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Abstract  
The Random Forest is a method and also a program for data clustering and classification. Especially in 
classification the Random Forest method appears to be the best approach perhaps among all others up to now.   
The message of this report is a new version of famous RandForest program written by Leo Breiman and Adele 
Cutler [3]. In the original version written in Fortran 77 all information about data to be processed and details of 
processing must be included in the program source text. In our modification in Fortran 90 there are binaries for 
Windows and Linux and information for different tasks is passed with help of arguments. After a brief description 
of our modification of RandForest the detailed manual follows. The next Chapter describes testing data corpora 
used and gives results of the Random Forest program. The program source text and binaries, and results are free 
under GNU General Public License. 
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Testing Random Forest for Unix and Windows 
Marcel Ji�ina and Marcel Ji�ina, Jr. (marcel@cs.cas.cz) 
 
1 Introduction 
The Random Forest is a method and also a program for mdata mining and pattern 
rrecognition. It comprises clustering and classification by learning. Especially in classification 
the Random Forest method appears the best approach perhaps among all others up to now.  
Note that „Random Forests(tm) is a trademark of Leo Breiman and Adele Cutler and is 
licensed exclusively to Salford Systems for the commercial release of the software. Our 
trademarks also include RF(tm), RandomForests(tm), RandomForest(tm) and Random 
Forest(tm)“, see [11]. 
The message of this report is a new version of famous Random Forests program 
“rf5new0.for“ written by Leo Breiman and Adele Cutler [3] in Fortran 77. In the original 
version all information about data to be processed and details of processing must be included 
in the program source text. Thus modified program must be compiled and afterwards run with 
data. In our modification the program is rewritten into Fortran 90 and a user need not compile 
the program. Information for different tasks is passed to program with help of arguments. The 
program has one source text and binaries can run under UNIX/LINUX or under Windows 
environment. A brief description of our modification of Random Forest is given first and then 
the detailed manual follows. The next Chapter describes testing data corpora used and gives 
results of processing by the Random Forests program. In the Appendix there is a verbatim 
copy of a part of original manual with some our corrections included. The program and results 
are free under GNU General Public License [6]. (In short, it is free for non-profit use, there is 
no warranty, and the citation of original source [1] and of this report is mandatory when 
published in any form, see below1.) 

2 Command line Random Forest program 
2.1 Motivation 
We found the original Random Forests program rather difficult to use. The necessity to set up 
(change) parameters in the source text of the FORTRAN program is rather effective for 
tuning and experimentation. For user who has no knowledge about Fortran 77 programming 
language and about peculiarities of the use of a compiler, it may be a stressful task. This 
feeling may result in the use another classifier that is friendlier to use. 

2.2 Terminology 
The task computed has different parameters, e.g. the name of the training data file, the 
dimensionality of the task, the number of classes when task is the classification problem, and 
so like. The name of the program and parameters form a command line. When speaking about 
command line, the first item in it is the name of program optionally with path. The items 
following the program’s name are called arguments. In fact, arguments are the parameters in 
the sense above. The meaning of arguments is given by their order or there are named 

                                                

1 [ ] Breiman, L.: Random Forests, Machine Learning Vol. 45, No. 1, pp. 5-32. (2001) 
  [ ] Ji�ina, M., Ji�ina, M., jr.: Testing Random Forest for Unix and Windows. Technical Report No. V-1075 , Institue of Informatics 
       AS CR, Prague, Czech Republic. (2010) 
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arguments. The named argument consists of a name and of a value of parameter. Between the 
name and the value some separator can be found, usualy a colon or equivalence sign. 

2.3 Important features of FORTRAN 
In Fortran 77 a feature of dynamic allocation does not exist. On the other hand, there is a 
feature in Fortran 77 as well as in Fortran 90 that one can easily redefine dimensions of an 
array, i.e. change the number of dimensions and their size in the subroutine or function. This 
allows moving large part of the main progran into subroutine without changing any 
declaration of arrays and variables. The cost if it is that names of all arrays and of all variables 
shared with the main program must appear as formal parameters of such a subroutine. To 
formal parameters of a subroutine must correspond true parameters. And this was the main 
part of our effort to make the Random Forests program friendlier in the sense that it can be 
used as easily as any other program run from the command line. To the same source program 
there are run-time binaries for running under Windows or UNIX/Linux environment.    

2.4 Resulting changes of the Random Forests program 
The change from Fortran 77 to Fortran 90 can be viewed as a formal task concerning 
comments (the comment line starts with letter c in Fortran 77 and with “!” in Fortran 90) and 
continuation lines (instead of a new line starting with & or another character in column 6, the 
& character must be the last character of the preceding line in Fortran 90). 

The most important was the change of all FORTRAN parameters (the statement “parameter 
(…)”) into variables. For it the declaration of parameters as variables has to be separated from 
setting up their default values (all declarations must precede the first executable statement in 
FORTRAN). To enable user to change parameter’s value the analysis of the command line 
attributes has been included.  

To allow class marks in form of a text, the analysis of class marks in the learning file and a 
tranformation of them into numbers 1, 2 … was included at the beginning of the program. In a 
corresponding way the procedures for reading data.train and data.test files has been modified 
accordingly.  

A large part of the main program has been transformed into subroutine MAIN2 without 
changing any declaration of arrays and variables. The names of all arrays and of all variables 
shared with the main program must appear as formal parameters of such a subroutine. To 
formal parameters of a subroutine must correspond some true parameters. To construct true 
parameters for arrays three vast integer, real, and double precision arrays has been declared 
and necessary amount of memory assigned to them dynamically according to size of the task 
solved. In Fortran 90 (not in Fortran 77 ) there exist a declaration ALLOCTABLE and 
executable statement ALLOCATE for this purpose. The individual arrays in MAIN2 
subroutine correspond to some part of one of these large arrays of the same type (integer, real 
or double precision) and form true parameters dynamically at the time when subroutine 
MAIN2 is called.  

Parameters for print and for storing data in files have been set up to minimize reporting. At 
the beginning of run some input information is printed. Then some dots appear to show that 
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program is not “dead” during long run with large data sets. Finally resulting classification 
errors appears. 

Two additional files “register.txt” and “ROC.txt” can be generated.  

2.5 Adds-on 

2.5.1 Register.txt file 
In the end of run a line is written to the file “register.txt”. If no such file exists, it is generated 
else a new line is appended to existing file. The line consists of names of training and testing 
files, the dimensionality of the task, the number of classes, the learning classification error, 
and the testing classification error. 

2.5.2 ROC.txt file 
If parameter ROC is set up to 1 (i.e. argument ROC=1 appears in the command line) then a 
matrix of class probabilities together with the true class number and by the program found 
class number appear as a file “ROC.txt”. In more detail - in the first line the names of the 
training and testing files appear, the second line gives headings for data on next lines. The 
third and other lines of this file give the true class number, by the program found class 
number, and individual class probabilities. Each line corresponds to one sample of the testing 
set (test file) in the same order as in the testing set. When there is a two class problem then 
information in ROC.txt file can be used for constructing the famous ROC curve [ 7]. Note that 
existing ROC.txt file is rewritten during the run of the program by the new one without 
warning. 

 

3 The Manual 
This part is, in fact, the help screen shown (see box below) when the program is run with less 
than three arguments. The following three arguments are mandatory in the fixed order: 

The first argument is the file name of the training set, optionally with a path. 

The second argument is the file name of the testing set, optionally with a path. 

The third argument n is the dimensionality of the task. 

When there is no testing set or no training set a dummy argument is used. 

Data is supposed to be organized in rows, items on the row separated by tabulator character or 
by one or more spaces. Each row represents one sample, pattern, event or object. There are 
n + 1 items on the row. The first n items must be numeric; the last item means a class to 
which the sample belongs. The class mark need not be numeric. Alfabetic or alfanumeric 
class marks are also admissible. When numeric class marks are used they need not form an 
uniterrupted series 1, 2 … Our program recognizes individual classes and their total number 
automatically. Also the numbers of samples (rows) in the training and testing set are 
recognized automatically. 
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The other arguments in the command line can be the named arguments. The equivalence sign 
is used as a separator between parameter’s name and its value. All named arguments are 
optional. When not stated explicitly in the command line the default values are used. 

 

 RandomForest modified by MJ&MJ,jr. during May and June 2010 
  Fortran 90 version with dynamic memory allocation. 
  Free under GNU General Public License. 
  When published please cite as: 
  -Breiman,L.: Random Forests, Machine Learning Vol. 45, No. 1, pp. 5-32.(2001) 
  -Jirina,M., Jirina, M., jr.: Testing Random Forest for Unix and Windows. 
   Technical Report No. V-1075, Institue of Informatics AS CR, Prague, 
   Czech Republic (2010). 
 
