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Abstract:

This report is devoted to preconditioning techniques for the matrix-free truncated Newton
method. After a review of basic known approaches, we propose new results concerning tridia-
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the careful comparison of suitable preconditioning techniques and confirming efficiency of the
band preconditioners.

Keywords:
Unconstrained optimization, large scale optimization, truncated Newton method, matrix-free
Newton method, band preconditioners, algorithms.

1This work was supported by the Grant Agency of the Czech Republic, project No. 201/09/1957, and
the institutional research plan No. AVOZ10300504



1 Introduction

We consider the unconstrained minimization problem

x∗ = arg min
x∈Rn

F (x),

where function F : D(F ) ⊂ Rn → R is twice continuously differentiable and n is large. We
use the notation

g(x) = ∇F (x), G(x) = ∇2F (x)

and the assumption that ‖G(x)‖ ≤ G, ∀x ∈ D(F ). Numerical methods for unconstrained
minimization are usually iterative and their iteration step has the form

xk+1 = xk + αksk, k ∈ N,

where sk is a direction vector and αk is a step-length. In this report, we will deal with the
Newton method, which uses the quadratic model

F (xk + s) ≈ Q(xk + s) = F (xk) + gT (xk)s+
1

2
sTG(xk)s (1)

for direction determination in such a way that

sk = arg min
s∈Mk

Q(xk + s). (2)

There are two basic possibilities for direction determination: the line-search method, where

Mk = Rn,

and the trust-region method, where

Mk = {s ∈ Rn : ‖s‖ ≤ Δk}
(here Δk > 0 is the trust region radius). Properties of line search and trust region methods
together with comments concerning their implementation are perfectly introduced in [4],
[22], so no more details are given here.

In this report, we assume that neither matrix Gk = G(xk) nor its sparsity pattern are
explicitly known. In this case, direct methods based on Gaussian elimination cannot be
used, so it is necessary to compute the direction vector (2) iteratively. There are many
various iterative methods making use of a symmetry of the Hessian matrix, see [26]. Some
of them, e.g. [7], [8], [24] allow us to consider indefinite Hessian matrices. Even if these
methods are of theoretical interest and lead to nontraditional preconditioners, see [9], we
restrict our attention to modifications of the conjugate gradient method [27], [28], [29],
which are simple and very efficient (also in the indefinite case).

To make the subsequent investigations clear, we first introduce two basic iterative algo-
rithms for direction determination utilizing the preconditioned conjugate gradient (PCG)
method: the line search algorithm proposed in [27] and the trust region algorithm proposed
in [28] and [29] (the outer index k is for the sake of simplicity omitted).
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Algorithm 1 Direction determination by the PCG method (the line-search strategy)

s1 = 0, g1 = g, h1 = C−1g1, ρ1 = gT1 h1, p1 = −h1.
Do i = 1 to n+ 3

qi = Gpi, σi = pTi qi.

If σi < ε‖pi‖ then s = si, stop.

αi = ρi/σi, si+1 = si + αipi, gi+1 = gi + αiqi,

hi+1 = C−1gi+1, ρi+1 = gTi+1hi+1.

If ‖gi+1‖ ≤ ω‖g1‖ or i = m then s = si, stop.

βi = ρi+1/ρi, pi+1 = −hi+1 + βipi.

End do

Algorithm 2 Direction determination by the PCG method (the trust-region strategy)

s1 = 0, g1 = g, h1 = C−1g1, ρ1 = gT1 h1, p1 = −h1.
Do i = 1 to n+ 3

qi = Gpi, σi = pTi qi.

If σi ≤ 0 then s = si + λipi, ‖s‖ = Δi, stop.

αi = ρi/σi.

If ‖si + αipi‖ ≥ Δi then s = si + λipi, ‖s‖ = Δi, stop.

si+1 = si + αipi, gi+1 = gi + αiqi,

hi+1 = C−1gi+1, ρi+1 = gTi+1hi+1.

If ‖gi+1‖ ≤ ω‖g1‖ or i = m then s = si, stop.

βi = ρi+1/ρi, pi+1 = −hi+1 + βipi.

End do

Since matrix G is not given explicitly, we use numerical differentiation instead of matrix
multiplication. Thus the product q = Gp is replaced by the difference

G(x)p ≈ g(x+ δp)− g(x)

δ
(3)

where δ = ε/‖p‖ (usually ε =
√
εM and εM is a machine precision). An optimization

method, where the direction vector is computed iteratively by one of the above algorithms
and where product q = Gp is replaced by difference (3), is called the truncated Newton
method. This method has been theoretically studied in many papers, see [5], [6], [19], [23].
The following theorem, which easily follows from the mean value theorem, confirms the
choice (3).

Theorem 1 Let function F : Rn → R have Lipschitz continuous second order derivatives
(with the constant L). Let q = G(x)p and

q̃ =
g(x+ δp)− g(x)

δ
, δ =

ε

‖p‖ .
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Then it holds

‖q̃ − q‖ ≤ 1

2
εL‖p‖.

A disadvantage of the truncated Newton method consists in the fact that it requires a large
number of inner iterations (i.e. a large number of gradient evaluations) if matrix G = G(x)
is ill-conditioned. Therefore, the conjugate gradient method need to be suitably precondi-
tioned. Unfortunately, the sparsity pattern of G is not known, so the usual preconditioning
methods (e.g. methods based on the incomplete Choleski decomposition) cannot be used.
In this report we confine to the following particular approaches (see [18], [19], [20], [25]).

(A1) Preconditioners based on the limited memory BFGS method.

(A2) Preconditioners obtained by the standard BFGS method equivalent to the precondi-
tioned conjugate gradient method.

(A3) Preconditioners obtained by the numerical differentiation.

(A4) Preconditioners determined by the Lanczos method equivalent to the unprecondi-
tioned conjugate gradient method.

These possibilities are described in Section 2. In Section 3, we focus on band precon-
ditioners based on approach (A2) and prove some new results concerning their positive
definiteness. Section 4 is devoted to band preconditioners based on approach (A3), where
we propose some theoretical results confirming their efficiency. The last section contains
some important comments concerning implementation of band preconditioners and results
of computational experiments comparing various preconditioning techniques.

2 Building preconditioners for the truncated Newton method

In this section, we describe four approaches mentioned above in more details. This de-
scription is necessary for understanding new results introduced in the subsequent sections
and for an extensive comparison of selected preconditioners presented in Section 5.

