
Recursive formulation of limited memory variable metric methods

Lukšan, Ladislav
2010

Dostupný z http://www.nusl.cz/ntk/nusl-41899

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 07.06.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-41899
http://www.nusl.cz
http://www.nusl.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

Recursive formulation of limited memory
variable metric methods

Ladislav Lukšan, Jan Vlček

Technical report No. 1059

September 2010

Pod Vodárenskou věž́ı 2, 182 07 Prague 8 phone: +420 2 688 42 44, fax: +420 2 858 57 89,
e-mail:e-mail:ics@cs.cas.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

Recursive formulation of limited memory
variable metric methods

Ladislav Lukšan, Jan Vlček 1

Technical report No. 1059

September 2010

Abstract:

In this report we propose a new recursive matrix formulation of limited memory variable metric
methods. This approach enables to approximate of both the Hessian matrix and its inverse and can
be used for an arbitrary update from the Broyden class (and some other updates). The new recursive
formulation requires approximately 4mn multiplications and additions for the direction determina-
tion, so it is comparable with other efficient limited memory variable metric methods. Numerical
experiments concerning Algorithm 1, proposed in this report, confirm its practical efficiency.

Keywords:
Unconstrained optimization, large scale optimization, limited memory methods, variable metric
updates, recursive matrix formulation, algorithms.

1This work was supported by the Grant Agency of the Czech Republic, project No. 201/09/1957, and the
institutional research plan No. AVOZ10300504

1 Introduction

Limited memory variable metric methods, introduced in [9], are intended for solving large
scale unconstrained optimization problems with unknown or dense Hessian matrices. They are
usually realized in a line search framework, so their iteration step has the form

xi+1 = xi + tisi (1)

for i ∈ N (N is the set of positive integers), where si = −Higi is the direction vector (gi
is the gradient of the objective function and Hi is a positive definite approximation of the
inverse Hessian matrix) and ti > 0 is the step-length, which is taken to satisfy the weak Wolfe
conditions

Fi+1 − Fi ≤ ε1tis
T
i gi, (2)

sTi gi+1 ≥ ε2s
T
i gi, (3)

with 0 < ε1 < 1/2 and ε1 < ε2 < 1. We restrict our attention to the limited memory variable
metric methods from the Broyden class [7].

Let 0 < m̄ < n, i ∈ N and m = min(m̄, i). Limited memory variable metric methods from
the Broyden class use direction vectors s1 = −g1 and si+1 = −Hi+1gi+1, i ∈ N , where matrix

Hi+1
Δ
= H i

i+1 is obtained from a sparse positive definite (usually scaled unit) matrix H i
i−m+1 by

means of m updates
H i

j+1 = H i
j + U i

jM
i
j(U

i
j)

T , (4)

i−m + 1 ≤ j ≤ i, where matrices U i
j = [dj , H

i
jyj] and M i

j are chosen to satisfy quasi-Newton
conditions H i

j+1yj = dj, where yj = gj+1 − gj, dj = xj+1 − xj , i−m+ 1 ≤ j ≤ i (we use upper
index i, to signify the relation to the i-th iteration). Formula (4) can be written in the form

H i
j+1 = H i

j +
1

bj
djd

T
j − 1

aij
H i

jyj(H
i
jyj)

T +
ηij
aij

(
aij
bj
dj −H i

jyj

)(
aij
bj
dj −H i

jyj

)T

, (5)

where aij = yTj H
i
jyj, bj = yTj dj and ηij is a free parameter. Setting ηij = 0, ηij = 1 and

ηij = bj/(bj − aij), we obtain the DFP, the BFGS and the Rank-1 updates, respectively. Note
that the BFGS update is the most efficient one from these basic updates.

An advantage of limited memory variable metric methods described in this report is the
fact that they can be realized in the way which requires (for n large) approximately 4mn mul-
tiplications and additions for the direction determination. Phrase approximately 4mn means
that this number significantly dominates over additional required operations. For example, if
n = 1000 and m = 5, then 4mn = 20000, whereas m3 = 125. There are two commonly used
basic approaches: the recursive vector formulation based on the Strang recurrences [8] and the
explicit matrix formulation proposed in [3]. To simplify the notation in the subsequent consid-
erations, we will assume without the loss of generality that i ≤ m̄. Then matrices (4) and (5)
do not depend on the upper index, which can be omitted.