 Usage: prog.exe datatrain datatest mdim [named parameters] 
 DESCRIBE DATA (with optional defaults) 
 Data files: numeric with class labels as integers, reals, or 
  strings. 
 datatrain: training data file name 
 datatest: testing data file name 
 mdim: task dimensionality (number of variables)] 
 Named parameters: Form: Parname=Parvalue. 
 [ntrain: number of samples (cases) in the training data - NOT NECESSARY NOW!] 
 [nclass: number of classes - NOT NECESSARY NOW!] 
 [ntest: the number of samples (cases) in the test set. NOTE: Put 
   ntest=1 if there is no test set. Putting ntest=0 may cause 
   compiler complaints. 
   - NOT NECESSARY NOW if data test file exists!] 
 maxcat: the largest number of values assumed by a categorical 
  variable in data 
 labeltr=1 if the data has class labels. If not, =1 or 2 adds a 
  synthetic class 
 labelts=0 if the test set has no class labels, 1 if the test set 
  has cl.labels 
 
 SET RUN PARAMETERS 
 mtry0=number of variables randomly selected at each node 
  Default=int(sqrt(float(mdim))+0.5), (originally 2 later on 5). 
  Needs tuning! Begin with this value and try a value twice as high 
  and half as low. See manu 
 ndsize=1=minimum node size 
 jbt=500=number of trees to grow 
 look=100=how often you want to check the prediction error 
 lookcls=1=show on the screen or not 
 jclasswt=0 
 mdim2nd=0 
 mselect=0 
 
 OUTPUT CONTROLS; all defaults zero: 
 ROC=1 to get data for ROC curve i.e. outputs for each test sample 
  else 0. (file roc.txt); default 0. 
 isumout   = 0/1 1=summary to screen. Includes err rates & confusion 
  matrix 
 idataout = 0/1/2 1=train,2=adds test   (7) 
 impfastout = 0/1 1=gini fastimp(8) 
 impout = 0/1/2 1=imp,2=to screen(9) 
 impnout = 0/1 1=impn (10) 
 interout=0/1/2 1=interaction,2=screen  (11) 
 iprotout=0/1/2 1=prototypes,2=screen   (12) 
 iproxout=0/1/2 1=prox,2=adds test(13) 
 iscaleout = 0/1 1=scaling coors(14) 
 ioutlierout=0/1/2 1=train,2=adds test  (15) 
 
 NAME OUTPUT FILES FOR SAVING THE FOREST STRUCTURE 
 isaverf=1  savedforest 
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 isavepar=1 savedparams 
 isavefill=1 savedmissfill 
 isaveprox=1 savedprox 
 
 NAME OUTPUT FILES TO SAVE DATA FROM CURRENT RUN 
 idataout=1 save-data-from-run 
 impfastout=1 save-impfast 
 impout=1 save-importance-data 
 impnout=1 save-caseimp-data 
 interout=1 save-pairwise-effects 
 iprotout=1 save-protos 
 iproxout>=1 save-run-proximities 
 iscaleout=1 save-scale 
 ioutlierout>=1 save-outliers 
 iviz=1 the graphics program is to be used. 
 

Box 1. The help screen printed when the program is run with less than three arguments. 
 

4 Testing 
The testing should show the classification ability of the method for some tasks and also shows 
the classification ability relative to the other published methods and the results for the same 
data sets. Here we do not compare results obtained with any published result gained with 
other methods. Our task is to present reproducible results and any comparisons are up to a 
kind reader. 

4.1 Data set corpora - tasks from UCI Machine Learning Repository  
We used real-life tasks from the UCI Machine Learning Repository; see Asuncion and 
Newman [8]. 24 databases have been used for the classification task into two to 26 classes. 
The number of attributes not including the class mark differs from 4 to 180. Basic 
characteristics of data sets are summarized in Table 1. Data originally from the UCI Machine 
learning repository [8] were gained mostly from R. Paredes [5] (denoted by P in column 
Source in the table). These data sets are ready for a run with a classifier. We used all data sets 
in this corpus. Each task consists of 50 pairs of training and testing sets corresponding to 50-
fold cross validation. For DNA data [5], Letter data (Letter recognition [8]), and Satimage 
(Statlog Landsat Satellite [8]) the single partition into training and testing sets according to 
specification in [8] was used. We also added the popular Iris data set. Iris data were taken 
from [8] but we use them without Setoza class, i.e. we used two classes Versicolor and 
Virginica only according to Friedman [9] and then we have split remaining data into 10 pairs 
for ten-fold cross validation. 

 

Dataset 
Dimension 

(# 
attributes) 

Number 
of classes 

Total 
samples 

Learning 
set size 

Test set 
size 

Cross 
validation 

Source 

Australian 42 2 690 551 139 50 P 
Balance 4 3 625 499 126 50 P 
Cancer 9 2 683 546 137 50 P 
Diabetes 8 2 768 614 154 50 P 

DNA 180 3 31186 2000 1186 1 P2 
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German 24 2 1000 800 200 50 P 
Glass 9 6 215 169 46 50 P 
Heart 25 2 270 216 54 50 P 
Ionosphere 34 2 351 280 71 50 P 
Iris (1) 4 2 (3) 100 (150) 90 10 10 UCI MLR
Led17 24 10 2000 1595 405 50 P 
Letter 16 26 20000 16000 4000 1 UCI MLR
Liver 6 2 345 276 69 50 P 
Monkey1 17 2 556 444 112 50 P 
Phoneme 5 2 5404 4322 1082 50 P 
Satimage 36 7 6435 4435 2000 1 UCI MLR
Segmen 19 7 2310 1848 462 50 P 
Sonar 60 2 208 165 43 50 P 
Vehicle 18 4 846 675 171 50 P 
Vote 16 2 435 347 88 50 P 
Vowel 10 11 528 418 110 50 P 
Waveform21 21 3 5000 3998 1002 50 P 
Waveform40 40 3 5000 3999 1001 50 P 
Wine 13 3 178 141 37 50 P 

Table 1. Characteristics of data sets basically from the UCI Machine learning repository 
gained from or modified according to different sources. Abbreviations for sources: P – 
Paredes [10]; P2 – Paredes [5]; UCI MLR - Asuncion and Newman [8]. Note (1): Iris data are 
used without Setoza class, i.e. two classes Versicolor and Virginica only according to 
Friedman [9].  

 

4.2 Results 
The classification errors for data sets mentioned above are given in Table 2. Errors were 
computed for two values of mtry0. (mtry0 is the number of variables randomly selected at 
each node). One value follows from the recommendation to use the number of variables 
approximately equal to the square root of the dimensionality n (mdim) of the task. The other 
value is the default value (2) found in the original program text of the RandFor program. It is 
seen that differences are small and mostly in an advantage of the former option. 

Data mtry0= mtry0= 
set int(sqrt(n+0.5) 2 

australian 0.1276 0.1277 
balance 0.1838 0.1972 
Cancer 0.0299 0.0302 
diabetes 0.2328 0.2322 
DNA 0.0540 0.0565 
german 0.2386 0.2376 
Glass 0.2387 0.2354 
Heart 0.1811 0.1822 
ionosphere 0.0644 0.0658 
Iris 0.0491 0.0591 
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led17 0.0000 0.0000 
Letter 0.0507 0.0373 
Liver 0.2881 0.2884 
monkey1 0.0152 0.0098 
phoneme 0.1198 0.1184 
satimage 0.0900 0.0880 
segmen 0.0263 0.0252 
Sonar 0.2302 0.2216 
Vehicle 0.2525 0.2501 
Vote 0.0347 0.0343 
Vowel 0.0389 0.0401 
waveform21 0.1468 0.1469 
waveform40 0.1447 0.1434 
Wine 0.0250 0.0244 

Table 2. Summary of classification errors for 24 tasks from the UCI Machine Learning 
Repository according to Table 1 and two settings of the value of the mtry0, i.e. the number of 
variables randomly selected at each node. 

 

5 Conclusion 
We found the original Random Forest program rather difficult to use. The necessity to set up 
(change) parameters in the source text of the FORTRAN program is rather effective for 
tuning and experimentation. For user who has no knowledge about Fortran 77 programming 
language and about peculiarities of the use of a compiler, it may be a stressful task. This 
feeling may result in the use of another classifier that is friendlier to use. 

To use a dymnamic memory allocation we had to move from Fortran 77 to Fortran 90. There 
is a feature of the FORTRAN language (‘77 as well as ‘90) that one can easily redefine 
dimensions of an array, i.e. change the number of dimensions and their size in the subroutine 
or function. This allows moving large part of the main progran into subroutine without 
changing any declaration of arrays and variables. The cost if it is that names of all arrays and 
of all variables shared with the main program must appear as formal parameters of such a 
subroutine. Some true parameters must correspond to formal parameters of a subroutine. And 
this was the main part of our effort to make the Random Forest program friendlier in the sense 
that it can be used as easily as any other program run from the command line. To the same 
source program in Fortran 90 there are run-time versions of binaries for Windows or 
UNIX/Linux environment.    
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6 Appendix 1 – A part of the original manual (with some corrections) 
Here we give Chapters 1 till 9.3 from the original manual [2]. Some places are slightly 
changed to fit better to the original RandFor program as well as to our command line 
controlled program. 

Manual On Setting Up, Using, And Understanding Random Forests V3.1 

The V3.1 version of random forests contains some modifications 
and major additions to Version 3.0. It fixes a bad bug in V3.0. It 
allows the user to save the trees in the forest and run other data sets 
through this forest. It also allows the user to save parameters and 
comments about the run. 
I apologize in advance for all bugs and would like to hear about 
them. To find out how this program works, read my paper "Random 
Forests" Its available on the same web page as this manual. It was 
recently published in the Machine Learning. Journal 
The program is written in extended Fortran 77 making use of a 
number of VAX extensions. It runs on SUN workstations f77 and on 
Absoft Fortran 77 (available for Windows) and on the free g77 
compiler. but may have hang ups on other f77 compilers. If you 
find such problems and fixes for them, please let me know. 
6.1 Random forests computes 

• classification and class probabilities 
• intrinsic test set error computation 
• principal coordinates to use as variables. 
• variable importance (in a number of ways) 
• proximity measures between cases 
• a measure of outlyingness 
• scaling displays for the data 

The last three can be done for the unsupervised case i.e. no class 
labels. I have used proximities to cluster data and they seem to do 
a reasonable job. The new addition uses the proximities to do 
metric scaling of the data. The resulting pictures of the data are 
interesting and useful. 
The first part of this manual contains instructions on how to set up 
a run of random forests V3.1. The second part contains the notes 
on the features of random forests V3.1 and how they work. 