The idea of approach (A1), the use of the limited memory BFGS updates, is very
simple (see [18]). Matrix C−1

k = Hk = Hk
k , used as a preconditioner in the k-th step of

the truncated Newton method, is determined recurrently in such a way that Hk
k−l = γk−lI,

where l is the number of updates (usually l = min(k − 1, 3)) and

Hk
j+1 = Hk

j +

(
yTj H

k
j yj

yTj dj
+ 1

)
djd

T
j

yTj dj
− Hk

j yjd
T
j + dj(H

k
j yj)

T

yTj dj

= V T
j H

k
j Vj +

djd
T
j

yTj dj

for k − l ≤ j ≤ k − 1 with

Vj = I − yjd
T
j

yTj dj
, dj = xj+1 − xj , yj = gj+1 − gj.
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Matrix Hk is not computed explicitly. In the i-th inner step of the conjugate gradient
method, which is used in the k-th outer step of the Newton method, a vector hi = C−1

k gi =
Hk gi is determined by the Strang recurrences [17]. First, we set uk = gi and compute
numbers and vectors

σj =
dTj uj+1

yTj dj
and uj = uj+1 − σjyj, k − l ≤ j ≤ k − 1,

respectively, using backward recurrences. Then we set vk−l = γk−luk−l and compute vectors

vj+1 = vj +

(
σj −

yTj vj

yTj dj

)
dj, k − l ≤ j ≤ k − 1,

using forward recurrence. Finally, we set hi = vk. Scaling parameter γk−l serves for
improving the efficiency of the preconditioner. A suitable choice is γk−l = yTk dk/y

T
k yk. The

use of the Strang recurrences is the oldest (and simplest) possibility for implementing the
limited memory BFGS method. There are other useful procedures based on explicit [2] or
recursive [16] matrix formulations.

Approach (A2), introduced in [20], is based on the fact that the BFGS method with
perfect line search applied to a strictly convex quadratic function is equivalent to the
conjugate gradient method with the same step-size selection. Assume that the conjugate
gradient method, used in the current step of the Newton method, is preconditioned by
the matrix Ck. Applying the equivalent BFGS updates, we construct matrix Bk, whose
elements serves for the determination of preconditioner Ck+1 utilized in the next step
of the Newton method. To simplify the notation, we omit index k in the subsequent
considerations.

The BFGS method equivalent to the PCG method generates a sequence of matrices Bi,
1 ≤ i ≤ m, in such a way that B1 = C and

Bi+1 = Bi +
yiy

T
i

dTi yi
− Bidi(Bidi)

T

dTi Bidi
= Bi +

Gpi(Gpi)
T

pTi Gpi
+
gig

T
i

pTi gi

for 1 ≤ i ≤ m, where di = si+1 − si = αipi and yi = gi+1 − gi = Gdi. Vectors pi and gi
are byproducts of the conjugate gradient method preconditioned by matrix C. If we use
vectors q̃i (given by the numerical differentiation) and g̃i instead of vectors qi = Gpi and
gi, respectively, we can write

B1 = C, Bi+1 = Bi +
q̃iq̃

T
i

pTi q̃i
+
g̃ig̃

T
i

pTi g̃i
, 1 ≤ i ≤ m. (4)

From the above formulation, it is evident that only vectors generated by the preconditioned
conjugate gradient method (with matrix multiplication replaced by the numerical differen-
tiation) are used for the determination of matrices Bi, 1 ≤ i ≤ m. These matrices do not
occur in correction terms, so we can update and save only their selected parts (which has
the same effect as the deletion of superfluous elements in the final matrix B = Bm+1). If
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the vectors q̃i and g̃i are good approximations of the vectors qi and gi, then the matrices Bi,
1 ≤ i ≤ m, are positive definite. Further, if the number of steps of the conjugate gradient
method is sufficiently large, the matrix B = Bm+1 is a good approximation of matrix G so
we can use its saved part as a preconditioner in the next step of the Newton method.

The described idea is mentioned in [20], where the author recommends to use the main
diagonal of the matrix B to define the diagonal preconditioner. If C = D, where D is
a diagonal matrix containing diagonal elements of B, no problem arises because positive
definite matrix B has positive numbers on the main diagonal. Diagonal preconditioning
for problems with sparse Hessian matrices justifies the following theorem proved in [13].

Theorem 2 Let Dn be the set of all diagonal matrices of order n and let D be a diagonal
matrix containing diagonal elements of matrix G. Then it holds

κ(GD−1) ≤ l min
M∈Dn

κ(GM−1)

where κ is a spectral condition number and l is a maximum number of nonzero elements
in rows of matrix G.

Approach (A3) is based on the assumption that the Hessian matrix has a simple pattern
(even if this assumption is not really satisfied). If the fictive Hessian matrix is diagonal,
then all its elements can be approximated by using one gradient difference

G(x)v ≈ g(x+ v)− g(x), v = [δ1, . . . , δn]
T ,

where δ1, . . . , δn are suitable differences, see [3]. Diagonal matrix C = D = diag(α1, . . . , αn),
whereDv = g(x+v)−g(x), is then used as a preconditioner. One has αiδi = gi(x+v)−gi(x),
so

αi =
gi(x+ v)− gi(x)

δi
, 1 ≤ i ≤ n. (5)

Remark 1 The differences δi, 1 ≤ i ≤ n, can be chosen in two different ways:

(1) We set δi = δ, 1 ≤ i ≤ n, so v = δe, where e is a vector with all elements equal to

one. Usually δ =
√
εM/‖e‖ =

√
εM/n (similarly as in Theorem 1).

(2) We set δi =
√
εM max(|xi|, 1), 1 ≤ i ≤ n. This choice is less sensitive to rounding

errors.

In both cases one can write δi = εδi, 1 ≤ i ≤ n, where ε =
√
εM and either δi = 1/

√
n or

δi = max(|xi|, 1) for 1 ≤ i ≤ n.

A disadvantage of preconditioners based on the numerical differentiation consists in the
fact that they may not be positive definite. Consider a strictly convex quadratic function
F : R2 → R:

F (x) =
1

2
xT
[

1 −2
−2 6

]
x, g(x) =

[
1 −2

−2 6

]
x.
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Then it holds
g(x+ δe)− g(x)

δ
=

[
1 −2

−2 6

] [
1
1

]
=

[ −1
4

]
,

thus

De =

[
α1 0
0 α2

] [
1
1

]
=

[ −1
4

]
,

which gives α1 = −1, α2 = 4, so matrix D is not positive definite. This drawback can be
removed by setting

αi =
|gi(x+ v)− gi(x)|

δi
, 1 ≤ i ≤ n,

instead of (5). This modification is justified by the following theorem proved in [13] (see
also [25]).