The first approach is applicable only in case all matrices Hj, 1 ≤ j ≤ i, are obtained by
the BFGS update (in fact there exists other possible updates realizable in this way, see [10],
but they do not belong to the Broyden class). The recursive vector formulation of the limited

1

memory BFGS method is based on the pseudo-product form: if ηj = 1, formula (5) can be
written in the form

Hj+1 = V T
j HjVj +

1

bj
djd

T
j , Vj = I − 1

bj
yjd

T
j . (6)

Using this formula recursively, we obtain

Hi+1 =

⎛
⎝ i∏

j=1

Vj

⎞
⎠

T

H1

⎛
⎝ i∏

j=1

Vj

⎞
⎠+

i∑
k=1

1

bk

⎛
⎝ i∏

j=k+1

Vj

⎞
⎠

T

dkd
T
k

⎛
⎝ i∏

j=k+1

Vj

⎞
⎠ .

Note that matrix Hi+1 need not be stored, since vector si+1 = −Hi+1gi can be obtained by
two (Strang) recurrences. First we set ui+1 = −gi+1 and compute numbers σj and vectors uj,
i ≥ j ≥ 1, by the backward recurrence

σj =
dTj uj+1

bj
, uj = uj+1 − σjyj. (7)

Then we set v1 = H1u1 and compute vectors vj+1, 1 ≤ j ≤ i, by the forward recurrence

vj+1 = vj +

(
σj −

yTj vj

bj

)
dj. (8)

Finally we set si+1 = vi+1.
The use of the Strang recurrences (7)–(8) is the oldest (and simplest) possibility for im-

plementing the limited memory BFGS method. As it was already mentioned, this approach
is applicable only if all matrices Hj, 1 ≤ j ≤ i, are obtained by the BFGS update. This
disadvantage reveals when we need to update matrix Bi+1 = H−1

i+1. It follows from the duality
(see [7]) that the Strang recurrences can be used only in case all matrices Bj , 1 ≤ j ≤ i, are
obtained by the DFP update. But the limited memory DFP method is much worse than the
limited memory BFGS method, so this way is unsuitable.

The second approach is based on the fact that matrixHi+1, obtained by recursive application
of i updates of the form (4) to matrix H1, can be written in the form

Hi+1 = H1 + ŨiM̃iŨ
T
i , (9)

where Ũi = [d1 − H1y1, . . . , di − H1yi] and M̃i is a square matrix of order m for the Rank-1
update or Ũi = [d1, . . . , di, H1y1, . . .H1yi] and M̃i is a square matrix of order 2m otherwise. For
the basic updates (DFP, BFGS and Rank-1), the matrix M̃i can be expressed in the explicit
form. Especially matrix Hi+1, obtained by recursive application of i BFGS updates to matrix
H1, can be written in the form

Hi+1 = H1 + [Di, H1Yi]

⎡
⎣ (R−1

i)T (Ci + Y T
i H1Yi)R

−1
i , −(R−1

i)T

−R−1
i , 0

⎤
⎦ [Di, H1Yi]

T , (10)

where Di = [d1, . . . , di], Yi = [y1, . . . , yi], Ri is the i-dimensional upper triangular matrix such
that (Ri)kl = dTk yl, k ≤ l, (Ri)kl = 0, k > l, and Ci is the i-dimensional diagonal matrix

2

such that (Ci)kk = dTk yk (see [3]). There exists a similar formula for matrix Hi+1, obtained
by recursive application of i DFP updates to matrix H1 (see [3]). Using the duality relation
between the DFP and the BFGS updates, we can determine the matrix Bi+1 obtained by
recursive application of i BFGS updates to matrix B1. The resulting matrix can be written in
the form

Bi+1 = B1 − [Yi, B1Di]

[−Ci, (Li − Ci)
T

Li − Ci, DT
i B1Di

]−1

[Yi, B1Di]
T , (11)

where Li is the i-dimensional lower triangular matrix such that (Li)kl = dTk yl, k ≥ l, (Li)kl = 0,
k < l. The fact that we can use the inverse BFGS updates is very advantageous, since it allows
us to implement variable metric trust region methods and methods for constrained optimization,
which apply variable metric updates to the part of the KKT matrix.