6.2 Setting Parameters 
The first seven lines following the parameter statement need to be 
filled in by the user. 

6.2.1 Line 1 Describing The Data 
mdim=number of variables 
nsample0=number of cases (examples or instances) in the data 
nclass=number of classes 
maxcat=the largest number of values assumed by a categorical 
variable in the data 
ntest=the number of cases in the test set. NOTE: Put ntest=1 if 
there is no test set. Putting ntest=0 may cause compiler 
complaints. 
labelts=0 if the test set has no class labels, 1 if the test set has class 
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labels. 
iaddcl =0 labeltr=1 if the train data has class labels. If not, iaddcl=1 or 2 
adds a synthetic class as described below 
If their are no categorical variables in the data set maxcat=1. If 
there are categorical variables, the number of categories assumed 
by each categorical variable has to be specified in an integer vector 
called cat, i.e. setting cat(5)=7 implies that the 5th variable is a 
categorical with 7 values. If maxcat=1, the values of cat are 
automatically set equal to one. If not, the user must fill in the 
values of cat in the early lines of code. 
For a J-class problem, random forests expects the classes to be 
numbered 1,2, ...,J. For an L valued categorical, it expects the 
values to be numbered 1,2, ... ,L. At present, L must be less than or 
equal to 32. 
A test set can have two purposes--first: to check the accuracy of RF 
on a test set. The error rate given by the internal estimate will be 
very close to the test set error unless the test set is drawn from a 
different distribution. Second: to get predicted classes for a set of 
data with unknown class labels. In both cases the test set must 
have the same format as the training set. If there is no class label 
for the test set, assign each case in the test set label classs #1, i.e. 
put cl(n)=1, and set labelts=0. Else set labelts=1. 
If the data has no class labels, addition of a synthetic class enables it 
it to be treated as a two-class problem with nclass=2. Setting 
iaddclass=1 forms the synthetic class by independent sampling 
from each of the univariate distributions of the variables in the 
original data. Setting iaddclass=2 forms the synthetic class by 
independent sampling from uniforms such that each uniform has 
range equal to the range of the corresponding variable. 

6.2.2 Line 2 Setting up the run 
jbt=number of trees to grow. Default value is originally 500. If error message „segmentation fault“ 
appears then use a smaller value. 
This is the number of trees to be grown in the run. Don't be 
stingy--random forests produces trees very rapidly, and it does not 
hurt to put in a large number of trees. If you want auxiliary 
information like variable importance or proximities grow 
a lot of trees--say a 1000 or more. Sometimes, I run out to 5000 
trees if there are many variables and I want the variables 
importances to be stable. 
mtry0 [corrected, zero added] = number of variables randomly selected at each node 
This is the only parameter that requires some judgment to set, but 
forests isn't too sensitive to its value as long as it's in the right ball 
park. I have found that setting mtry0 equal to the square root of mdim 
gives generally near optimum results2. My advice is to begin 
with this value and try a value twice as high and half as low 
monitoring the results by setting look=1 and checking the internal 
test set error for a small number of trees. With many noise 
variables present, mtry0 has to be set higher. 
look=how often you want to check the prediction error 
random forests carries along an internal estimate of the test set 
error as the trees are being grown. This estimate is outputted to 

                                                

2 In our command line version just this is used as the default value. 
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the screen every look trees. Setting look=10, for example, gives the 
internal error output every tenth tree added. If there is a labeled 
test set, it also gives the test set error. Setting look=jbt+1 
eliminates the output. Do not be dismayed to see the error rates 
fluttering around slightly as more trees are added. Their behavior 
is analagous to the sequence of averages of the number of heads in 
tossing a coin. 
ipi=set priors.  pi is an real-valued vector of length nclass which sets prior 
probabilities for classes. ipi=0 sets these priors equal to the class 
proportions. If the class proportions are very unbalanced, you may 
want to put larger priors on the smaller classes. If different 
weightings are desired, set ipi=1 and specify the values of the {pi(j)} 
early in the code. These values are later normalized, so setting 
pi(1)=1, pi(2)=2 weights a class 2 instance twice as much as a class 
1 instance. The error rates reported are an unweighted count of 
misclassified instances. 
ndsize=minimum node size; setting this to the value k means that no node with fewer 
than k cases will be split. The default that always gives good 
performances is ndsize=1. In large data sets, memory requirements 
will be less and speed enchanced if ndsize is set larger. Usually, this 
results in only a small loss of accuracy for large data sets. 

6.2.3 Line 3 Options on Variable Importance 
imp=1 turns on the variable importances methods described below. 
impstd=1 gives the standard imp output 
impmargin=1 gives, for each case, a measure of the effect of 
noising up each variable 
impgraph=1 gives for each variable, a plot of the effect of 
the variable on the class probabilities. 
impstd=1 computes and prints the following columns to a file 
i) variable number 
variables importances computed as: 
ii) The % rise in error over the baseline error. 
iii) 100* the change in the margins averaged over all cases 
iv) The proportion of cases for which the margin is decreased 
minus the proportion of increases. 
v) The gini increase by variable for the run 
impgraph=1 computes and prints out the columns for each 
variable m-- 
i) variable number i.e. m 
ii) sorted values of x(m) from lowest to highest 
iii-iii+nclass) effect of x(m) on the probabilities of class j. 

6.2.4 Line 4 Options based on proximities 
iprox=1 turns on the computation of the intrinsic proximity 
measures between any two cases . This has to be turned on for 
the following options to work. 
noutlier=1 computes an outlyingness measure for all cases in the 
data. If iaddcl=1 then the outlyingness measure is computed only 
for the original data. The output has the columns : 
i) class 
ii) case number 
iii) measure of outlyingness 
iscale=1 computes scaling coordinates based on the proximity 
matrix. If iaddcl is turned on, then the scaling is outputted only for 
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the original data. The output has the columns: 
i) case number 
i) true class 
iii) predicted class. 
iv) 0 if ii)=iii), 1 otherwise 
v-v+msdim ) scaling coordinates 
mdimsc is the number of scaling coordinates to be extracted. 
Usually 4-5 is sufficient 

6.2.5 Line 5 Transform to Principal Coordinates 
ipc=1 takes the x-values and computes principal coordinates from 
the covariance matrix of the x's. These will be the new variables for 
RF to operate on. This will not work right if some of the variables 
are categorical. 
mdimpc: This is the number of principal components to extract. 
It has to be <=mdim. 
norm=1 normaizes all of the variables to mean zero and sd one 
before computing the principal components. 

6.2.6 Line 6 Saving the forest 
isavef=1 saves all the trees in the forest to a file named eg. A. 
isavep=1 creates a file B that contains the parameters used 
in the run and allows up to 500 characters of text description 
about the run. 
irunf=1 reads file A and runs new data down the forest. 
ishowp=1 reads file B and prints it to the sccreen 
The calling code and files names required (except for the name of 
A) are at the end of the main program. The name for A is entered 
at the beginning of the program. 

6.2.7 Line 7 Output Controls 
Note: user must supply file names for all output listed below 
or send it to the screen. 
nsumout=1 writes out summary data to the screen. This includes 
errors rates and the confusion matrix 
infout=1 prints the following columns to a file 
i) case number 
ii) 1 if predicted class differs from true class, 0 else 
iii) true class label 
iv) predicted class label 
v) margin=true class prob. minus the max of the other class prob. 
vi)-vi+nclass) class probabilities 
ntestout=1 prints the follwing coumns to a file 
i) case number in test set 
ii) true class (true class=1 if data is unlabeled) 
iii) predicted class 
iv-iv+nclass) class probabilities 
iproxout=1 prints to file 
i) case #1 number 
ii) case #2 number 
iii) proximity between case #1 and case #2 

6.2.8 USER WORK 
The user has to construct the read-in the data code of which I have 
left an example. This needs to be done after the dimensioning of 
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arrays. If maxcat >1 then the categorical values need to be filled in. 
If ipi=1, the user needs to specify the relative weights of the classes. 
File names need to be specified for all output. This is important 
since a chilling message after a long run is "file not specified" or 
something similar. 

6.2.9 REMARKS 
The proximities can be used in the clustering program of your 
choice. Their advantage is that they are intrinsic rather than an ad 
hoc measure. I have used them in some standard and home-brew 
clustering programs and gotten reasonable results. The proximities 
between class 1 cases in the unsupervised situation can be used to 
cluster. Extracting the scaling coordinates from the proximities and 
plotting scaling coordinate i versus scaling coordinate j 
gives illuminating pictures of the data. Usually, i=1 and j=2 give the 
most information (see the notes below). 
There are four measures of variable importance: They complement 
each other. Except for the 4th they are based on the test sets left out 
on each tree construction. On a microarray data with 5000 
variables and less than 100 cases, the different measures single out 
much the same variables (see notes below). But I have found one 
synthetic data set where the 3rd measure was more sensitive than 
the first three. 
Sometimes, finding the effective variables requires some hunting. If 
the effective vzriables are clear-cut, then the first measure will find 
them. But if the number of variables is large compared to the 
number of cases, and if the predictive power of the individual 
variables is small, the other measures can be useful. 
Random forests does not overfit. You can run as many trees as you 
want. Also, it is fast. Running on a 250mhz machine, the current 
version using a training set with 800 cases, 8 variables, and mtry=1, 
constructs each tree in .1 seconds. On a training set with 2200 
cases, 11 variables, and mtry=3, each tree is constructed in .2 
seconds. It takes 4 seconds per tree on a training set with 15000 
cases and 16 variables with mtry=4, while also making computations 
for a 5000 member test set. 
The present version of random forests does not handle missing 
values. A future version will. It is up to the user to decided how to 
deal with these. My current preferred method is to replace each 
missing value by the median of its column and each missing 
categorical by the most frequent value in that categorical. My 
impression is that because of the randomness and the many trees 
grown, filling in missing values with a sensible values does not effect 
accuracy much. 
For large data sets, if proximities are not required, the major 
memory requirement is the storage of the data itself, and the three 
integer arrays a,at,b. If there are less than 64,000 cases, these latter 
three may be declared integer*2 (non-negative). Then the total 
storage requirement is about three times the size of the data set. If 
proximities are calculated, storage requirements go up by the 
square of the number of cases times eight bytes (double precision). 
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6.3 Outline of How Random Forests Works 

6.3.1 Usual Tree Construction--Cart 
Node=subset of data. The root node contains all data. 
At each node, search through all variables to find 
best split into two children nodes. 
Split all the way down and then prune tree up to 
get minimal test set error. 