Theorem 3 Let Dn be the set of all diagonal matrices of order n and let D = diag(α1, . . . , αn)
be a diagonal matrix such that

αi =
n∑

j=1

|Gij|, 1 ≤ j ≤ n,

where Gij, 1 ≤ j ≤ n, are the elements of the i-th row of matrix G. Then it holds

κ1(GD
−1) = min

M∈Dn

κ1(GM
−1),

where κ1 is an l1 condition number (the product of l1 norms of a matrix and its inverse).

If all elements of Hessian matrix G are positive and if we set v = δe, then we can write
De = (g(x+ δe)− g(x))/δ ≈ Ge, so

αi ≈
n∑

j=1

Gij =
n∑

j=1

|Gij|

and matrix D is according to Theorem 3 an ideal preconditioner (in l1 norm) for the system
of equations Gs+ g = 0. If matrix G does not contain only positive numbers, one has

|αi| ≈
∣∣∣∣∣∣

n∑
j=1

Gij

∣∣∣∣∣∣ ≤
n∑

j=1

|Gij|,

so the elements of modified matrix D form the lower bound for the elements of an ideal
preconditioner.

Approach (A4) is based on the use of the symmetric Lanczos method, which is equiva-
lent to the conjugate gradient method. The elements of a tridiagonal matrix T̄m obtained
by the Lanczos method can be determined from the coefficients of the conjugate gradient
method (Algorithm 1 and Algorithm 2) by transformations ᾱ1 = 1/α1 and

β̄2
i =

βi
α2
i

, ᾱi+1 =
βi
αi

+
1

αi+1

, 1 ≤ i ≤ m,
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(see [12]), where m is the number such that αi > 0 for 1 ≤ i ≤ m. Tridiagonal matrix T̄m
obtained by this way is positive definite (it follows from the proof of Theorem 4 introduced
below). This matrix has dimension m ≤ n.

In order to obtain a preconditioner with the dimension n, we set

C = [Qm, Qn−m]

[
T̄m 0
0 In−m

]
[Qm, Qn−m]

T = (I −QmQ
T
m) +QmT̄mQ

T
m, (6)

where Qm is a matrix with m orthonormal columns obtained by the symmetric Lanczos
method andQn−m is a matrix with n−m orthonormal columns such that matrix [Qm, Qn−m]
is square and orthogonal. Matrix C is also positive definite and its inverse can be computed
using the simple formula

C−1 = (I −QmQ
T
m) + QmT̄

−1
m QT

m, (7)

see [9].
The disadvantage of preconditioner (6) lies in that this matrix can be defined only

in the unpreconditioned step of the Newton method. If we use a preconditioner, then
the columns of matrix Qm are not orthonormal (see [4]) and matrix (6) does not have
the required properties (its inverse cannot be computed by (7)). In order to avoid such
difficulties, we would have to include the used preconditioner into expression (6) (in place of
the unit matrix). It means that we would have to store preconditioners from all previous
steps which is impractical. Thus we proceed as follows. We perform m � n steps of
the unpreconditioned conjugate gradient method and construct preconditioner (6), which
is used in the next steps of the conjugate gradient method (we can also go back to the
beginning of the iteration process or use a more complicated strategy described in [9]).

3 Band preconditioners obtained by the standard BFGS updates

Now we focus our attention on approach (A2) considering band preconditioners with the
bandwidth greater than one. Let C = T , where T is a tridiagonal matrix containing
elements of three main diagonals of positive definite matrix B = Bm+1 obtained by (4).
In this case, matrix C may not be positive definite (even if B is positive definite). As an
example, consider matrices

B =

⎡
⎢⎣

2 −2 2
−2 3 −3
2 −3 4

⎤
⎥⎦ , T =

⎡
⎢⎣

2 −2 0
−2 3 −3
0 −3 4

⎤
⎥⎦ .

Both these matrices have positive elements on the main diagonal and positive main sub-
determinants of the second order. But it holds that detB = 2 and det T = −10 so T is
not positive definite, although B is positive definite. In order to remove this drawback, we
modify matrix T to be positive definite (see below).

First we introduce the following well-known lemma, see [11] (for convenience we denote
elements of T by αi and βi even if they have different meaning than step-sizes αi and
coefficients βi used in conjugate gradient algorithms).

7



Lemma 1 Consider a tridiagonal matrix

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

α1 β1 . . . 0 0
β1 α2 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . αn−1 βn−1

0 0 . . . βn−1 αn

⎤
⎥⎥⎥⎥⎥⎥⎦

(8)

and denote Δi a main subdeterminant of the i-th order of matrix T containing rows and
columns with indices 1, 2, . . . , i. Then we can write Δ1 = α1 and

Δi = αiΔi−1 − β2
i−1Δi−2, 2 ≤ i ≤ n, (9)

where Δ0 = 1.

This lemma can be used in the proof of the next theorem (assertion of this theorem also
follows from the Cholesky decomposition of symmetric tridiagonal matrix described in
[11]).

Theorem 4 Let γ1 = α1 and

γi = αi − β2
i−1

γi−1
, 2 ≤ i ≤ n. (10)

Then tridiagonal matrix (8) is positive definite if and only if γi > 0 for 1 ≤ i ≤ n.

Proof We prove by induction that Δi = γiΔi−1 for 1 ≤ i ≤ n, where again Δ0 = 1. This
assertion is obvious for i = 1. Assume that Δi−1 = γi−1Δi−2 for some index i > 1. Using
(9) and (10), we obtain

Δi = αiΔi−1 − β2
i−1Δi−2 = αiΔi−1 + γi−1(γi − αi)Δi−2

= (Δi−1 − γi−1Δi−2)αi + γi−1γiΔi−2 = γiΔi−1,

so the induction step is finished. Since Δi = γiΔi−1 for 1 ≤ i ≤ n, then Δi > 0 holds if
and only if γi > 0 (for 1 ≤ i ≤ n). �

Theorem 4 can be utilized in such a way that we compute numbers γi, 1 < i ≤ n, and
as soon as γi ≤ 0 for some index i, we decrease the off-diagonal element βi−1 so that
β2
i−1 < γi−1αi (e.g. we set β2

i−1 = λi−1γi−1αi, where 0 < λi−1 < 1). The trouble is that
if we choose λi−1 unsuitably, the resulting tridiagonal matrix can be ill-conditioned. For
practical purposes it is more convenient to use the following theorem and its corollary.