In this report, we investigate a modification of the second approach. In Section 2, we propose
a new recursive matrix formulation of limited memory variable metric methods. This approach
can be used for both matrices Hi+1 and Bi+1 and for an arbitrary update from the Broyden
class. Our recursive formulation requires approximately 4mn multiplications and additions for
the direction determination, so it is comparable with the other approaches mentioned in this
report. At the end of Section 2, we demonstrate that the recursive matrix formulation can be
used for some other variable metric updates. As an example, we have chosen the Davidon class
of variable metric updates proposed in [2] and reformulated in [5]. Section 3 contains results
of numerical experiments which indicates that our approach is competitive with known limited
memory variable metric methods.

2 The recursive matrix formulation

Let us assume that matrix Hi+1 is obtained from matrix H1 = λiI by i updates of the form

Hj+1 = Hj + UjMjU
T
j , 1 ≤ j ≤ i (12)

(see (4)), where Uj = [dj, Hjyj] and

Mj =

[
αj, βj

βj, γj

]
.

We seek the expression
Hi+1 = H1 + ŪiM̄iŪ

T
i , (13)

where Ūi = [d1, H1y1, . . . , di, H1yi] and M̄i is a square matrix of order 2m. This formula is very
similar to (9). For rank two updates, matrices Ūi and Ũi differ only by orders of its columns.
Note that the choice H1 = λiI (where usually λi = dTi yi/y

T
i yi) is essential for our considerations

leading to the algorithm described below.

Theorem 1 Let matrix Hi+1 be obtained from matrix H1 by i updates of the form (12). Then
(13) holds with matrix M̄i obtained recursively in such a way that M̄1 = M1 and

M̄j =

⎡
⎢⎣
M̄j−1 + γj zj−1z

T
j−1, βj zj−1, γj zj−1

βj z
T
j−1, αj , βj

γj z
T
j−1, βj , γj

⎤
⎥⎦ , 2 ≤ j ≤ i, (14)

3

where
zj−1 = M̄j−1r̄j−1, r̄j−1 = ŪT

j−1yj. (15)

Proof We prove this theorem by induction. Assume that

Hj = H1 + Ūj−1M̄j−1Ū
T
j−1 (16)

for some index 2 ≤ j < i. Relation (16) holds for j = 2 by (12) since Ū1 = U1 and M̄1 = M1.
Substituting (16) into (12) and using the fact that

Uj = [dj, Hjyj] =
[
dj, H1yj + Ūj−1M̄j−1Ū

T
j−1yj

]
=
[
dj , H1yj + Ūj−1zj−1

]
by (15) and (16), we can write

Hj+1 = H1 + Ūj−1M̄j−1Ū
T
j−1 +

[
dj, H1yj + Ūj−1zj−1

]
Mj

[
dj, H1yj + Ūj−1zj−1

]T
= H1 + Ūj−1 M̄j−1 Ū

T
j−1 + αj djd

T
j

+ βj

(
dj(H1yj)

T +H1yjd
T
j

)
+ βj

(
dj (Ūj−1zj−1)

T + Ūj−1zj−1 d
T
j

)
+ γj H1yj(H1yj)

T + γj
(
H1yj (Ūj−1zj−1)

T + Ūj−1zj−1 (H1yj)
T
)

+ γj Ūj−1zj−1z
T
j−1Ū

T
j−1

= H1 +
[
Ūj−1, dj, H1yj

] ⎡⎢⎣
M̄j−1 + γj zj−1z

T
j−1, βj zj−1, γj zj−1

βj z
T
j−1, αj , βj

γj z
T
j−1, βj , γj

⎤
⎥⎦ [Ūj−1, dj , H1yj

]T

= H1 + ŪjM̄jŪ
T
j ,

so the induction step is proved. �

Comparing (4) with (5), we can see that

αj =
1

bj

(
ηj
aj
bj

+ 1

)
, βj = −ηj

bj
, γj =

ηj − 1

aj
, (17)

where aj = yTj Hjyj and bj = yTj dj. Using (15) and (16), we obtain

aj = yTj Hjyj = yTj (H1yj + Ūj−1M̄j−1Ū
T
j−1yj) = yTj H1yj + r̄Tj−1zj−1,

so value aj (required for the computation of αj and γj by (17)) can be obtained by using known
vectors r̄j−1 and zj−1.