6.3.2 Random Forests Construction 
Root node contains a bootstrap sample of data of same size as 
original data. A different bootstrap sample for each tree to be 
grown. 
An integer K is fixed, K<<number of variables. K is the only 
parameter that needs to be specified. Default is the square root of 
number of variables. 
At each node, K of the variables are selected at random. Only these 
variables are searched through for the best split. The largest tree 
possible is grown and is not pruned. 
The forest consists of N trees. To classify a new object having 
coordinates x, put x down each of the N trees. Each tree gives a 
classification for x . 
The forest chooses that classification having the most out of N 
votes. 
Transformation to Principal Coordinates 
One of the users lent us a data set in which the use of a few 
principal components as variables reduced the error rate by 
2/3rds. On experimenting, a few other data sets were found where 
the error rate was significantly reduced by pre-transforming to 
principal coordinates As a convenience to users, a pretransformation 
subroutine was incorporated into this version. 

6.3.3 Random Forests Tools 
The design of random forests is to give the user a good deal of 
information about the data besides an accurate prediction. 
Much of this information comes from using the "out-of-bag" cases 
in the training set that have been left out of the bootstrapped 
training set. 
The information includes: 
a) Test set error rate. 
b) Variable importance measures 
c) Intrinsic proximities between cases 
d) Scaling coordinates based on the proximities 
e) Outlier detection 
The following explains how these work and give applications, both 
for labeled and unlabeled data. 

6.3.4 Test Set Error Rate 
In random forests, there is no need for cross-validation or a 
separate test set to get an unbiased estimate of the test set error. It 
is gotten internally, during the run, as follows: 
Each tree is constructed using a different bootstrap sample from 
the original data. About one-third of the cases are left out of the 
bootstrap sample and not used in the construction of the kth tree. 
Test Set Error Rate 
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Put each case left out in the construction of the kth tree down the 
kth tree to get a classification. 
In this way, a test set classification is gotten for each case in about 
one-third of the trees. Let the final test set classification of the 
forest be the class having the most votes. 
Comparing this classification with the class label present in the data 
gives an estimate of the test set error. 

6.3.5 Class probability estimates 
At run's end, for each case, the proportion of votes for each class is 
recorded. For each member of a test set (with or without class 
labels), these proportions are also computed. By a stretch of 
terminology , we call these class probability estimates. These should 
not be interpreted as the underlying distributional probabilities. But 
they contain useful information about the case. 
The margin of a case is the proportion of votes for the true class 
minus the maximum proportion of votes for the other classes. The 
size of the margin gives a measure of how confident the 
classification is. 

6.3.6 Variable Importance 
Because of the need to know which variables are important in the 
classification, random forests has four different ways of looking at 
variable importance. Sometimes influential variables are hard to 
spot--using these four measures provides more information. 
Measure 1 
To estimated the importance of the mth variable. In the left out 
cases for the kth tree, randomly permute all values of the mth 
variable Put these new covariate values down the tree and get 
classifications. 
Proceed as though computing a new internal error rate. The amount 
by which this new error exceeds the original test set error is defined 
as the importance of the mth variable. 
Measures 2 and 3 
For the nth case in the data, its margin at the end of a run is the 
proportion of votes for its true class minus the maximum of the 
proportion of votes for each of the other classes. The 2nd measure 
of importance of the mth variable is the average lowering of the 
margin across all cases when the mth variable is randomly permuted 
as in method 1. 
The third measure is the count of how many margins are lowered 
minus the number of margins raised. 
Measure 4 
The splitting criterion used in RF is the gini criterion--also used in 
CART. At every split one of the mtry variables is used to form the 
split and there is a resulting decrease in the gini. The sum of all 
decreases in the forest due to a given variable, normalized by the 
number of trees, froms measure 4. 
We illustrate the use of this information by some examples. Some of 
these were done on version 1 so may differ somewhat from the 
version 3 output. 
[The remaining part with examples is omitted here.] 
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7 Appendix 2 – The progran listing with comments (shortened) 
 
 program rf5new 
! MODIFIED by MJ&MJ,jr, marcel@cs.cas.cz 
!       May, June 2010. Important changes when transfered into Fortran 90  
!   made inside can be found by searching for '2010'. 
!       Suitable for numerical data and class labels as strings. 
!       Classes need not be numbered 1,2,...nclass (=NoOfClasses).  
! Representation of the class labels as strings, integers or reals  
! is admissible. 
! 
! [My file numbers are 33 for register.txt and 34 for reading train  
! and test data files in the "main2".] 
! 
! ORIGINAL 
! Copyright 2002-2003  Leo Breiman and Adele Cutler 
! This is free open source software but its use,in part or  
! in whole,in any commercial product that is sold for profit  
! is prohibited without the written consent of Leo Breiman  
! and Adele Cutler. 
! We very much appreciate bug notices and suggested improvements. 
! leo@stat.berkeley.edu   adele@math.usu.edu 
! SET ALL PARAMETERS FIRST GROUP BELOW.  GENERALLY, 
! SETTING PARAMETERS TO ZERO TURNS THE CORRESPONDING 
! OPTION OFF.  
! ALL RELEVANT OUTPUT FILES MUST BE GIVEN NAMES--SEE BELOW. 
! 
! WORKING VARIABLES DECLARATIONS 
 character msg1*39, msg2*39, txt*39,ParName*39,parstr*39,pb*39,chr 
 character*25 stri(100),stri1,stri2 !27.5.2010 
 real xx 
! ATTRIBUTES DECLARATIONS 
 character*255 datatrain, datatest 
 integer mdim,ntrain,nclass,maxcat,ntest,& 
 labelts,labeltr,mtry0,ndsize,jbt,look,lookcls,& 
 jclasswt,mdim2nd,mselect,imp,interact,impn,& 
 nprox,nrnn,noutlier,nscale,nprot,missfill,iviz,& 
 isaverf,isavepar,isavefill,isaveprox,& 
 irunrf,ireadpar,ireadfill,ireadprox,& 
 isumout,idataout,impfastout,impout,impnout,interout,& 
 iprotout,iproxout,iscaleout,ioutlierout 
 integer nsample,nrnodes,mimp,near,& 
 ifprot,ifscale,iftest,mdim0,ntest0,nprot0,nscale0,& 
 ROC 
! 
 integer Sizereal, Sizeint, Sizedouble 
        real, DIMENSION(:), ALLOCATABLE::aa !!! 11.6.2010 
        integer, DIMENSION(:), ALLOCATABLE:: im  
 REAL(8), DIMENSION(:), ALLOCATABLE::dd  
! 
!     =====================================================  
!     print help:           <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<  
      if (iargc().LT.3) then 
! TEXTS 
 write(*,*) 
 write(*,*)'RandomForest modified by MJ during May and June 2010'   
 write(*,*)' Fortran 90 version with dynamic memory allocation.'   
 write(*,*)' Free under GNU General Public License.' 
 write(*,*)' When published please cite as:'   
 write(*,*)' -Breiman,L.: Random Forests, Machine Learning Vol. 45, No. 1, pp.  
 
5-32.(2001)' 
 write(*,*)' -Jirina,M., Jirina, M., jr.: Testing Random Forest for Unix and  
 