Theorem 5 Consider a tridiagonal matrix (8) with positive numbers on the main diagonal.
If matrices [

αi 2βi
2βi αi+1

]
, 1 ≤ i < n− 1, (11)

are positive semidefinite then matrix T is positive definite.

8



Proof For an arbitrary vector v ∈ Rn, we can write

vTTv =
n∑

i=1

αiv
2
i + 2

n−1∑
i=1

βivivi+1

=
1

2
α1v

2
1 +

1

2

n−1∑
i=1

(
αiv

2
i + αi+1v

2
i+1 + 4βivivi+1

)
+

1

2
αnv

2
n

=
1

2
α1v

2
1 +

1

2

n−1∑
i=1

[vi, vi+1]

[
αi 2βi
2βi αi+1

] [
vi
vi+1

]
+

1

2
αnv

2
n (12)

Since matrices (11) appearing in this equality are positive semidefinite by the assumption,
one has vTTv ≥ 0. Assume that vTTv = 0. We prove by induction that v = 0, which
implies positive definiteness of T . Since α1 > 0, then necessarily v1 = 0. Assume that
vj = 0 for 1 ≤ j ≤ i, where i < n. Since

[vi, vi+1]

[
αi 2βi
2βi αi+1

] [
vi
vi+1

]
= αi+1v

2
i+1

and αi+1 > 0, one has vi+1 = 0, which finishes the induction step. �

Remark 2 Theorem 5 can be slightly weakened. As we can see, terms α1v
2
1 and αnv

2
n can

be added to the first and the last terms of the sum in formula (12), respectively. Thus
matrix T is positive definite if matrices

[
2α1 2β1
2β1 α2

]
,

[
αi 2βi
2βi αi+1

]
,

[
αn−1 2βn−1

2βn−1 2αn

]
,

where 2 ≤ i < n− 2, are positive semidefinite and at least one of them is positive definite.
This condition is useful, since elements α1 and αn are often smaller than we need (see
Theorem 10).

Corollary 1 Let tridiagonal matrix T contain the main diagonal and halves of co-diagonals
of the positive definite matrix B (thus αi = bi,i, 1 ≤ i ≤ n, and βi = bi,i+1/2, 1 ≤ i ≤ n−1).
Then T is positive definite.

Proof Substituting αi = bi,i, αi+1 = bi+1,i+1 and βi = bi,i+1/2, we obtain

[
αi 2βi
2βi αi+1

]
=

[
bi,i bi,i+1

bi,i+1 bi+1,i+1

]
, 1 ≤ i ≤ n− 1.

These matrices are positive definite, since matrix B is positive definite. �

Remark 3 Theorem 5 and Corollary 1 can be utilized in three particular ways.

(1) We choose elements of matrix T by Corollary 1. Thus for 1 ≤ i ≤ n − 1, we set
αi = bi,i, αi+1 = bi+1,i+1 and βi = bi,i+1/2.
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(2) For 1 ≤ i ≤ n − 1, we set αi = bi,i, αi+1 = bi+1,i+1, βi = bi,i+1, and compute
determinant αiαi+1 − 4β2

i of matrix (11). If αiαi+1 − 4β2
i ≥ 0, then βi remains

unchanged, else we divide βi by two.

(3) For 1 ≤ i ≤ n − 1, we set αi = bi,i, αi+1 = bi+1,i+1, βi = bi,i+1, and compute
determinant αiαi+1 − 4β2

i of matrix (11). If αiαi+1 − 4β2
i ≥ 0, then βi remains

unchanged, else we set βi = (1/2)
√
αiαi+1.

In all these cases, the resulting matrix is positive definite.

Assertions of Theorem 5 and Corollary 1 can be generalized for further band matrices.
We first show the corresponding procedure in the case of the following pentadiagonal matrix

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1 γ1 . . . 0 0 0
β1 α2 β2 . . . 0 0 0
γ1 β2 α3 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . αn−2 βn−2 γn−2

0 0 0 . . . βn−2 αn−1 βn−1

0 0 0 . . . γn−2 βn−1 αn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

Theorem 6 Consider a pentadiagonal matrix P with positive elements on the main dia-
gonal. If matrices⎡

⎢⎣ αi (3/2)βi 3γi
(3/2)βi αi+1 (3/2)βi+1

3γi (3/2)βi+1 αi+2

⎤
⎥⎦ , 1 ≤ i < n− 2, (14)

are positive semidefinite, then matrix P is positive definite.

Proof For an arbitrary vector v ∈ Rn, we can write

vTPv =
n∑

i=1

αiv
2
i + 2

n−1∑
i=1

βivivi+1 + 2
n−2∑
i=1

γivivi+2

=
1

3
α1v

2
1 +

1

3
(α1v

2
1 + α2v

2
2) + β1v1v2

+
1

3

n−2∑
i=1

(
αiv

2
i + αi+1v

2
i+1 + αi+2v

2
i+2 + 3βivivi+1 + 3βi+1vi+1vi+2 + 6γivivi+2

)

+
1

3
(αn−1v

2
n−1 + αnv

2
n) + βn−1vn−1vn +

1

3
αnv

2
n

=
1

3
α1v

2
1 +

1

3
[v1, v2]

[
α1 (3/2)β1

(3/2)β1 α2

] [
v1
v2

]

+
1

3

n−2∑
i=1

[vi, vi+1, vi+2]

⎡
⎢⎣

αi (3/2)βi 3γi
(3/2)βi αi+1 (3/2)βi+1

3γi (3/2)βi+1 αi+2

⎤
⎥⎦
⎡
⎢⎣

vi
vi+1

vi+2

⎤
⎥⎦

+
1

3
[vn−1, vn]

[
αn−1 (3/2)βn−1

(3/2)βn−1 αn

] [
vn−1

vn

]
+

1

3
αnv

2
n

10



Since matrices appearing in this equality are positive semidefinite by the assumption, one
has vTPv ≥ 0. Assume that vTPv = 0. We prove by induction that v = 0, which implies
positive definiteness of P . Similarly as in the proof of Theorem 5 we obtain v1 = 0 and
v2 = 0. Assume that vj = 0 for 1 ≤ j ≤ i, where i < n− 1. Since

[vi, vi+1, vi+2]

⎡
⎢⎣ αi (3/2)βi 3γi
(3/2)βi αi+1 (3/2)βi+1

3γi (3/2)βi+1 αi+2

⎤
⎥⎦
⎡
⎢⎣ vi
vi+1

vi+2

⎤
⎥⎦ = αi+2v

2
i+2

and αi+2 > 0, one has vi+2 = 0, which finishes the induction step. �

Corollary 2 Let a pentadiagonal matrix P contain the main diagonal, two thirds of the
first co-diagonals, and one third of the second co-diagonals of the positive definite matrix B
(thus αi = bi,i, 1 ≤ i ≤ n, βi = 2bi,i+1/3, 1 ≤ i ≤ n− 1, and γi = bi,i+2/3, 1 ≤ i ≤ n− 2).
Then P is positive definite.