So far we have assumed that 1 ≤ i ≤ m̄. Now we describe the construction of matrix
Hi+1 = λiI + ŪiM̄iŪ

T
i in the general case. Let m = min(m̄, i) and Si = diag(1, λi, . . . , 1, λi)

(where λi > 0) be a 2m-dimensional diagonal scaling matrix. Denote

Ǔi−1 = [di−m+1, yi−m+1, . . . , di−1, yi−1], Ři−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

dTi−m+1yi−m+1, . . . dTi−m+1yi−1

yTi−m+1yi−m+1, . . . yTi−m+1yi−1

. .
0, . . . dTi−1yi−1

0, . . . yTi−1yi−1

⎤
⎥⎥⎥⎥⎥⎥⎦

(18)

4

(these matrices are empty for i = 1) and

Ûi = [Ǔi−1, di, yi], R̂i =

⎡
⎢⎣ Ři−1, ǓT

i−1yi
0, dTi yi
0, yTi yi

⎤
⎥⎦ . (19)

Matrices Ři−1 and R̂i are upper block triangular, where every block contains two rows and one

column. Then Ūi = SiÛi and matrix M̄i
Δ
= M̂ i

i is obtained recursively in such a way that we set

M̂ i
i−m+1 =

⎡
⎣ αi

i−m+1, βi
i−m+1

βi
i−m+1, γi

i−m+1

⎤
⎦ (20)

and for i − m + 1 ≤ j ≤ i − 1 compute vector zij = M̂ i
jS

i
j r̂

i
j , where Si

j is the 2(j − i + m)
dimensional leading submatrix of Si and r̂ij is the 2(j − i +m) dimensional vector containing

first 2(j − i+m) elements of the (j − i+m)-th column of matrix Ři−1, and set

M̂ i
j+1 =

⎡
⎢⎣ M̂ i

j + γi
j+1 z

i
j(z

i
j)

T , βi
j+1 z

i
j , γi

j+1 z
i
j

βi
j+1 (z

i
j)

T , αi
j+1, βi

j+1

γi
j+1 (z

i
j)

T , βi
j+1, γi

j+1

⎤
⎥⎦ . (21)

Using matrices obtained by the described way, direction vector si+1 can be determined by the
formula

si+1 = −Hi+1gi+1 = −λigi+1 − ŪiM̄iŪ
T
i gi+1 = −λigi+1 − ÛiSiM̂

i
iSiÛ

T
i gi+1. (22)

In this case, approximately 6mn multiplications and additions are consumed for the direction
determination (2mn for the determination of the last column of matrix R̂i and 4mn for the
computation of vector si+1 by (22)) and approximately 2mn values are stored when n is large.
Matrices Ǔi and Ři used in the next iteration are easily obtained from Ûi and R̂i. If i < m̄,
then Ǔi = Ûi and Ři = R̂i. If i ≥ m̄, then Ǔi and Ři arise from Ûi and R̂i after the deletion of
the columns and rows depending on vectors with index i−m+ 1. Thus

[di−m+1, yi−m+1, Ǔi] = Ûi,

⎡
⎢⎣
dTi−m+1yi−m+1, [dTi−m+1yi−m+2, . . . , d

T
i−m+1yi]

yTi−m+1yi−m+1, [yTi−m+1yi−m+2, . . . , y
T
i−m+1yi]

0, Ři

⎤
⎥⎦ = R̂i. (23)

The above basic process can be modified in such a way that approximately 2mn multipli-
cations and additions are dropped. As one can see from (21), the last column r̂i of matrix R̂i

is not required for the computation of matrix M̂ i
i . Thus we can compute vector v̂i = ÛT

i gi+1

instead of r̂i = ÛT
i yi. Vector v̂i is then used for the determination of the direction vector by

the formula
si+1 = −λigi+1 − ÛiSiM̂

i
iSiv̂i. (24)

After the determination of si+1, one can compute the first 2(m − 1) elements of r̂i using the
formula

ǓT
i−1yi = ǓT

i−1gi+1 − ǓT
i−1gi, (25)

5

where vector ǓT
i−1gi+1 contains the first 2(m − 1) elements of v̂i (see (19)) and vector ǓT

i−1gi
contains the last 2(m− 1) elements of v̂i−1 (vector v̂i−1 is known from the previous iteration).
The last two elements dTi yi and yTi yi of r̂i are computed separately, since they serves for the
determination of scaling parameter λi.