Windows.' 
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 write(*,*)'  Technical Report No. V-1075, Institue of Informatics AS CR, 
Prague,' 
 write(*,*)'  Czech Republic (2010).' 
 write(*,*) 
 msg1='Usage: prog.exe datatrain datatest mdim ' 
 msg2=' [named parameters]' 
 write(*,*)msg1,msg2 
 msg1='DESCRIBE DATA (with optional defaults)' 
 write(*,*)msg1 
 msg1='Data files: numeric with class labels a' 
 msg2='s integers, reals, or strings.' 
 write(*,*)msg1,msg2 
 msg1='datatrain: training data file name' 
 write(*,*)msg1 
 msg1='datatest: testing data file name' 
 write(*,*)msg1 
 msg1='mdim: task dimensionality (number of v' 
 msg2='ariables)]' 
 write(*,*)msg1,msg2 
 msg1='Named parameters: Form: Parname=Parvalu' 
 msg2='e.' 
 write(*,*)msg1,msg2 
 msg1='[ntrain: number of samples (cases) in t' 
 msg2='he training data - NOT NECESSARY NOW!] ' 
 write(*,*)msg1,msg2 
 msg1='[nclass: number of classes - NOT NECESS' 
 msg2='ARY NOW!]' 
 write(*,*)msg1,msg2 
 msg1='[ntest: the number of samples (cases) i' 
 msg2='n the test set. NOTE: Put ntest=1 if ' 
 write(*,*)msg1,msg2 
 msg1='  there is no test set. Putting ntest=0' 
 msg2=' may cause compiler complaints.' 
 write(*,*)msg1,msg2 
 msg1='  - NOT NECESSARY NOW if data test file' 
 msg2=' exists!]' 
 write(*,*)msg1,msg2 
 msg1='maxcat: the largest number of values as' 
 msg2='sumed by a categorical variable in data' 
 write(*,*)msg1,msg2 
 msg1='labeltr=1 if the data has class labels.' 
 msg2=' If not, =1 or 2 adds a synthetic class' 
 write(*,*)msg1,msg2 
 msg1='labelts=0 if the test set has no class ' 
 msg2='labels, 1 if the test set has cl.labels' 
 write(*,*)msg1,msg2  
 write(*,*) 
! 
 msg1='SET RUN PARAMETERS' 
 write(*,*)msg1 
!       123567801234567890123456789012345678901 
 msg1='mtry0=number of variables randomly sele' 
 msg2='cted at each node' 
 write(*,*)msg1,msg2 
 msg1=' Default=int(sqrt(float(mdim))+0.5), (o' 
 msg2='riginally 2 later on 5). Needs tuning!' 
 write(*,*)msg1,msg2 
 msg1=' Begin with this value and try a value ' 
 msg2='twice as high and half as low. See manu' 
 write(*,*)msg1,msg2 
 msg1='ndsize=1=minimum node size' 
 write(*,*)msg1 
 msg1='jbt=500=number of trees to grow' 
 write(*,*)msg1 
 msg1='look=100=how often you want to check th' 
 msg2='e prediction error' 
 write(*,*)msg1,msg2 
 msg1='lookcls=1=show on the screen or not' 
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 write(*,*)msg1 
 msg1='jclasswt=0' 
 write(*,*)msg1 
 msg1='mdim2nd=0' 
 write(*,*)msg1 
 msg1='mselect=0' 
 write(*,*)msg1 
 write(*,*) 
! 
 msg1='OUTPUT CONTROLS; all defaults zero:'  
 write(*,*)msg1 
 msg1='ROC=1 to get data for ROC curve i.e. ou' 
 msg2='tputs for each test sample else 0. (fil' 
 write(*,*)msg1,msg2,'e roc.txt; default 0.' 
      msg1='isumout = 0/1 1=summary to screen. In' 
 msg2='cludes err rates & confusion matrix' 
 write(*,*)msg1,msg2 
      msg1='idataout = 0/1/2 1=train,2=adds test' 
 msg2='(7)' 
 write(*,*)msg1,msg2 
      msg1='impfastout = 0/1 1=gini fastimp(8)' 
 write(*,*)msg1 
      msg1='impout = 0/1/2 1=imp,2=to screen(9)' 
 write(*,*)msg1 
      msg1='impnout = 0/1 1=impn (10)' 
 write(*,*)msg1 
      msg1='interout=0/1/2 1=interaction,2=screen' 
 msg2='(11)' 
 write(*,*)msg1,msg2 
      msg1='iprotout=0/1/2 1=prototypes,2=screen' 
 msg2='(12)' 
 write(*,*)msg1,msg2 
      msg1='iproxout=0/1/2 1=prox,2=adds test(13)' 
 write(*,*)msg1 
      msg1='iscaleout = 0/1 1=scaling coors(14)' 
 write(*,*)msg1 
      msg1='ioutlierout=0/1/2 1=train,2=adds test' 
 msg2='(15)' 
 write(*,*)msg1,msg2 
 write(*,*) 
! 
 msg1='NAME OUTPUT FILES FOR SAVING THE FOREST' 
 msg2=' STRUCTURE' 
 write(*,*)msg1,msg2 
  msg1='isaverf=1  savedforest' 
 write(*,*)msg1 
 msg1='isavepar=1 savedparams' 
 write(*,*)msg1 
 msg1='isavefill=1 savedmissfill' 
 write(*,*)msg1 
  msg1='isaveprox=1 savedprox' 
 write(*,*)msg1 
 write(*,*) 
 msg1='NAME OUTPUT FILES TO SAVE DATA FROM CUR' 
 msg2='RENT RUN' 
 write(*,*)msg1,msg2 
! 
 msg1='idataout=1 save-data-from-run' 
 write(*,*)msg1 
 msg1='impfastout=1 save-impfast' 
 write(*,*)msg1 
  msg1='impout=1 save-importance-data' 
 write(*,*)msg1 
  msg1='impnout=1 save-caseimp-data' 
 write(*,*)msg1 
 msg1='interout=1 save-pairwise-effects' 
 write(*,*)msg1 
 msg1='iprotout=1 save-protos' 
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 write(*,*)msg1 
  msg1='iproxout>=1 save-run-proximities' 
 write(*,*)msg1 
 msg1='iscaleout=1 save-scale' 
 write(*,*)msg1 
 msg1='ioutlierout>=1 save-outliers' 
 write(*,*)msg1 
 msg1='iviz=1 the graphics program is to be us' 
 msg2='ed.' 
 write(*,*)msg1,msg2 
 write(*,*) 
 
 stop 
      endif 
! 
! DEFAULTS of fixed parameters:   <<<<<<<<<<<<<<<<<<< 
!  datatrain='data.train' 
!  datatest='data.test' 
!  mdim=9 
! 
!     evaluate fixed parameters: 
      call getarg(1, datatrain) 
      call getarg(2, datatest) 
      call getarg(3, txt) 
      read(txt, '(I10)') mdim 
! 
!     ====================================================== 
! DEFAULTS:            <<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
!  ntrain=169 
!  nclass=6 
  maxcat=1 
  ntest=-45 
  labeltr=1 
  labelts=1 
!     ELIMINATE SOME OF "DEFAULTS"   28 May 2010 
!      write(*,*)'task dimension is ',mdim 
!     ntrain=169  testing end of file:  <<<<<<<<<<<<<<<<<<<< 
!     nclass=6    and setting the number of classes 
      open(34,file=datatrain,status='old') 
 
 do n=1,100 
     stri(n)=' ' 
 enddo 
 stri2=' ' 
 nclass=0 
 do n=1,10000 
  read(34,*,END=11) (xx,m=1,mdim),stri1 
!  write(*,*)'stri1=',stri1(1:1),'=xx' 
         do j=1,25 
      chr=stri1(j:j) 
!      write(*,*)'chr=',chr,'==' 
      read(chr,'(I1)',ERR=6)i  !o to i tu vubec nejde, obvykle nula 
      enddo 
   6     if(j.EQ.1) then ! 9.6.2010  
      j=2 
  endif 
  stri2=stri1(1:j-1) 
!  write(*,*)'j=',j,'x',stri2,'y' 
  do i=1,100 
!      write(*,*)'i=',i,'x',stri2,'y',stri(i),'z' 
      if(stri2.EQ.stri(i))then 
!   write(*,*)j,'then','y',i 
   goto 10 
      else 
   if(i.GT.nclass)then!new class is added 
       nclass=nclass+1 
       stri(nclass)=stri2 
!       write(*,*)j,'else','y',nclass 
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       goto 10 
   endif 
      endif 
  enddo 
   10         continue 
 enddo 
 close(34) 
   11 continue 
      ntrain=n-1 
      LLL=mylen(datatrain) 
      KKK=mylen(datatest) 
      write(*,*)'Learn:',datatrain(1:LLL),'  test:',datatest(1:KKK) 
      msg1='No. of rows of the lrn file, no.of lab:' 
      write(*,*)msg1, ntrain, nclass 
 