Proof Substituting αi = bi,i, αi+1 = bi+1,i+1, αi+2 = bi+2,i+2, βi = 2bi,i+1/3, βi+1 =
2bi+1,i+2/3 and γi = bi,i+2/3, we obtain

⎡
⎢⎣ αi (3/2)βi 3γi
(3/2)βi αi+1 (3/2)βi+1

3γi (3/2)βi+1 αi+2

⎤
⎥⎦ =

⎡
⎢⎣ bi,i bi,i+1 bi,i+2

bi,i+1 bi+1,i+1 bi+1,i+2

bi,i+2 bi+1,i+2 bi+2,i+2

⎤
⎥⎦ , 1 ≤ i ≤ n− 2.

These matrices are positive definite, since matrix B is positive definite. �

Theorem 7 Let assumptions of Theorem 6 be satisfied. Then determinants Δi of matrices
(14) can be computed according to the formula

Δi = αi+1

(
αiαi+2 − 9γ2i

)
− 9

4

(
αiβ

2
i+1 + αi+2β

2
i − 6βiβi+1γi

)
. (15)

The determinant Δi is nonnegative if and only if γ
i
≤ γi ≤ γi where

γ
i

=
1

3αi+1

(
9

4
βiβi+1 −

√
Di

)
,

γi =
1

3αi+1

(
9

4
βiβi+1 +

√
Di

)

are the roots of the quadratic equation Δi = 0 and

Di =
(
αiαi+1 − 9

4
β2
i

)(
αi+1αi+2 − 9

4
β2
i+1

)

is the discriminant, divided by 36, of this equation, which is nonnegative provided that both
multipliers are nonnegative.

11



Proof Relation (15) follows immediately by evaluation of the pertinent determinant. Since
quadratic term −9γ2i in (15) has the negative sign and αi+1 > 0 by the assumption,
determinant Δi is nonnegative if and only if γ

i
≤ γi ≤ γi, where γi, γi are the roots of

quadratic equation Δi = 0. By (15), the discriminant of this equation (divided by number
36) is given by the relation

Di =
81

16
β2
i β

2
i+1 −

9

4
αiαi+1β

2
i+1 −

9

4
αi+1αi+2β

2
i + αiα

2
i+1αi+2

=
9

4
β2
i+1

(
9

4
β2
i − αiαi+1

)
− αi+1αi+2

(
9

4
β2
i − αiαi+1

)

=
(
αiαi+1 − 9

4
β2
i

)(
αi+1αi+2 − 9

4
β2
i+1

)
.

�

Theorem 7 offers two possibilities how to choose a new element γi in case that Δi < 0.
If γi < γ

i
, we set γi := γ

i
. If γi > γi, we set γi := γi. However, more advantageous is to

set

γi =
1

2
(γ

i
+ γi) =

3

4

βiβi+1

αi+1
, (16)

because this choice is computationally simpler and gives better practical results.

Remark 4 Theorem 6 and Corollary 2 can be utilized in three particular ways.

(1) We choose elements of matrix P by Corollary 2. For 1 ≤ i ≤ n, we set αi = bi,i. For
1 ≤ i ≤ n− 1, we set βi = 2bi,i+1/3. For 1 ≤ i ≤ n− 2, we set γi = bi,i+2/3.

(2) For 1 ≤ i ≤ n − 2, we set αi = bi,i, αi+1 = bi+1,i+1, αi+2 = bi+2,i+2, βi = bi,i+1,
βi+1 = bi+1,i+2 and γi = bi,i+2. If matrix (14) is positive definite, then βi, βi+1 and γi
remain unchanged, else we set βi = 2bi,i+1/3, βi+1 = 2bi+1,i+2/3 and γi = bi,i+2/3.

(3) For 1 ≤ i ≤ n, we set αi = bi,i. For 1 ≤ i ≤ n − 1, we set βi = bi,i+1, and compute
leading subdeterminant αiαi+1 − (9/4)β2

i of matrix (14). If αiαi+1 − (9/4)β2
i ≥ 0,

then βi remains unchanged, else we set βi = (2/3)
√
αiαi+1. For 1 ≤ i ≤ n − 2, we

set γi = bi,i+2 and compute determinant Δi by (15). If Δi ≥ 0, then γi remains
unchanged, else we compute γi by (16).

In all these cases, the resulting matrix is positive definite.

So far we have assumed that preconditioner C is at most pentadiagonal, but Corollary 2
can be generalized for other band preconditioners. Let C be a symmetric band matrix with
the bandwidth l, so it has the main diagonal and k − 1 = (l − 1)/2 pairs of co-diagonals,
which are equal to the corresponding diagonals of positive definite matrix B. Then if we
multiply the i-th pair of co-diagonals by number (k− i)/k (for 1 ≤ i ≤ k−1), the resulting
matrix is positive definite. The proof of this assertion is similar to proof of Corollary 2 (we
use an analogy of Theorem 6).

12



4 Band preconditioners obtained by the numerical differentiation

Now we focus our attention on approach (A3) considering band preconditioners with the
bandwidth greater than one. Assume that the Hessian matrix has a band pattern (even
if this assumption is not really satisfied). The elements of this fictive matrix, used as a
preconditioner, can be determined by the numerical differentiation. This is performed only
once at the beginning of the outer step of the Newton method.

In order to determine all elements of the band Hessian matrix which has k − 1 pairs
of co-diagonals (thus k = (l + 1)/2 where l is a bandwidth), it suffices to use k gradient
differences, which means to compute k extra gradients during each outer step of the Newton
method.