The above considerations are summarized in the following algorithm.

Algorithm 1 Data m̄ < n, ε > 0, 0 < ε1 < 1/2, ε1 < ε2 < 1.

Step 1 Let Ǔ0 and Ř0 be empty matrices. Choose starting point x1 ∈ Rn and compute
quantities F1 := F (x1), g1 := g(x1). Set s1 := −g1 and i := 1.

Step 2 If ‖gi‖ ≤ ε, terminate the computation, otherwise set m := min(m̄, i).

Step 3 Determine step-size ti > 0 satisfying conditions (2)–(3) and set xi+1 := xi + tisi.
Compute new quantities Fi+1 := F (xi+1), gi+1 := g(xi+1) and set di := xi+1 − xi,
yi := gi+1 − gi. Compute values dTi yi, yTi yi and set λi := dTi yi/y

T
i yi to define 2m

dimensional scaling matrix Si := diag(1, λi, . . . , 1, λi).

Step 4 Determine matrix M̂ i
i−m+1 by formula (20). Set Ûi := [Ǔi−1, di, yi], v̂i := ÛT

i gi+1 and
j := i−m+ 1.

Step 5 If j = i go to Step 7.

Step 6 Choose the value of parameter ηij appearing in (17). Set zij := M̂ i
jS

i
j ř

i
j , where S

i
j is the

2(j− i+m) dimensional leading submatrix of Si and řij is the 2(j− i+m) dimensional
vector containing the first 2(j− i+m) elements of the (j− i+m)-th column of matrix
Ři−1, compute matrix M̂ i

j+1 by (21), set j := j + 1 and go to Step 5.

Step 7 Set M̄i := M̂ i
i and compute direction vector si+1 by formula (24). Compute vector

ǓT
i−1yi by (25) and matrix R̂i by (19).

Step 8 If i < m̄, set Ǔi := Ûi and Ři := R̂i, otherwise determine Ǔi and Ři by (23). Set
i := i+ 1 and go to Step 2.

The recursive matrix formulation described above can be used also for some other variable
metric updates. We focus our attention on the Davidon class of variable metric methods pro-
posed in [2] and reformulated in [5]. Variable metric methods from this class are generalizations
of the Rank-1 method. Applied to the quadratic function, they generate conjugate directions
without perfect line search.

Limited memory variable metric methods from the Davidon class generate matrix Hi+1 from
matrix H1 = λiI by i updates of the form

Hj+1 = Hj + VjNjV
T
j , 1 ≤ j ≤ i, (26)

where Vj = [vj , dj −Hjyj] and

Nj =

[
ρj , σj

σj , τj

]
.

Vector vj is generated recursively to satisfy conditions

vj+1 ∈ span(vj , dj −Hjyj), vTj+1yj = 0 (27)

6

(vector vj+1 is a linear combination of vectors vj, dj −Hjyj and is perpendicular to vector yj).
Conditions (27) are satisfied, e.g., if

vj+1 = yTj (dj −Hjyj)vj − yTj vj(dj −Hjyj). (28)

It can be easily proved, see [5], that the update Hj+1 = Hj+VjNjV
T
j , where Vj = [vj , dj−Hjyj],

satisfies quasi-Newton condition Hj+1yj = dj, if

Hj+1 = Hj +
(dj −Hjyj)(dj −Hjyj)

T

yTj (dj −Hjyj)
− ϕjvj+1v

T
j+1

yTj (dj −Hjyj)
, (29)

where ϕj = − detNj is a free parameter and vj+1 is the vector determined by formula (28).
Thus

ρj = −ϕjy
T
j (dj −Hjyj), σj = ϕjy

T
j vj, τj =

1− ϕj(y
T
j vj)

2

yTj (dj −Hjyj)
. (30)

Setting ϕj = 0, we obtain the Rank-1 update which lies in both the Broyden and the Davidon
classes. It is important that some updates from the Davidon class generate positive definite
matrices, but it is computationally difficult to find a suitable value of parameter ϕj , see [5].
Notice that we have chosen the Davidon class of variable metric updates not for its efficiency,
but for the demonstration of the fact that the recursive matrix formulation can be also used
for variable metric updates that do not belong to the Broyden class.