 
!     ntest=45  testing end of file:  <<<<<<<<<<<<<<<<<<<<<< 
      open(34,file=datatest,status='old') 
      do i=1,1000000 
        read(34,*,END=20) (stri(j),j=1,mdim) 
      enddo 
   20 close(34) 
      ntest=i-1 
      msg1='No. of rows of the tst file is:' 
      write(*,*)msg1, ntest 
! 
! 
! 
! 
! ------------------------------------------------------- 
! OUTPUT CONTROLS  
!cc parameter( 
       isumout =  1!0/1  1=summary to screen 
       idataout= 0!0/1/2 1=train,2=adds test(7) 
       impfastout= 0!0/1  1=gini fastimp (8) 
       impout=  0!0/1/2  1=imp,2=to screen(9) 
       impnout= 0!0/1  1=impn  (10) 
       interout= 0!0/1/2 1=interaction,2=screen(11) 
       iprotout= 0!0/1/2 1=prototypes,2=screen(12) 
       iproxout= 0!0/1/2 1=prox,2=adds test(13) 
       iscaleout= 0!0/1  1=scaling coors (14) 
       ioutlierout= 0!0/1/2 1=train,2=adds test (15) 
! 
! ------------------------------------------------------- 
! CONTROL PARAMETERS 
! 
!cc parameter( 
!  SET RUN PARAMETERS 
  ROC=0  
       mtry0=int(sqrt(float(mdim))+0.5) !2 later on 5 
!  write(*,*)'mtry0=',mtry0 
  ndsize=1 
  jbt=500 
  look=100 
  lookcls=0 
       jclasswt=0 
  mdim2nd=0 
  mselect=0 
! jbt=number of trees to grow 
! mtry=number of variables randomly selected at each node 
! look=how often you want to check the prediction error 
! ndsize=minimum node sizec 
! 
!  SET IMPORTANCE OPTIONS  
       imp=1 
  interact=0 
  impn=1 
! 
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!  SET PROXIMITY COMPUTATIONS 
       nprox=1 
  nrnn=ntrain 
! 
!  SET OPTIONS BASED ON PROXIMITIES 
       noutlier=0 
  nscale=0 
  nprot=0 
! 
!  REPLACE MISSING VALUES   
       code=-999 
  missfill=0 
! 
!  GRAPHICS 
       iviz=0 
! 
!  SAVING A FOREST 
       isaverf=0 
  isavepar=0 
  isavefill=0 
  isaveprox=0 
! 
!  RUNNING A SAVED FOREST 
       irunrf=0 
  ireadpar=0 !to read parameters, see line 1463 (starts with '888') 
  ireadfill=0 
  ireadprox=0 
! 
! 
!    ==================================================== 
!    evaluate named parameters <<<<<<<<<<<<<<<<<<<<<<<<<< 
      do i=4,iargc() 
        call getarg(i, txt) 
        j=len(txt)-1 
        do while (txt(j:j) .ne. '=') 
          j = j - 1 
        enddo 
        if (j.GT.0) then 
          ParName=txt(1:j-1) 
          k=1 
          do while (txt(k:k) .ne. ' ') 
            k = k + 1 
          enddo 
          parstr=txt(j+1:k-1) 
          pb='ntrain' 
          if(ParName.eq.pb) read(parstr, '(I10)') ntrain 
          pb='nclass' 
          if(ParName.eq.pb) read(parstr, '(I10)') nclass 
          pb='maxcat' 
          if(ParName.eq.pb) read(parstr, '(I10)') maxcat 
          pb='ntest' 
          if(ParName.eq.pb) read(parstr, '(I10)') ntest 
          pb='labeltr' 
          if(ParName.eq.pb) read(parstr, '(I10)') labeltr 
          pb='labelts' 
          if(ParName.eq.pb) read(parstr, '(I10)') labelts 
          pb='mtry0' 
          if(ParName.eq.pb) read(parstr, '(I10)') mtry0 
!    
          pb='lookcls' 
          if(ParName.eq.pb) read(parstr, '(I10)') lookcls 
          pb='isumout' 
          if(ParName.eq.pb) read(parstr, '(I10)') isumout 
          pb='idataout' 
          if(ParName.eq.pb) read(parstr, '(I10)') idataout 
          pb='impfastout' 
          if(ParName.eq.pb) read(parstr, '(I10)') impfastout 
          pb='impout' 
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          if(ParName.eq.pb) read(parstr, '(I10)') impout 
          pb='impnout' 
          if(ParName.eq.pb) read(parstr, '(I10)') impnout 
          pb='interout' 
          if(ParName.eq.pb) read(parstr, '(I10)') interout 
          pb='iprotout' 
          if(ParName.eq.pb) read(parstr, '(I10)') iprotout 
          pb='iproxout' 
          if(ParName.eq.pb) read(parstr, '(I10)') iproxout 
          pb='iscaleout' 
          if(ParName.eq.pb) read(parstr, '(I10)') iscaleout 
          pb='ioutlierout' 
          if(ParName.eq.pb) read(parstr, '(I10)') ioutlierout 
!    
          pb='isaverf' 
          if(ParName.eq.pb) read(parstr, '(I10)') isaverf 
          pb='isavepar' 
          if(ParName.eq.pb) read(parstr, '(I10)') isavepar 
          pb='isavefill' 
          if(ParName.eq.pb) read(parstr, '(I10)') isavefill 
          pb='isaveprox' 
          if(ParName.eq.pb) read(parstr, '(I10)') isaveprox 
!    
          pb='idataout' 
          if(ParName.eq.pb) read(parstr, '(I10)') idataout 
          pb='impfastout' 
          if(ParName.eq.pb) read(parstr, '(I10)') impfastout 
          pb='impout' 
          if(ParName.eq.pb) read(parstr, '(I10)') impout 
          pb='impnout' 
          if(ParName.eq.pb) read(parstr, '(I10)') impnout 
          pb='interout' 
          if(ParName.eq.pb) read(parstr, '(I10)') interout 
          pb='iprotout' 
          if(ParName.eq.pb) read(parstr, '(I10)') iprotout 
! 
          pb='iproxout' 
          if(ParName.eq.pb) read(parstr, '(I10)') iproxout 
          pb='iscaleout' 
          if(ParName.eq.pb) read(parstr, '(I10)') iscaleout 
          pb='ioutlierout' 
          if(ParName.eq.pb) read(parstr, '(I10)') ioutlierout 
          pb='iviz' 
          if(ParName.eq.pb) read(parstr, '(I10)') iviz 
          pb='jbt' 
          if(ParName.eq.pb) read(parstr, '(I10)') jbt 
          pb='ROC' 
          if(ParName.eq.pb) read(parstr, '(I10)') ROC 
! 
        endif 
      enddo 
!      msg1=datatrain 
!      msg2=datatest 
!      write(*,*)msg1,msg2 
!      write(*,*)nclass 
!      write(*,*) 
!    ====================================================== 
! 
! 
 
