
Uncertainty of Random Variables

Fabián, Zdeněk
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Abstract:

New characteristics of continuous random variables introduced in [4]-[6] are generalized for discrete random
variables. It makes possible to introduce uncertainty function of random variable and compare its mean
value with the Shannon entropy.
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1 Introduction

Let X be a discrete random variable with probability mass function f(k), k = 0, 1, ..., n. From the
times of the Shannon’s discovery, the uncertainty of X before the experiment or information contained
in a realization x of X after the experiment is expressed, for any k, as U(k) = log(1/f(k)). If the
result of an experiment is more or less expected, uncertainty is low, whereas an unexpected result
with low probability f(k) carries a great amount of uncertainty. The mean value of this “uncertainty
function” is the entropy

H(X) = EU(k) =
n∑

k=0

log(1/f(k)) f(k) =
n∑

k=0

−f(k) log f(k). (1.1)

Let X be a continuous random variable with support set X = (a, b) ⊆ R, distribution F and
density f . The analogy of the Shannon entropy for continuous random variables is the differential
entropy

h(X) = E log(1/f(x)) =
∫

X
− log f(x)f(x) dx. (1.2)

Since U(x) = log(1/f(x)) can be negative in certain range of parameters practically for any parametric
distribution, it can be hardly considered to be an “uncertainty function”. Even the mean value EU
can be negative, too. This is the reason that statisticians prefer the Fisher information. However,
Fisher information relates to the parameters of parametric distributions. The generalization presented
in [2] is meaningful for distributions with support R only.

In [3]-[5] we introduced to a given regular continuous distribution F a scalar function S(x), called
now the scalar score. It appeared that S2(x) can be considered as expressing information contained
in observation x in the given model. In the present paper we briefly describe the scalar score and
introduce an uncertainty function based on S2(x). In the last section we generalize concept of the
scalar score for discrete distributions and show a relation between the mean uncertainty and the
Shannon entropy.

2 Scalar score

As an important function of a distribution G with support R and density g we identified, using lesson
drawn from [6], the score function

TG(y) = − 1
g(y)

d

dy
g(y). (2.1)

Value ET 2
G is the generalized Fisher information introduced in [2].

Let η : X → R be a suitable mapping. As an important function describing the transformed
distribution on X 6= R,

F (x) = G(η(x)), x ∈ X , (2.2)

was suggested in [4] the transformed score function of G,

T (x) = TG(η(x)). (2.3)

From (2.1) and (2.2) we obtain

T (x) = − 1
f(x)

d

dx

(
1

η′(x)
f(x)

)
, (2.4)

where η′(x) = dη(x)/dx is the Jacobian of the transformation.
For a comparison of properties of function (2.4) of different distributions, it turned out to be

necessary to use one concrete η : X → R for all distributions with a given support. According the
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principle of parsimony, that one providing the simplest mathematical forms of (2.4) for a large amount
of commonly used distributions should be used. According [7] and [5], η was defined as

η(x) =





x if X = R
log(x− a) if X = (a,∞)

log (x− a)
(b− x) if X = (a, b).

(2.5)

Function (2.4) with η given by (2.5) is called the transformation-based score or shortly the t-score.
Under mild regularity condition, the transformation-based score is a unique description of distri-

butions, expressing the relative change of a “basic component” of the density of the model (the density
divided by Jacobian of the transformation) with respect to the probability density.