Analogously to (13), we seek the expression

Hi+1 = H1 + V̄iN̄iV̄
T
i , (31)

where V̄i = [v1, d1 −H1y1, . . . , vi, di −H1yi] and N̄i is a square matrix of order 2m.

Theorem 2 Let matrix Hi+1 be obtained from matrix H1 by i updates of the form (26). Then
(31) holds with matrix N̄i obtained recursively in such a way that N̄1 = N1 and

N̄j =

⎡
⎢⎣
N̄j−1 + τj zj−1z

T
j−1, σj zj−1, τj zj−1

σj z
T
j−1, ρj , σj

τj z
T
j−1, σj , τj

⎤
⎥⎦ , 2 ≤ j ≤ i, (32)

where
zj−1 = N̄j−1r̄j−1, r̄j−1 = V̄ T

j−1yj. (33)

Proof We prove this theorem by induction. Assume that

Hj = H1 + V̄j−1N̄j−1V̄
T
j−1 (34)

for some index 2 ≤ j < i. Relation (34) holds for j = 2 by (26) since V̄1 = V1 and N̄1 = N1.
Denoting wj = dj −H1yj, substituting (34) into (26) and using the fact that

Vj = [vj , dj −Hjyj] =
[
vj , dj −H1yj + V̄j−1N̄j−1V̄

T
j−1yj

]
=
[
vj , wj + V̄j−1zj−1

]

7

by (33) and (34), we can write

Hj+1 = H1 + V̄j−1N̄j−1V̄
T
j−1 +

[
vj, wj + V̄j−1zj−1

]
Nj

[
vj , wj + V̄j−1zj−1

]T
= H1 + V̄j−1 N̄j−1 V̄

T
j−1 + ρj vjv

T
j

+ σj

(
vjw

T
j + wjv

T
j

)
+ σj

(
vj (V̄j−1zj−1)

T + V̄j−1zj−1 v
T
j

)
+ τj wjw

T
j + τj

(
wj (V̄j−1zj−1)

T + V̄j−1zj−1w
T
j

)
+ τj V̄j−1zj−1z

T
j−1V̄

T
j−1

= H1 +
[
V̄j−1, vj, wj

] ⎡⎢⎣
N̄j−1 + τj zj−1z

T
j−1, σj zj−1, τj zj−1

σj z
T
j−1, ρj , σj

τj z
T
j−1, σj , τj

⎤
⎥⎦ [V̄j−1, vj, wj

]T

= H1 + V̄jN̄jV̄
T
j ,

so the induction step is proved. �

Using (33) and (34), we obtain

dj −Hjyj = dj −H1yj + V̄j−1M̄j−1V̄
T
j−1yj = dj −H1yj + V̄j−1zj−1,

and
yTj (dj −Hjyj) = yTj dj − yTj H1yj + r̄Tj−1zj−1.

These quantities are necessary for the determination of vector vj by (28) and for the computation
of numbers ρj , σj , τj by (32).

3 Numerical experiments and conclusions

Limited memory variable metric methods from the Broyden class were tested by using 72
unconstrained minimization problems with 1000 variables from the collection TEST25 de-
scribed in [6] (ten problems 48, 57–58, 60–61, 67–70, 79, which are unsuitable for testing
limited memory variable metric methods, were excluded). This collections can be found on
http://www.cs.cas.cz/luksan/test.html together with report [6]. The results of these tests
are presented in Table 1, where NIT is the total number of iterations, NFV is the total number of
function evaluations, Fail is the total number of failures and Time is the total computational
time. Note that the total computational time is not always proportional to the total number of
function evaluations, since individual test problems have different complexity. Table 1 contains
two sets of columns corresponding to limited memory methods with m̄ = 5 and m̄ = 10, re-
spectively. Rows are partitioned into 3 groups. The first group corresponds to the new limited
memory variable metric method (Algorithm 1) with various constant values of parameter η.
The second group contains results obtained by Algorithm 1 with two special choices of param-
eter η: H – the Hoshino update proposed in [4], for which η = b/(b + a), and N – the update
proposed in [7], for which