! ------------------------------------------------------- 
! DERIVED PARAMETERS (DO NOT CHANGE) 
! 
!cc parameter( 
        nsample=(2-labeltr)*ntrain 
        nrnodes=2*nsample+1 
        mimp=imp*(mdim-1)+1 
        ifprot=nprot/(nprot-.1) 
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        ifscale=nscale/(nscale-.1) 
        iftest=ntest/(ntest-.1) 
        nprot0=(1-ifprot)+nprot 
        nscale0=(1-ifscale)+nscale 
        ntest0=(1-iftest)+ntest 
        mdim0=interact*(mdim-1)+1 
        near=nprox*(nsample-1)+1 
! 
! ======================================================= 
! *********  ARRAYS FOR THE MAIN2 SUBROUTINE  *********** 
! ======================================================= 
! 
!      compute beginnings of REAL arrays 
        IIx=1 
        IIxts=IIx+mdim*nsample 
        IIv5=IIxts+mdim*ntest0 
        IIv95=IIv5+mdim 
        IItgini=IIv95+mdim 
        IIzt=IItgini+mdim 
        IIavgini=IIzt+mdim 
        IIvotes=IIavgini+mdim 
        IIeffect=IIvotes+mdim0*jbt 
        IIteffect=IIeffect+mdim0*mdim0 
        IIhist=IIteffect+mdim0*mdim0 
        IIg=IIhist+(1+mdim0)*mdim0 
        IIfill=IIg+mdim0 
        IIrinpop=IIfill+mdim 
        IIdgini=IIrinpop+near*jbt 
        IIxbestsplit=IIdgini+nrnodes 
        IItnodewt=IIxbestsplit+nrnodes 
        IItw=IItnodewt+nrnodes 
        IItn=IItw+nrnodes 
        IIv=IItn+nrnodes 
        IIwin=IIv+nsample 
        IItemp=IIwin+nsample 
        IIq=IItemp+nrnn 
        IIdevout=IIq+nclass*nsample 
        IIclasswt=IIdevout+nclass 
        IIwr=IIclasswt+nclass 
        IItmissts=IIwr+nclass 
        IItmiss=IItmissts+nclass 
        IItclasspop=IItmiss+nclass 
        IIwl=IItclasspop+nclass 
        IIrmedout=IIwl+nclass 
        IItclasscat=IIrmedout+nclass 
        IIqts=IItclasscat+nclass*maxcat 
        IIclasspop=IIqts+nclass*ntest0 
        IIsignif=IIclasspop+nclass*nrnodes 
        IIzscore=IIsignif+mimp 
        IIsqsd=IIzscore+mimp 
        IIavimp=IIsqsd+mimp 
        IIqimp=IIavimp+mimp 
        IIqimpm=IIqimp+nsample 
        IItout=IIqimpm+nsample*mimp 
        IIouttr=IItout+near 
        IIxc=IIouttr+near 
        IIdn=IIxc+maxcat 
        IIcp=IIdn+maxcat 
        IIcm=IIcp+maxcat 
        IIvotecat=IIcm+maxcat 
        IIfreq=IIvotecat+maxcat 
        IIwc=IIfreq+maxcat 
        IIoutts=IIwc+nsample 
        IIpopclass=IIoutts+ntest0 
        IIprotlow=IIpopclass+nprot0*nclass 
        IIprot=IIprotlow+mdim*nprot0*nclass 
        IIprothigh=IIprot+mdim*nprot0*nclass 
        IIprotfreq=IIprothigh+mdim*nprot0*nclass 
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        IIrpop=IIprotfreq+mdim*nprot0*nclass*maxcat 
        IIprotv=IIrpop+nrnodes 
        IIwtx=IIprotv+mdim*nprot0*nclass 
        IIprotvlow=IIwtx+nsample 
        IIprotvhigh=IIprotvlow+mdim*nprot0*nclass 
        Sizereal=IIprotvhigh+mdim*nprot0*nclass 
! 
!      compute beginnings of INTEGER arrays 
        IIcat=1 
        IIiv=IIcat+mdim 
        IImsm=IIiv+mdim 
        IImuse=IImsm+mdim 
        IIirnk=IImuse+mdim 
        IImissing=IIirnk+mdim*jbt 
        IIa=IImissing+mdim*near 
        IIasave=IIa+mdim*nsample 
        IIb=IIasave+mdim*nsample 
        IIcl=IIb+mdim*nsample 
        IIout=IIcl+nsample 
        IInodextr=IIout+nsample 
        IInodexvr=IInodextr+nsample 
        IIjin=IInodexvr+nsample 
        IIjoob=IIjin+nsample 
        IIpjoob=IIjoob+nsample 
        IIndbegin=IIpjoob+nsample 
        IIjvr=IIndbegin+near*jbt 
        IIjtr=IIjvr+nsample 
        IIjest=IIjtr+nsample 
        IIibest=IIjest+nsample 
        IIisort=IIibest+nrnn 
        IIloz=IIisort+nsample 
        IIta=IIloz+near*nrnn 
        IIncase=IIta+nsample 
        IIidmove=IIncase+nsample 
        IIkpop=IIidmove+nsample 
        IIjests=IIkpop+nrnodes 
        IIjts=IIjests+ntest0 
        IIiwork=IIjts+ntest0 
        IInodexts=IIiwork+near 
        IIclts=IInodexts+ntest0 
        IIimax=IIclts+ntest0 
        IIjinb=IIimax+ntest0 
        IIbestsplitnext=IIjinb+near*jbt 
        IIbestvar=IIbestsplitnext+nrnodes 
        IIbestsplit=IIbestvar+nrnodes 
        IInodestatus=IIbestsplit+nrnodes 
        IInodepop=IInodestatus+nrnodes 
        IInodestart=IInodepop+nrnodes 
        IInodeclass=IInodestart+nrnodes 
        IIparent=IInodeclass+nrnodes 
        IItreemap=IIparent+nrnodes 
        IIncts=IItreemap+2*nrnodes 
        IInc=IIncts+nclass 
        IImtab=IInc+nclass 
        IIncn=IImtab+nclass*nclass 
        IIits=IIncn+near 
        IIjpur=IIits+nsample 
        IInpend=IIjpur+nrnn 
        IIinear=IInpend+nclass 
        IInrcat=IIinear+nrnn 
        IIkcat=IInrcat+maxcat 
        IIncatsplit=IIkcat+maxcat 
        IInbestcat=IIncatsplit+maxcat 
        IIncp=IInbestcat+maxcat*nrnodes 
        IInodexb=IIncp+near 
        IInpcase=IInodexb+near*jbt 
        IIncount=IInpcase+near*jbt 
        IInod=IIncount+near*jbt 
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        Sizeint=IInod+nrnodes 
! 
!      compute beginnings of double precision arrays 
        KKprox=1 
        KKy=KKprox+near*nrnn 
        KKu=KKy+near 
        KKdl=KKu+near 
        KKxsc=KKdl+nscale0 
        KKred=KKxsc+near*nscale0 
        KKee=KKred+near 
        KKev=KKee+near 
        KKppr=KKev+near*nscale0 
 Sizedouble=KKppr+near 
! test the total length 
! 
   write(*,*)'Sizereal=',Sizereal,'   Sizeint=',Sizeint,& 
   '   Sizedouble=',Sizedouble 
!!! 11.6.2010 
ALLOCATE ( aa(Sizereal) )    ! Allocate heap space.  
ALLOCATE ( im(Sizeint) )     ! Allocate heap space.  
ALLOCATE ( dd(Sizedouble) )  ! Allocate heap space.  
! ------------------------------------------------------- 
! 
! ======================================================= 
! ***************  CALLING MAIN2 SUBROUTINE  **************** 
! ======================================================= 
! 
 call main2(datatrain, datatest,& 
 mdim,ntrain,nclass,maxcat,ntest,& 
 labelts,labeltr,mtry0,ndsize,jbt,look,lookcls,& 
 jclasswt,mdim2nd,mselect,imp,interact,impn,& 
 nprox,nrnn,noutlier,nscale,nprot,missfill,iviz,& 
 isaverf,isavepar,isavefill,isaveprox,& 
 irunrf,ireadpar,ireadfill,ireadprox,& 
 isumout,idataout,impfastout,impout,impnout,interout,& 
 iprotout,iproxout,iscaleout,ioutlierout,& 
 nsample,nrnodes,mimp,near,& 
 ifprot,ifscale,iftest,mdim0,ntest0,nprot0,nscale0,& 
! My control: 
        ROC,& 
!   REAL arrays 
 aa(IIx),& 
 aa(IIxts),& 
 aa(IIv5),& 
 aa(IIv95),& 
 aa(IItgini),& 
 aa(IIzt),& 
 aa(IIavgini),& 
 aa(IIvotes),& 
 aa(IIeffect),& 
 aa(IIteffect),& 
 aa(IIhist),& 
 aa(IIg),& 
 aa(IIfill),& 
 aa(IIrinpop),& 
 aa(IIdgini),& 
 aa(IIxbestsplit),& 
 aa(IItnodewt),& 
 aa(IItw),& 
 aa(IItn),& 
 aa(IIv),& 
 aa(IIwin),& 
 aa(IItemp),& 
 aa(IIq),& 
 aa(IIdevout),& 
 aa(IIclasswt),& 
 aa(IIwr),& 
 aa(IItmissts),& 
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 aa(IItmiss),& 
 aa(IItclasspop),& 
 aa(IIwl),& 
 aa(IIrmedout),& 
 aa(IItclasscat),& 
 aa(IIqts),& 
 aa(IIclasspop),& 
 aa(IIsignif),& 
 aa(IIzscore),& 
 aa(IIsqsd),& 
 aa(IIavimp),& 
 aa(IIqimp),& 
 aa(IIqimpm),& 
 aa(IItout),& 
 aa(IIouttr),& 
 aa(IIxc),& 
 aa(IIdn),& 
 aa(IIcp),& 
 aa(IIcm),& 
 aa(IIvotecat),& 
 aa(IIfreq),& 
 aa(IIwc),& 
 aa(IIoutts),& 
 aa(IIpopclass),& 
 aa(IIprotlow),& 
 aa(IIprot),& 
 aa(IIprothigh),& 
 aa(IIprotfreq),& 
 aa(IIrpop),& 
 aa(IIprotv),& 
 aa(IIwtx),& 
 aa(IIprotvlow),& 
 aa(IIprotvhigh),& 
! 
!   INTEGER arrays 
 im(IIcat),& 
 im(IIiv),& 
 im(IImsm),& 
 im(IImuse),& 
 im(IIirnk),& 
 im(IImissing),& 
 im(IIa),& 
 im(IIasave),& 
 im(IIb),& 
 im(IIcl),& 
 im(IIout),& 
 im(IInodextr),& 
 im(IInodexvr),& 
 im(IIjin),& 
 im(IIjoob),& 
 im(IIpjoob),& 
 im(IIndbegin),& 
 im(IIjvr),& 
 im(IIjtr),& 
 im(IIjest),& 
 im(IIibest),& 
 im(IIisort),& 
 im(IIloz),& 
 im(IIta),& 
 im(IIncase),& 
 im(IIidmove),& 
 im(IIkpop),& 
 im(IIjests),& 
 im(IIjts),& 
 im(IIiwork),& 
 im(IInodexts),& 
 im(IIclts),& 
 im(IIimax),& 
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 im(IIjinb),& 
 im(IIbestsplitnext),& 
 im(IIbestvar),& 
 im(IIbestsplit),& 
 im(IInodestatus),& 
 im(IInodepop),& 
 im(IInodestart),& 
 im(IInodeclass),& 
 im(IIparent),& 
 im(IItreemap),& 
 im(IIncts),& 
 im(IInc),& 
 im(IImtab),& 
 im(IIncn),& 
 im(IIits),& 
 im(IIjpur),& 
 im(IInpend),& 
 im(IIinear),& 
 im(IInrcat),& 
 im(IIkcat),& 
 im(IIncatsplit),& 
 im(IInbestcat),& 
 im(IIncp),& 
 im(IInodexb),& 
 im(IInpcase),& 
 im(IIncount),& 
 im(IInod),& 
! 
!!!  DOUBLE precision arrays 
 dd(KKprox),& 
 dd(KKy),& 
 dd(KKu),& 
 dd(KKdl),& 
 dd(KKxsc),& 
 dd(KKred),& 
 dd(KKee),& 
 dd(KKev),& 
 dd(KKppr)& 
 ) 
! 
 return 
 end ! OF THE MAIN 
! 
! 
! 
! 
! 
! 
! ======================================================= 
! *******  MAIN REWRITTEN AS A SUBROUTINE MAIN2 ********* 
! ======================================================= 
! 
 subroutine main2(datatrain, datatest,& 
 mdim,ntrain,nclass,maxcat,ntest,& 
 labelts,labeltr,mtry0,ndsize,jbt,look,lookcls,& 
 jclasswt,mdim2nd,mselect,imp,interact,impn,& 
 nprox,nrnn,noutlier,nscale,nprot,missfill,iviz,& 
 isaverf,isavepar,isavefill,isaveprox,& 
 irunrf,ireadpar,ireadfill,ireadprox,& 
 isumout,idataout,impfastout,impout,impnout,interout,& 
 iprotout,iproxout,iscaleout,ioutlierout,& 
 nsample,nrnodes,mimp,near,& 
 ifprot,ifscale,iftest,mdim0,ntest0,nprot0,nscale0,& 
! my control: 
        ROC,& 
! real arrays 
 x,xts,v5,v95,tgini,zt,avgini,& 
 votes,effect,teffect,hist,g,fill,rinpop,& 



 