T-scores of some distributions are well-known functions. The t-score of the standard normal
distribution is T (x) = x. The t-score of a location distribution with support R and location parameter
µ (expressing the location of the maximum of the density) is the score function

TG(y − µ) =
∂

∂µ
log g(y − µ). (2.6)

The log-location distributions [8] are distributions transformed from R into X = (0,∞) by η(x) =
log(x) with “transformed location” parameter τ = exp(µ). By [4], Theorem 1, it holds for them that

S(x; τ) ≡ η′(τ)T (x; τ) =
∂

∂τ
log f(x; τ), (2.7)

which is the likelihood score for τ .
It is easy to see using (2.6) and (2.3) that T (τ ; τ) = 0. Moreover, the value ES2 =

∫
X S(x; τ)2f(x) dx

is the Fisher information for τ .
Our basic notions, parameter τ and inference function S of log-location distributions, were gener-

alized for arbitrary distribution as follows:
As the most important point of the distribution, expressing its central tendency, was identified,

instead of τ , the zero of the t-score, the solution x∗ of equation

T (x) = 0,

called the t-mean. The t-mean is actually the transformed mode (the maximum of the density) of
the prototype. It is an easily manipulated number which is not far from the mean of light-tailed
distributions, being a reasonable “center” of heavy-tailed and skewed distributions.

Function (2.7) was generalized by using the t-mean instead of τ by

S(x) = η′(x∗)T (x). (2.8)

We call it a scalar score of distribution F . Scalar scores of parametric distributions S(x; θ) =
η′(x∗)T (x; θ) were suggested as inference functions for adapting the data to the assumed parametric
model. For a given x, S(x) describes the sensitivity of the t-mean to the value x. Function S(x, θ) as
a function of θ is the “likelihood score for x∗” either x∗ is a parameter of the distribution or not.

The sample mean and sample variance of distributions with probability densities approaching to
zero too slowly (the heavy tailed distributions) are not relevant characteristics of the data since the
integrals defining the moments can be infinite. It follows from (2.1) that if g(y) = O(e−y) if y → ±∞
then TG(y) = O(1). Since (2.5) retains the properties of t-scores on boundaries of the support, the
scalar scores of heavy-tailed distributions are bounded.

Function S2(x) attains its minimum at x∗ (proof: the density of (2.2) is f(x) = g(η(x))η′(x). The
term η′(x) is common to all distributions with the given support and does not carry any information
about X. The first term is minimal if d

dxg(η(x)) = d
dx (f(x)/η′(x)) = 0, which gives T (x) = 0 by

(2.4)). Further, S2(x) increases from x∗ quickly/slowly if S is unbounded/bounded. Under the usual
regularity conditions ES2 is finite and means information. We thus insist that function S2(x) could
play the role of the Fisher information function of continuous random variables, giving a relative
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Distribution exponential gamma Weibull lognormal
σ2 τ2 α/γ2 π2

6 τ2s2 τ2es2
(es2 − 1)

ω2 τ2 α/γ2 τ2s2 τ2s2

Table 2.1: Ordinary and score variance of light-tailed distributions

2 1 0.7 0.5

beta−prime

p

ω

σ

2.5 1 0.7 0.5p

beta

ω

σ

Figure 2.1: σ and ω of the beta-prime and beta distributions as functions of p.

information contained in observation x, small if the distribution is heavy-tailed,being vast if x is an
outlier in a model which not “expect” an occurrence of outlying observations.

Since η′(x∗) 6= 0 and ES2 > 0, the score variance

ω2 =
1

ES2
=

1
[η′(x∗)]2ET 2(θ)

(2.9)

is finite. The score variance of distributions with X = (0,∞), ω2 = (x∗)2/ET 2, is proportional to the
square of the t-mean, which is in agreement with σ2 of light-tailed distributions (see Table 2, where
we denoted s = 1/c. The value σ2 of the Weibull distribution is an approximation for low s).

The score variance of heavy-tailed distributions, however, is a new quantity. The left panel of Fig.
1 compares ω and σ of the beta-prime distribution for q = p, where ω2 is given in Table 2 below and
σ2 = p(p+1)

(q−1)(q−2)) . The ordinary σ blows up at q = 2.

The score variance of distributions with support X = (−b, b) is ω2 = b2

16ET 2 . For the uniform
distribution with f(x) = 1

2b thus ω2 = 3b2

4 , whereas the ordinary σ2 = b2

3 . The right panel of Fig.
1 shows σ and ω = ( 2p+1

p2 )1/2 of the beta distribution, q = p. Measure ω assigns large values to
U-shaped distributions with p < 1.