η =
max(0,

√
c/a− b2/(ac))

1− b2/(ac)
, b2/(ac) < 1,

η = 1, b2/(ac) ≥ 1.

8

The third group introduces comparison of three versions of the limited memory BFGS method:
RV – recursive vector formulation (using Strang recurrences), EM – explicit matrix formulation
(using matrix (10)) and RM – recursive matrix formulation (Algorithn 1). For implementing all
the above mentioned methods, we have used the same line search subroutine with parameters
ε = 10−6, ε1 = 0.001, ε1 = 0.9.

m̄ = 5 m̄ = 10
Method NIT NFV Fail Time NIT NFV Fail Time
η = 0.6 129825 131874 – 36.55 139660 141900 – 50.30
η = 0.8 123958 127862 – 34.92 133975 138004 – 47.78
η = 1.0 126167 132279 – 36.22 123850 129890 – 42.57
η = 1.2 118404 126631 – 33.70 131783 139987 – 46.75
η = 1.4 118818 130306 – 34.70 129372 141227 – 48.50
η = 1.6 121316 136657 – 37.99 131229 149917 – 47.05

H 185025 186126 1 50.30 153603 154596 – 53.95
N 129711 137764 – 38.03 124617 133829 – 44.25

BFGS-RV 123699 129568 – 36.92 130067 135933 – 45.16
BFGS-EM 122491 128527 – 36.33 129723 135726 – 46.14
BFGS-RM 126167 132279 – 36.22 123850 129890 – 42.57

Table 1

From the results presented in Table 1, we can deduce that limited memory variable metric
methods with the recursive matrix formulation are competitive with other realizations of limited
memory variable metric methods (they use approximately 4mn operations for the direction
determination as well). The BFGS update seems to be the best one from the Broyden class
within the limited memory framework (even if, for m̄ = 5, the choice η = 1.2 gave better
results). Since we have tested only a limited number of simple updates, it is possible that a
more successful choice of parameter η will be found. It is important to say that such an update
can be realized by our recursive formulation approach.

References

[1] I. Bongartz, A.R. Conn, N. Gould, P.L. Toint: CUTE: constrained and unconstrained
testing environment, ACM Transactions on Mathematical Software 21 (1995), 123-160.

[2] W.C.Davidon: Optimally conditioned optimization algorithms without line searches.
Mathematical Programming 9 (1975) 1-30.

[3] R.H.Byrd, J.Nocedal, R.B.Schnabel: Representation of quasi-Newton matrices and their
use in limited memory methods. Mathematical Programming 63 (1994) 129-156.

[4] S.Hoshino: A formulation of variable metric methods. Journal of Institute of Mathematics
and its Applications 10 (1972) 394-403.

9

[5] L.Lukšan: Quasi-Newton methods without projections for unconstrained minimization.
Kybernetika 18 (1982) 290-306.

[6] L.Lukšan, C.Matonoha, J.Vlček: Sparse test problems for unconstrained optimization.
Report V-1064, Institute of Computer Science AS CR, Prague, 2010.

[7] L.Lukšan, E.Spedicato: Variable metric methods for unconstrained optimization and non-
linear least squares. Journal of Computational and Applied Mathematics 124 (2000) 61-95.

[8] H.Matthies, G.Strang: The solution of nonlinear finite element equations. International
Journal for Numerical Methods in Engineering 14 (1979) 1613-1623.

[9] J.Nocedal: Updating quasi-Newton matrices with limited storage. Mathematics of Com-
putation 35 (1980) 773-782.

[10] J.Vlček, L.Lukšan: Generalizations of the limited-memory BFGS method based on quasi-
product form of update. Report V-1060, Institute of Computer Science AS CR, Prague
2009.

10