30 

 dgini,xbestsplit,tnodewt,& 
 tw,tn,v,win,temp,q,devout,classwt,wr,& 
 tmissts,tmiss,tclasspop,wl,rmedout,tclasscat,qts,& 
 classpop,signif,zscore,sqsd,avimp,qimp,qimpm,tout,& 
 outtr,xc,dn,cp,cm,votecat,freq,wc,outts,& 
 popclass,protlow,prot,prothigh,protfreq,rpop,& 
 protv,wtx,protvlow,protvhigh,& 
! integer arrays 
 cat,iv,msm,& 
 muse,irnk,missing,a,& 
 asave,b,& 
 cl,out,nodextr,nodexvr,& 
 jin,joob,pjoob,ndbegin,& 
 jvr,jtr,jest,ibest,& 
 isort,loz,& 
 ta,ncase,idmove,kpop,& 
 jests,jts,iwork,& 
 nodexts,clts,imax,jinb,& 
 bestsplitnext,bestvar,bestsplit,& 
 nodestatus,nodepop,nodestart,& 
 nodeclass,parent,treemap,& 
 ncts,nc,mtab,ncn,& 
 its,jpur,npend,inear,& 
 nrcat,kcat,ncatsplit,& 
 nbestcat,ncp,nodexb,& 
 npcase,ncount,nod,& 
! DOUBLE precision arrays 
 prox,& 
 y,& 
 u,& 
 dl,& 
 xsc,& 
 red,& 
 ee,& 
 ev,& 
 ppr& 
 ) 
! 
 character*255 datatrain, datatest 
! 
 integer mdim,ntrain,nclass,maxcat,ntest,& 
 labelts,labeltr,mtry0,ndsize,jbt,look,lookcls,& 
 jclasswt,mdim2nd,mselect,imp,interact,impn,& 
 nprox,nrnn,noutlier,nscale,nprot,missfill,iviz,& 
 isaverf,isavepar,isavefill,isaveprox,& 
 irunrf,ireadpar,ireadfill,ireadprox,& 
 isumout,idataout,impfastout,impout,impnout,interout,& 
 iprotout,iproxout,iscaleout,ioutlierout,& 
 nsample,nrnodes,mimp,near,& 
 ifprot,ifscale,iftest,mdim0,ntest0,nprot0,nscale0,& 
        ROC 
! 
 character*25 stri(100),stri1,stri2 !27.5.2010 
 character chr 
 real code,xx 
  
! ------------------------------------------------------- 
! DIMENSIONING OF ARRAYS 
! 
 real x(mdim,nsample),xts(mdim,ntest0),v5(mdim),v95(mdim),& 
 tgini(mdim),zt(mdim),avgini(mdim),& 
 votes(mdim0,jbt),effect(mdim0,mdim0),teffect(mdim0,mdim0),& 
 hist(0:mdim0,mdim0),g(mdim0),fill(mdim),rinpop(near,jbt),& 
 dgini(nrnodes),xbestsplit(nrnodes),tnodewt(nrnodes),& 
 tw(nrnodes),tn(nrnodes),v(nsample),win(nsample),temp(nrnn),& 
      q(nclass,nsample),devout(nclass),classwt(nclass),wr(nclass),& 
 tmissts(nclass),tmiss(nclass),tclasspop(nclass),wl(nclass),& 
 rmedout(nclass),tclasscat(nclass,maxcat),qts(nclass,ntest0),& 
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 classpop(nclass,nrnodes),signif(mimp),zscore(mimp),sqsd(mimp),& 
 avimp(mimp),qimp(nsample),qimpm(nsample,mimp),tout(near),& 
 outtr(near),xc(maxcat),dn(maxcat),cp(maxcat),cm(maxcat),& 
 votecat(maxcat),freq(maxcat),wc(nsample),outts(ntest0),& 
 popclass(nprot0,nclass),protlow(mdim,nprot0,nclass),& 
 prot(mdim,nprot0,nclass),prothigh(mdim,nprot0,nclass),& 
 protfreq(mdim,nprot0,nclass,maxcat),rpop(nrnodes),& 
 protv(mdim,nprot0,nclass),wtx(nsample),& 
 protvlow(mdim,nprot0,nclass),protvhigh(mdim,nprot0,nclass) 
 
 integer cat(mdim),iv(mdim),msm(mdim),& 
        muse(mdim),irnk(mdim,jbt),missing(mdim,near),a(mdim,nsample),& 
 asave(mdim,nsample),b(mdim,nsample),& 
 cl(nsample),out(nsample),nodextr(nsample),nodexvr(nsample),& 
 jin(nsample),joob(nsample),pjoob(nsample),ndbegin(near,jbt),& 
 jvr(nsample),jtr(nsample),jest(nsample),ibest(nrnn),& 
 isort(nsample),loz(near,nrnn),& 
 ta(nsample),ncase(nsample),idmove(nsample),kpop(nrnodes),& 
 jests(ntest0),jts(ntest0),iwork(near),& 
 nodexts(ntest0),clts(ntest0),imax(ntest0),jinb(near,jbt),& 
 bestsplitnext(nrnodes),bestvar(nrnodes),bestsplit(nrnodes),& 
 nodestatus(nrnodes),nodepop(nrnodes),nodestart(nrnodes),& 
 nodeclass(nrnodes),parent(nrnodes),treemap(2,nrnodes),& 
 ncts(nclass),nc(nclass),mtab(nclass,nclass),ncn(near),& 
        its(nsample),jpur(nrnn),npend(nclass),inear(nrnn),& 
 nrcat(maxcat),kcat(maxcat),ncatsplit(maxcat),& 
 nbestcat(maxcat,nrnodes),ncp(near),nodexb(near,jbt),& 
 npcase(near,jbt),ncount(near,jbt),nod(nrnodes),nmfmax,& 
 ncsplit,ncmax,nmissfill,ndimreps,nmf,nmd,iseed 
! 
! ------------------------------------------------------- 
!     USED IN PROXIMITY AND SCALING 
! 
 double precision prox(near,nrnn),y(near),u(near),& 
 dl(nscale0),xsc(near,nscale0),red(near),ee(near),& 
 ev(near,nscale0),ppr(near) 
! 
 character*500 text 
! 
! ------------------------------------------------------- 
!     SCALAR DECLARATIONS 
! 
 real errtr,errts,tavg,er,randomu 
! 
 integer mtry,n,m,mdimt,k,j,i,m1,jb,nuse,ndbigtree,jj,mr,& 
 n0,n1,n2,n3,n4,n5,n6,n7 
! 
! write(*,*)'after arrays declaration' 
! 
! ------------------------------------------------------- 
! READ OLD TREE STRUCTURE AND/OR PARAMETERS 
!  
[The original continues. The modified procedure for reading data follows:] 
! ------------------------------------------------------- 
! write(*,*)' READ IN DATA--SEE MANUAL FOR FORMAT   27 May 2010' 
! 
! do n=1,100 
!     stri(n)=' '!!! <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 
! enddo 
 stri2=' ' 
 nclass=0 
 open(16, file=datatrain, status='old') 
 do n=1,ntrain 
  read(16,*) (x(m,n),m=1,mdim),stri1 
!  write(*,*)'stri1=',stri1(1:1),'=xx' 
         do j=1,25 
      chr=stri1(j:j) 
      read(chr,'(I1)',ERR=56)i  !o to i tu vubec nejde, obvykle nula 
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      enddo 
   56    if(j.EQ.1) then ! 9.6.2010  
      j=2 
  endif 
     stri2=stri1(1:j-1) 
!  write(*,*)j,'x',stri2,'y' 
  do i=1,100 
      if(stri2.EQ.stri(i))then 
   cl(n)=i 
!   write(*,*)j,'then',stri2,'y',cl(n) 
   goto 60 
      else 
   if(i.GT.nclass)then!new class is added 
       nclass=nclass+1 
       stri(nclass)=stri2 
       cl(n)=nclass 
!       write(*,*)j,'else',stri2,'y',cl(n) 
       goto 60 
   endif 
      endif 
  enddo 
!   60  write(*,*)cl(n) 
   60         continue 
 enddo 
 close(16) 
!        write(*,*)'final classes=',nclass 
 if(ntest.gt.0) then 
  open(17, file=datatest, status='old') 
  if(labelts.ne.0) then 
   do n=1,ntest0 
    read(17,*) (xts(m,n),m=1,mdim),stri1 !xx !<<<<<<<<<<TADY 
!    write(*,*)'stri1=',stri1(1:1),'=xx' 
        do j=1,25 
        chr=stri1(j:j) 
        read(chr,'(I1)',ERR=66)i  !o to i tu vubec nejde,  
 
obvykle nula 
        enddo 
   66      if(j.EQ.1) then ! 9.6.2010  
        j=2 
    endif 
       stri2=stri1(1:j-1) 
!    write(*,*)j,'x',stri2,'y' 
    do i=1,100 
        if(stri2.EQ.stri(i))then 
     clts(n)=i 
!     write(*,*)j,'then',stri2,'y',clts(n) 
     goto 70 
        else 
     if(i.GT.nclass)then !assign to the last class 
         clts(n)=nclass 
!             write(*,*)j,'else',stri2,'y',clts(n) 
         goto 70 
     endif 
        endif 
    enddo 
   70    continue 
!       write(*,*)'for tst sample',n,' desired class =',clts(n) 
   enddo 
  else 
   do n=1,ntest0 
    read(17,*) (xts(m,n),m=1,mdim) 
   enddo 
  endif 
  close(17) 
 endif 
! 
! ------------------------------------------------------- 
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! SELECT SUBSET OF VARIABLES TO USE  
[The original continues till the end. After it we added a simple function as follows.] 
! 
 function mylen(str)   ! 11 June 2010 
!  Computes length of a string not counting spaces from the right.  
!  Two spaces between other charactes are admissible. 
     character*1 str 
     mezcount=0 
     lastpos=0 
     do i=1,500 
  if(str(i:i).eq.' ') then 
      mezcount=mezcount+1 
      if(mezcount.GE.3) then 
   mylen=lastpos 
   return 
      endif 
  else 
      lastpos=i 
      mezcount=0 
  endif 
     enddo 
 end 
! 
 
 