3 Uncertainty function

Definition 1. Let X be random variable with distribution F with support set X . Denote by f its
density, T the t-score and x∗ the t-mean. Let η be given by (2.5) and S be the scalar score given by
(2.8). Define the uncertainty function of X by

U(x) =
S2(x)
(ES2)2

. (3.1)

The uncertainty function is defined by such a way that the mean uncertainty equals to the score
variance, EU = ω2. U(x) can be determined also from relation

U(x) = ω2 T 2(x)
ET 2

, (3.2)

equivalent to (3.1). Table 2 and Fig. 2 shows uncertainty functions of some currently used distribu-
tions.
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F X f(x) T (x) ω2 U(x)

normal R 1√
2πσ

e−
1
2 ( x−µ

σ )2
1
σ

x−µ
σ σ2 (x− µ)2

Cauchy R 1
πσ(1+( x−µ

σ )2)
1
σ

2 x−µ
σ

1+( x−µ
σ )2

2σ2 16(x−µ)2

(1+( x−µ
σ )2)2

lognormal (0,∞) c√
2πx

e−
1
2 log2( x

τ )c

c log(x
τ )c τ2

c2
τ2

c2 log2(x
τ )c

Weibull (0,∞) c
x (x

τ )ce−(x/τ)c

c[(x
τ )c − 1] τ2

c2
τ2

c2 [(x
τ )c − 1]2

gamma (0,∞) γα

xΓ(α)x
αe−γx γx− α α

γ2 (x− α/γ)2

log-logistic (0,∞) c
x

(x/τ)c

[(x/τ)c+1]2 c (x/τ)c−1
(x/τ)c+1

3τ2

c2
9τ2

c2
[(x/τ)c−1]2

[(x/τ)c+1]2

Pareto (a,∞) cac/xc+1 c− a(c+1)
x

a2(c+2)
c3

a2(c+2)2

c2

(
1− a(c+1)

cx

)2

beta-prime (0,∞) 1
B(p,q)

xp−1

(x+1)p+q
qx−p
x+1

p(p+q+1)
q3

(p+q+1)2

q2
(x−p/q)2

(x+1)2

beta (0, 1) xp−1(1−x)q−1

B(p,q) (p + q)x− p pq(p+q+1)
(p+q)4

(p+q+1)2

(p+q)2 (x− p
p+q )2

Table 3.1: Uncertainty functions of some distributions.

0 2 4 6
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U(x
)

Figure 3.1: Uncertainty functions of gamma (full line), lognormal (dashed line) and log-logistic (dotted
line) distributions.
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F f(x) eh(X) ω(X)
normal 1√

2πσ
e−

1
2 ( x−µ

σ )2
√

2πeσ σ

Cauchy 1
πσ(1+(x/σ)2) 4πσ 2σ

gamma γα

Γ(α)x
α−1e−γx Γ(α)

γ e((1−α)ψ(α)+α)
√

α/γ

Weibull c
τ xc−1e−

xc

τ
τ1/c

c e(c−1)ε/c+1 τ1/c

c

Pareto cac/xc+1 a
c e(1+1/c) a

c

√
c+2√

c

power cxc−1 1
c e(1−1/c)

√
c(c+2)

(c+1)2

Table 3.2: Comparison of eh(X) and ω(X) for some distributions.
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Figure 3.2:
√

2πeω(X) (full line) and eh(X) (dotted line) of gamma distribution as function of α (left)
and of geometric distribution as function of p (right).

Denote the square root of the mean uncertainty ω2 by ω(X). Instead of the differential entropy
h(X), the positive values eh(X) are sometimes studied (see [2]). Table 3 shows a close relation between
ω(X) and eh(X) of distributions with support R. The correspondence between ω(X) and eh(X) of
distributions with support X 6= R is less apparent, but they have, generally, a similar behavior. As
an example, the left panel of Fig. 3 shows eh(X) and

√
2πeω(X) as functions of parameter α of the

gamma distribution.