Theorem 8 Let the Hessian matrix of function F be tridiagonal (as matrix T in (8)). Set
v1 = [δ1, 0, δ3, 0, δ5, 0, . . .], v2 = [0, δ2, 0, δ4, 0, δ6, . . .], where δi = εδi, 1 ≤ i ≤ n. Then for
1 < i < n it holds

α1 = lim
ε→0

g1(x+ v1)− g1(x)

δ1
, β1 = lim

ε→0

g1(x+ v2)− g1(x)

δ2
,

αi = lim
ε→0

gi(x+ v1)− gi(x)

δi
, βi = lim

ε→0

gi(x+ v2)− gi(x)− δi−1βi−1

δi+1
, mod(i, 2) = 1,

αi = lim
ε→0

gi(x+ v2)− gi(x)

δi
, βi = lim

ε→0

gi(x+ v1)− gi(x)− δi−1βi−1

δi+1
, mod(i, 2) = 0,

αn = lim
ε→0

gn(x+ v1)− gn(x)

δn
, mod(n, 2) = 1,

αn = lim
ε→0

gn(x+ v2)− gn(x)

δn
, mod(n, 2) = 0.

Proof Theorem 1 implies that g(x + v1) − g(x) = G(x)v1 + o(ε), g(x + v2) − g(x) =
G(x)v2 + o(ε), so after substituting G(x) = T , where T is a tridiagonal matrix of the form
(8), and rearranging individual elements we obtain

g1(x+ v1)− g1(x)

δ1
= α1 + o(1),

g1(x+ v2)− g1(x)

δ2
= β1 + o(1),

gi(x+ v1)− gi(x)

δi
= αi + o(1),

gi(x+ v2)− gi(x)

δi+1
= βi+1 + βi−1

δi−1

δi+1
+ o(1), mod(i, 2) = 1,

gi(x+ v2)− gi(x)

δi
= αi + o(1),

gi(x+ v1)− gi(x)

δi+1
= βi+1 + βi−1

δi−1

δi+1
+ o(1), mod(i, 2) = 0,

gn(x+ v1)− gi(x)

δi
= αn + o(1), mod(n, 2) = 1,

gn(x+ v2)− gi(x)

δi
= αn + o(1), mod(n, 2) = 0,

where 2 ≤ i ≤ n− 1. Since ratios δi−1/δi+1 = δi−1/δi+1 remain constant for 2 ≤ i ≤ n− 1,
the theorem is proved. �
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Remark 5 Theorem 8 specifies an efficient way for building a tridiagonal preconditioner.
We choose a fixed number ε (e.g. ε =

√
εM) and compute elements of matrix C = T

according to formulas mentioned in Theorem 8 (where limits are omitted).

Matrix C = T obtained by Remark 5 may not be positive definite even if the Hessian
matrix is positive definite. Tridiagonal matrix obtained by application of Theorem 8 (with
δi = δ, 1 ≤ i ≤ n) to a strictly convex quadratic function of three variables with the
positive definite Hessian matrix

G =

⎡
⎢⎣

1 −1 −2
−1 4 −1
−2 −1 8

⎤
⎥⎦

can serve as an example. We will state two theorems supporting a choice of tridiagonal
preconditioning in cases when the actual Hessian matrix is pentadiagonal.

Theorem 9 Let the Hessian matrix G(x) be pentadiagonal, positive definite, and diago-
nally dominant. Then, if δi = εδ, 1 ≤ i ≤ n, and if the number ε is sufficiently small,
matrix C = T obtained by Remark 5 is positive definite and diagonally dominant.

Proof Consider pentadiagonal Hessian matrix of the form (13) (with elements denoted by
tilde), and set γ̃−1 = γ̃0 = β̃0 = β0 = 0, γ̃n−1 = γ̃n = β̃n = βn = 0 to simplify the notation.
Using the assumption of diagonal dominance, we obtain

α̃i > |γ̃i−2|+ |β̃i−1|+ |β̃i|+ |γ̃i|

for 1 ≤ i ≤ n. Using Theorem 8 and Remark 5, one can write

αi ≈ γ̃i−2 + α̃i + γ̃i, βi−1 + βi ≈ β̃i−1 + β̃i (17)

for 1 ≤ i ≤ n. Therefore βi ≈ β̃i and if number ε is sufficiently small, the strict inequality
is preserved and we can write

αi − |βi−1| − |βi| ≈ α̃i + γ̃i−2 + γ̃i − |β̃i−1| − |β̃i| ≥ α̃i − |γ̃i−2| − |β̃i−1| − |β̃i| − |γ̃i| > 0

for 1 ≤ i ≤ n. Thus matrix C = T is diagonally dominant and, therefore, positive definite
if number ε is sufficiently small. �

In Theorem 9, we assume that all differences are equal, which is fulfilled for instance

when δi =
√
2εM/n, 1 ≤ i ≤ n. But the numerical experiments show that the choice

δi =
√
εmax(|xi|, 1), 1 ≤ i ≤ n, is usually more advantageous.

Matrix C = T obtained by Remark 5 is positive definite for many practical problems.
Consider a boundary value problem for the second order ordinary differential equation

y′′(t) = ϕ(y(t)), 0 ≤ t ≤ 1, y(0) = y0, y(1) = y1,
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where function ϕ : R → R is twice continuously differentiable. If we divide the interval
[0, 1] onto n + 1 parts using nodes ti = ih, 0 ≤ i ≤ n + 1, where h = 1/(n + 1) is the
mesh-size and if we replace the second order derivatives in nodes with differences

y′′(ti) =
y(ti−1)− 2y(ti) + y(ti+1)

h2
, 1 ≤ i ≤ n,

we will obtain a system of n nonlinear equations

fi(x)
Δ
= h2ϕ(xi) + 2xi − xi−1 − xi+1 = 0, (18)

where xi = y(ti), 0 ≤ 1 ≤ n + 1, so x0 = y0 and xn+1 = y1. If we solve this system by the
least squares method, the minimized function has the form

F (x) =
1

2
fT (x)f(x) =

1

2

n∑
i=1

f 2
i (x) =

1

2

n∑
i=1

(
h2ϕ(xi) + 2xi − xi−1 − xi+1

)2
, (19)

where x = [x1, . . . , xn]
T and f = [f1, . . . , fn]

T .

Theorem 10 Let the truncated Newton method be applied to the sum of squares (19) with
a linear function ϕ : R → R. Then, if δi = εδ, 1 ≤ i ≤ n, and if the number ε is sufficiently
small, matrix C = T obtained by Remark 5 is positive definite.

