass),classwt(nclass),wr(nclass),&
 tmissts(nclass),tmiss(nclass),tclasspop(nclass),wl(nclass),&
 rmedout(nclass),tclasscat(nclass,maxcat),qts(nclass,ntest0),&

31

 classpop(nclass,nrnodes),signif(mimp),zscore(mimp),sqsd(mimp),&
 avimp(mimp),qimp(nsample),qimpm(nsample,mimp),tout(near),&
 outtr(near),xc(maxcat),dn(maxcat),cp(maxcat),cm(maxcat),&
 votecat(maxcat),freq(maxcat),wc(nsample),outts(ntest0),&
 popclass(nprot0,nclass),protlow(mdim,nprot0,nclass),&
 prot(mdim,nprot0,nclass),prothigh(mdim,nprot0,nclass),&
 protfreq(mdim,nprot0,nclass,maxcat),rpop(nrnodes),&
 protv(mdim,nprot0,nclass),wtx(nsample),&
 protvlow(mdim,nprot0,nclass),protvhigh(mdim,nprot0,nclass)

 integer cat(mdim),iv(mdim),msm(mdim),&
 muse(mdim),irnk(mdim,jbt),missing(mdim,near),a(mdim,nsample),&
 asave(mdim,nsample),b(mdim,nsample),&
 cl(nsample),out(nsample),nodextr(nsample),nodexvr(nsample),&
 jin(nsample),joob(nsample),pjoob(nsample),ndbegin(near,jbt),&
 jvr(nsample),jtr(nsample),jest(nsample),ibest(nrnn),&
 isort(nsample),loz(near,nrnn),&
 ta(nsample),ncase(nsample),idmove(nsample),kpop(nrnodes),&
 jests(ntest0),jts(ntest0),iwork(near),&
 nodexts(ntest0),clts(ntest0),imax(ntest0),jinb(near,jbt),&
 bestsplitnext(nrnodes),bestvar(nrnodes),bestsplit(nrnodes),&
 nodestatus(nrnodes),nodepop(nrnodes),nodestart(nrnodes),&
 nodeclass(nrnodes),parent(nrnodes),treemap(2,nrnodes),&
 ncts(nclass),nc(nclass),mtab(nclass,nclass),ncn(near),&
 its(nsample),jpur(nrnn),npend(nclass),inear(nrnn),&
 nrcat(maxcat),kcat(maxcat),ncatsplit(maxcat),&
 nbestcat(maxcat,nrnodes),ncp(near),nodexb(near,jbt),&
 npcase(near,jbt),ncount(near,jbt),nod(nrnodes),nmfmax,&
 ncsplit,ncmax,nmissfill,ndimreps,nmf,nmd,iseed
!
! ---
! USED IN PROXIMITY AND SCALING
!
 double precision prox(near,nrnn),y(near),u(near),&
 dl(nscale0),xsc(near,nscale0),red(near),ee(near),&
 ev(near,nscale0),ppr(near)
!
 character*500 text
!
! ---
! SCALAR DECLARATIONS
!
 real errtr,errts,tavg,er,randomu
!
 integer mtry,n,m,mdimt,k,j,i,m1,jb,nuse,ndbigtree,jj,mr,&
 n0,n1,n2,n3,n4,n5,n6,n7
!
! write(*,*)'after arrays declaration'
!
! ---
! READ OLD TREE STRUCTURE AND/OR PARAMETERS
!
[The original continues. The modified procedure for reading data follows:]
! ---
! write(*,*)' READ IN DATA--SEE MANUAL FOR FORMAT 27 May 2010'
!
! do n=1,100
! stri(n)=' '!!! <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
! enddo
 stri2=' '
 nclass=0
 open(16, file=datatrain, status='old')
 do n=1,ntrain
 read(16,*) (x(m,n),m=1,mdim),stri1
! write(*,*)'stri1=',stri1(1:1),'=xx'
 do j=1,25
 chr=stri1(j:j)
 read(chr,'(I1)',ERR=56)i !o to i tu vubec nejde, obvykle nula

32

 enddo
 56 if(j.EQ.1) then ! 9.6.2010
 j=2
 endif
 stri2=stri1(1:j-1)
! write(*,*)j,'x',stri2,'y'
 do i=1,100
 if(stri2.EQ.stri(i))then
 cl(n)=i
! write(*,*)j,'then',stri2,'y',cl(n)
 goto 60
 else
 if(i.GT.nclass)then!new class is added
 nclass=nclass+1
 stri(nclass)=stri2
 cl(n)=nclass
! write(*,*)j,'else',stri2,'y',cl(n)
 goto 60
 endif
 endif
 enddo
! 60 write(*,*)cl(n)
 60 continue
 enddo
 close(16)
! write(*,*)'final classes=',nclass
 if(ntest.gt.0) then
 open(17, file=datatest, status='old')
 if(labelts.ne.0) then
 do n=1,ntest0
 read(17,*) (xts(m,n),m=1,mdim),stri1 !xx !<<<<<<<<<<TADY
! write(*,*)'stri1=',stri1(1:1),'=xx'
 do j=1,25
 chr=stri1(j:j)
 read(chr,'(I1)',ERR=66)i !o to i tu vubec nejde,

obvykle nula
 enddo
 66 if(j.EQ.1) then ! 9.6.2010
 j=2
 endif
 stri2=stri1(1:j-1)
! write(*,*)j,'x',stri2,'y'
 do i=1,100
 if(stri2.EQ.stri(i))then
 clts(n)=i
! write(*,*)j,'then',stri2,'y',clts(n)
 goto 70
 else
 if(i.GT.nclass)then !assign to the last class
 clts(n)=nclass
! write(*,*)j,'else',stri2,'y',clts(n)
 goto 70
 endif
 endif
 enddo
 70 continue
! write(*,*)'for tst sample',n,' desired class =',clts(n)
 enddo
 else
 do n=1,ntest0
 read(17,*) (xts(m,n),m=1,mdim)
 enddo
 endif
 close(17)
 endif
!
! ---

33

! SELECT SUBSET OF VARIABLES TO USE
[The original continues till the end. After it we added a simple function as follows.]
!
 function mylen(str) ! 11 June 2010
! Computes length of a string not counting spaces from the right.
! Two spaces between other charactes are admissible.
 character*1 str
 mezcount=0
 lastpos=0
 do i=1,500
 if(str(i:i).eq.' ') then
 mezcount=mezcount+1
 if(mezcount.GE.3) then
 mylen=lastpos
 return
 endif
 else
 lastpos=i
 mezcount=0
 endif
 enddo
 end
!