4 Uncertainty function of discrete random variables

In the last section we generalize the concept of the t-score for discrete distributions and show that the
logarithm of the mean uncertainty has similar behavior as Shannon entropy.

Let a random variable takes on values k = 0, 1, 2, ... with probabilities f(k). As an analogy with
distributions with support X = (0,∞), for which 1/η′(x) = x, the t-score of the discrete distribution
can be determined by replacing in formula (2.4) the derivatives by differences,

T (k) = − 1
f(k)

[(k + 1)f(k + 1)− kf(k)] = k − (k + 1)
f(k + 1)

f(k)
. (4.1)

Example 4.1. Geometric distribution has probability mass function f(k) = (1 − p)pk. By (4.1),
T (k) = k(1− p)− p. The t-mean k∗ = p

1−p equals the mean, and, since ET 2 = p, ω2 = (k∗)2/ET 2 =
p/(1− p)2, which is the ordinary variance. The uncertainty function is, by (3.2),

U(k) =
ω2

ET 2
T 2(k) =

(
k − p

1− p

)2

.

Functions of p, eH(X), where H(X) = − log p− p
1−p log p and

√
2πeω(X) of the geometric distribution

are similar (right panel of Fig. 3).
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Figure 4.1: Binomial distribution, n = 10, p = 0.5. Left: Uncertainty function, right:
√

2πeω(X) (full
line) and eH(X) (dotted line).

Example 4.2. Poisson distribution has probability mass function f(k) = e−λλk

k! . By (4.1), T (k) =
k − λ, x∗ = ω2 = λ and

U(k) = (k − λ)2.

Let n be a fixed number and random variable X takes on values k = 0, 1, 2, ..., n with probabilities
f(k). As an analogy with distributions with finite interval support X = (0, n), for which 1/η′(x) =
x(n− x)/n, the t-score of the discrete distribution can be written as

T (x) =
1

f(x)
d

dx

[
−x(n− x)

n
f(x)

]
. (4.2)

If we approximate (4.2) by symmetric differences, we obtain

T (k) = −1 +
2k

n
− k(n− k)

2nf(k)
[f(k + 1)− f(k − 1)] (4.3)

for k = 1, ..., n− 1, with T (0) = −1 and T (n) = 1. The score variance is then

ω2 =
[k∗(n− k∗)]2

n2ET 2
. (4.4)

Example 4.3. Discrete uniform distribution has probabilities f(k) = 1
n+1 . Its t-score is T (k) =

2k/n − 1 so that x∗ = n/2 equals the mean. The t-score moment is ET 2 = 2(2n + 1)/3n − 1. For
large n, ET 2 .= 1/3. The score variance is ω2 = n2

24ET 2 and the uncertainty function

U(k) =
(k − n/2)2

4[(2n + 1)/3n− 1)]2
.

For large n, U(k) .= 9
4 (k− n/2)2. The uncertainty function of the continuous uniform distribution on

0, 1) is U(x) = 9
4 (x− 1/2)2.

Example 4.4. Binomial distribution has mass probability function f(k) =
(
n
k

)
pk(1 − p)n−k. By

(4.3), its t-score is

T (k) = −1 +
2k

n
− k(n− k)

2n

[
(n− k)p

(k + 1)(1− p)
− k(1− p)

(n− k + 1)p

]
.

Using (3.2), (4.4), numerical solutions of equation T (x) = 0 and the direct computation of
1

n+1

∑n
k=0 T 2(k), we obtained a plot of uncertainty function for n = 10 and p = 0.5 (left panel

of Fig. 4), and the comparison of functions of p, the square root of the mean uncertainty ω(X) mul-
tiplied by term

√
2πe with eH(X) (right panel of Fig.4). In this case, the mean uncertainty seems to

be a better tool for distinguishing values of p as the Shannon entropy.
Aknowledgements. The research presented in the paper was supported by grant ME 949 ”Analysis of
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