Proof Obviously,

∇fi(x) =
⎡
⎢⎣

−1
ψ(xi)
−1

⎤
⎥⎦ , ∇2fi(x) =

⎡
⎢⎣
0 0 0
0 ψ′(xi) 0
0 0 0

⎤
⎥⎦ ,

where ψ(xi) = 2+h2ϕ′(xi) and ψ′(xi) = h2ϕ′′(xi). For a sum of squares, the Hessian matrix
G(x) can be expressed in the form G(x) = JT (x)J(x) +W (x), where J(x) is the Jacobian
matrix of mapping f(x) and W (x) is a second order term. Restricting on submatrices of
order five, we can write

J(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

ψ1 −1 0 0 0
−1 ψ2 −1 0 0
0 −1 ψ3 −1 0
0 0 −1 ψ4 −1
0 0 0 −1 ψ5

⎤
⎥⎥⎥⎥⎥⎥⎦
, W (x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

f1ψ
′
1 0 0 0 0

0 f2ψ
′
2 0 0 0

0 0 f3ψ
′
3 0 0

0 0 0 f4ψ
′
4 0

0 0 0 0 f5ψ
′
5

⎤
⎥⎥⎥⎥⎥⎥⎦
,

JT (x)J(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

ψ2
1 + 1 −(ψ1 + ψ2) 1 0 0

−(ψ1 + ψ2) ψ2
2 + 2 −(ψ2 + ψ3) 1 0

1 −(ψ2 + ψ3) ψ2
3 + 2 −(ψ3 + ψ4) 1

0 1 −(ψ3 + ψ4) ψ2
4 + 2 −(ψ4 + ψ5)

0 0 1 −(ψ4 + ψ5) ψ2
5 + 1

⎤
⎥⎥⎥⎥⎥⎥⎦
,
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where ψi = ψ(xi), 1 ≤ i ≤ n, which demonstrates that Hessian matrix G(x) = JT (x)J(x)+
W (x) is pentadiagonal. If function ϕ : R → R is linear (so ϕ′(xi) = ϕ′, ϕ′′(xi) = 0,
1 ≤ i ≤ n, where ϕ′ is the constant slope of linear function ϕ), than one has W (x) = 0,
so G(x) = JT (x)J(x). Denoting P = G(x) we can write (as in the proof of Theorem 9)
α̃1 = ψ2

1 + 1, α̃n = ψ2
n + 1 and

α̃i = ψ2
i + 2, 2 ≤ i ≤ n− 1,

β̃i = −(ψi + ψi+1), 1 ≤ i ≤ n− 1,

γ̃i = 1, 1 ≤ i ≤ n− 2.

If T is the matrix obtained by Remark 5, then (17) holds, which gives α1 ≈ ψ2
1 + 2,

α2 ≈ ψ2
2+3, αi ≈ ψ2

i +4, 3 ≤ i ≤ n−2, αn−1 ≈ ψ2
n−1+3, αn ≈ ψ2

n+2 and βi ≈ −(ψi+ψi+1),
1 ≤ i ≤ n − 1. Now we use the fact that formula (12) can be rewritten (as in Remark 2)
in the form

2vTTv = [v1, v2]

[
2α1 2β1
2β1 α2 − 1

] [
v1
v2

]

+ [v2, v3]

[
α2 + 1 2β2
2β2 α3

] [
v2
v3

]

+
n−3∑
i=3

[vi, vi+1]

[
αi 2βi
2βi αi+1

] [
vi
vi+1

]

+ [vn−2, vn−1]

[
αn−2 2βn−2

2βn−2 αn−1 + 1

] [
vn−2

vn−1

]

+ [vn−1, vn]

[
αn−1 − 1 2βn−1

2βn−1 2αn

] [
vn−1

vn

]

≈ [v1, v2]

[
2(ψ2

1 + 2) −2(ψ1 + ψ2)
−2(ψ1 + ψ2) ψ2

2 + 2

] [
v1
v2

]

+
n−2∑
i=2

[vi, vi+1]

[
ψ2
i + 4 −2(ψi + ψi+1)

−2(ψi + ψi+1) ψ2
i+1 + 4

] [
vi
vi+1

]

+ [vn−1, vn]

[
ψ2
n−1 + 2 −2(ψn−1 + ψn)

−2(ψn−1 + ψn) 2(ψ2
n + 2)

] [
vn−1

vn

]
Δ
= 2vT T̃ v. (20)

Since

2(ψ2
i + 2)(ψ2

i+1 + 2)− 4(ψi + ψi+1)
2 = 2ψ2

i ψ
2
i+1 + 8− 8ψiψi+1

= 2(ψiψi+1 − 2)2 ≥ 0, i ∈ {1, n− 1},
(ψ2

i + 4)(ψ2
i+1 + 4)− 4(ψi + ψi+1)

2 = ψ2
i ψ

2
i+1 + 16− 8ψiψi+1

= (ψiψi+1 − 4)2 ≥ 0, 2 ≤ i ≤ n− 2,

all matrices used in the right hand side of (20) are positive semidefinite. Since function ϕ
is linear (with the constant slope ϕ′), one has ψi = 2+ h2ϕ′, 1 ≤ i ≤ n. If (2 + h2ϕ′)2 = 2,
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the first and the last matrices in (20) are positive definite. In the opposite case, all the
other matrices are positive definite. Thus matrix T̃ is positive definite by Remark 2.
Since eigenvalues of symmetric matrix depend continuously on its elements, the positive
definiteness of T̃ is not violated after small changes of its elements. Thus matrix T ≈ T̃ ,
whose elements are obtained by using gradient differences, is positive definite if number ε
is sufficiently small. �

Assumptions of Theorem 10 are relatively strong. Nevertheless, these assumptions are
sufficient (not necessary) for matrix T to be positive definite. Most of all, it is strongly
improbable that all determinants in (20) could be zeroes, so we can assume that matrix T̃ ,
appearing in (20), is positive definite. If we are close to the solution, where F (x) = 0, one
has fi ≈ 0, 1 ≤ i ≤ n. Moreover, matrix diag(ψ′

1, . . . , ψ
′
n) is usually small in comparison

with J(x)TJ(x) (if n ≈ 1000, then h2 ≈ 10−6). Since a small change of diagonal elements
does not violate the positive definiteness of T̃ , we can expect that matrix T̃ is positive
definite in a sufficiently small neighborhood of the solution even if function ϕ : R → R is
nonlinear. Then also matrix T is positive definite if number ε is sufficiently small.

If the Hessian matrix is pentadiagonal and positive definite (as in the previous two
theorems), it should be advantageous to use the pentadiagonal preconditioner introduced
in the following theorem, whose proof is very similar to the proof of Theorem 8, so it is
omitted.

Theorem 11 Let the Hessian matrix of function F be pentadiagonal (as matrix P ). Set
v1 = [δ1, 0, 0, δ4, 0, 0, . . .], v2 = [0, δ2, 0, 0, δ5, 0, . . .], v3 = [0, 0, δ3, 0, 0, δ6, . . .], where δi = εδi,
1 ≤ i ≤ n. Then it holds

αi = lim
ε→0

gi(x+ v1)− gi(x)

δi
, βi = lim

ε→0

gi(x+ v2)− gi(x)− δi−2γi−2

δi+1
,

γi = lim
ε→0

gi(x+ v3)− gi(x)− δi−1βi−1

δi+2
, mod(i, 3) = 1,

αi = lim
ε→0

gi(x+ v2)− gi(x)

δi
, βi = lim

ε→0

gi(x+ v3)− gi(x)− δi−2γi−2

δi+1
,

γi = lim
ε→0

gi(x+ v1)− gi(x)− δi−1βi−1

δi+2
, mod(i, 3) = 2,

αi = lim
ε→0

gi(x+ v3)− gi(x)

δi
, βi = lim

ε→0

gi(x+ v1)− gi(x)− δi−2γi−2

δi+1
,

γi = lim
ε→0

gi(x+ v2)− gi(x)− δi−1βi−1

δi+2
, mod(i, 3) = 0,

where quantities with indices i < 1 are assumed to be zeroes and quantities defined by expressions

containing indices i > n are not computed.
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5 Implementation notes and numerical experiments

In this section we introduce several practical comments concerning preconditioners pro-
posed in Section 3 and Section 4. First it is important to be able to decide whether
a preconditioner will be used or rejected, since the obtained preconditioner may not be
always suitable for the use. Primarily, it is necessary to emphasize that an indefinite pre-
conditioner is inappropriate also in case when the Hessian matrix is not positive definite.
In this case the direction vector usually directs towards a saddle point of a minimized
function, so it is not appropriate to obtain such a direction too quickly.

A suitable tool for testing positive definiteness and ill-conditioning of a symmetric ma-
trix is the Gill-Murray decomposition proposed in [10]. If a pivot obtained during the
Gill-Murray elimination step is less than δmax(1,max1≤i≤n(|αi|)), where δ is a prescribed
bound and αi, 1 ≤ i ≤ n, are diagonal elements of the preconditioner, then the decompo-
sition is terminated and the preconditioner is rejected. If such a situation arises, it is not
worth performing the complete Gill-Murray decomposition and using the obtained positive
definite matrix as a preconditioner (this claim was confirmed by numerical experiments).
The number δ is usually chosen very small (e.g. δ = 10−12). Sometimes, however, it is
better to choose a larger value (e.g. δ = 10−2).

Band preconditioners obtained by the standard BFGS updates (approach (A2)) need
to be corrected in advance, otherwise they are mostly rejected during the Gill-Murray de-
composition. Their modifications based on Theorem 5 (statement (3) of Remark 3) and
Theorem 6 (statement (3) of Remark 4), reveal to be very successful. However, precondi-
tioners based on approach (A2) require rejecting more often (e.g. by setting δ = 10−2).

Band preconditioners obtained by the numerical differentiation (approach (A3)) do not
require sophisticated corrections. It suffices to replace their diagonal elements with their
absolute values. Modifications based on Theorem 5 and Theorem 6 decrease effectiveness
of preconditioning in this case. Numerical experiments indicate that it suffices to choose
δ = 10−12 for rejecting (except for diagonal preconditioners, which are more sensitive to
rejecting).

The truncated Newton methods that use various preconditioning techniques were tested
using two collections of unconstrained optimization problems. The first collection, TEST25
described in [14], contains 82 test problems with 1000 variables obtained from various
sources (we have used 71 problems suitable for non-derivative methods) and the second
collection, TEST11 described in [15], contains 58 test problems with 1000 variables ob-
tained from the CUTE collection [1] (we have used 54 problems suitable for non-derivative
methods). These collections can be found on http://www.cs.cas.cz/luksan/test.html

together with reports [14] and [15].
The results of computational experiments are reported in two tables corresponding to

two collections TEST25 and TEST11. The tables contain the following data: NIT – the
total number of iterations, NFV – the total number of function evaluations, NFG – the total
number of gradient evaluations, NCG – the total number of inner iterations, NCN – the
total number of preconditioned outer iterations, NCP – the total number of problems with
enlarged bound for rejecting, Time – the total computational time.
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The rows correspond to the methods tested: TN – the unpreconditioned truncated
Newton method, TNLM – preconditioning by the limited memory BFGS method, TNVM –
band preconditioning based on the standard BFGS updates (1 – diagonal, 2 – tridiagonal,
3 - pentadiagonal), TNND – band preconditioning based on the numerical differentiation
(1 – diagonal, 2 – tridiagonal, 3 – pentadiagonal), TNLT – preconditioning based on the
Lanczos method, LMVM – the limited memory BFGS method, CG – the nonlinear conjugate
gradient method. Methods LMVM and CG are mentioned only for comparison (they are quite
different from the truncated Newton methods studied in this report).

Method NIT NFV NFG NCG NCN NCP Time

TN 7425 11827 372789 359505 - - 66.08
TNLM 7270 12521 233269 219347 7270 - 42.55
TNVM-1 7095 10303 274344 262855 4335 37 50.43
TNVM-2 6751 9252 139989 129933 4260 37 27.47
TNVM-3 6803 8857 229501 219820 4027 36 51.67
TNND-1 6522 8491 347384 331709 3857 40 59.51
TNND-2 7573 11245 147391 119434 4409 3 25.45
TNND-3 7107 10726 125262 91665 4943 4 24.57
TNLT 7398 11672 352199 339081 6808 1 55.61

LMVM 121314 127189 127189 - - - 39.59
CG 109166 325994 325994 - - - 75.72

Test 25 – Truncated Newton line search methods

Method NIT NFV NFG NCG NCN NCP Time

TN 14680 16253 216097 170010 - - 50.22
TNLM 6888 8106 156903 134956 6888 - 51.23
TNVM-1 14138 15501 222231 178150 12704 9 63.27
TNVM-2 13165 14395 190084 149188 13034 23 53.39
TNVM-3 12166 13411 181085 143146 12008 19 68.94
TNND-1 10298 11508 170121 127525 6139 10 32.42
TNND-2 14389 15960 159446 85337 2526 1 36.92
TNND-3 14303 15834 204090 116125 1544 2 53.01
TNLT 14208 15809 221636 179803 5914 1 61.34

LMVM 73754 77355 77355 - - - 31.38
CG 87687 277138 277138 - - - 75.81

Test 11 – Truncated Newton trust region methods
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