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Abstract:

The basic inference function of mathematical statistics, the score function, is a vector function. We
have introduced the scalar score, a scalar inference function, which reflects main features of a continuous
probability distribution and which is simple. Its simplicity makes it possible to introduce new relevant
numerical characteristics of continuous distributions. The t-mean and score variance are descriptions of
distributions without the drawbacks of the mean and variance, which may not exist even in cases of regular
distributions. Their sample counterparts appear to be alternative descriptions of the observed data. The
scalar score itself appears to be a new mathematical tool, which could be used in solving traditional
statistical problems for models far from the normal one, skewed and heavy-tailed.
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1 Introduction

In statistical estimation problems, estimates are obtained as the solutions
to equations of the form

Ψ(dataθ) = 0

where θ = (θ1, ..., θm) is a vector of parameters of interest and Ψ is an
inference function, the meaning of which is to adapt the data to the assumed
model.

A parametric model is a parametric family of distributions Fθ with prob-
ability densities f(x; θ). The commonly used inference function is the score
function, the vector Ψ = (Ψθ1 , ...,Ψθm) of derivatives of log f(x; θ) with re-
spect to the components of θ. The data x1, ..., xn are considered as realiza-
tions of random variables X1, ..., Xn, independent and identically distributed
according to Fθ0 , a member of the assumed model Fθ. The solution of the
system of equations

n∑
i=1

Ψθk(xi; θ) = 0, k = 1, ...,m

is the maximum likelihood estimate θ̂ML of θ0. Since θ̂ML has the lowest
possible variance, the density f(x; θ̂ML) is considered as the best result of
the estimation process.1

Apart from the fact that θ̂ML is influenced by observations far from the
bulk of the data (outliers: this problem is solved by robust statistics), this
result has some other, usually not accented drawbacks:

i) Parameters of different models are, as a rule, of different nature (lo-
cation, scale, shape, frailty). A comparison of the precision (variance) of
estimates in differently parametrized models is a difficult task.

ii) Instead of f(x; θ̂ML), a few numbers characterizing the data would
be often more useful in further analysis. A desirable description of the
data seems to be something like ’center’ and ’radius’, perhaps skewness
of the data. The commonly used numerical characteristic of distributions
are the mean m = EX =

∫
xf(x) dx, variance m2 = E(X − m)2 and

higher central moments mk = E(X − EX)k; it seems that m̂ = m(θ̂ML)
and m̂k = mk(θ̂ML) should be the values we search for. However, such
an approach is not used in statistical practice. Moments are often queer
expressions containing special functions, and moments of heavy-tailed dis-
tributions (distributions whose probability densities are approaching zero
too slowly) do not exist (the corresponding integrals are infinite).
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iii) More complex statistical problems, such as estimation of the degree
of similarity of random variables X and Y , are usually solved by using ’pure’
data without adapting them to the assumed model. A well-known example is
the measure of association of two random variables, the Pearson correlation
coefficient ρ(X,Y ) = 1

n

∑n
i=1(xi−mX)(yi−mY ), which is not able to make

clear which part of the dependence stems from the real dependence and
which part stems from the properties of marginal distributions of X and Y .

The cause is that the score function is a vector function, suitable for
estimation of parameters, but too complicated to afford useful proposals of
sensible numeric characteristics of distributions and too complicated to be
used in more complex problems.

In the paper, we describe a scalar inference function proposed by the
author.2−5 It reflects basic features of the model distribution, being simulta-
neously a simple scalar function. We outline new possibilities of description
of probability distributions and data taken from them, and suggest possi-
ble use of the function for solution of traditional statistical problems, which
appears to be particularly useful if the underlying distribution is skewed
and/or heavy-tailed.

2 Scalar score

As a scalar score of random variable X with distribution G and differentiable
density g positive on the whole real line R was identified, using lesson drawn
from Hampel et.al.,6 function describing the relative change of the density,

SG(x) = −g
′(x)

g(x)
. (1)

The reason is that if G is a location distribution (that is, if it is in the form
G(x− µ) where µ ∈ R is the location parameter, indicating position of the
maximum of density), function

SG(x− µ) = Ψµ(x− µ)

equals the score function for µ. The solution of equation

SG(x; θ) = 0, (2)

where SG(x; θ) is a parametric form of (1), is the coordinate of the maximum
of density (mode) even if G is not a location distribution.

However, (1) is not a suitable description of distributions with densities
positive only on a part X 6= R of the real line (that is, with support X 6= R),
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since the maximum of the density can lie at the edge of the support and
equation SG(x) = 0 has no solution. Based on the old idea of Johnson,7 we
suggested2 to view any random variable X with distribution F supported by
X 6= R as a transformed random variable X = η−1(Y ), where Y = η(X) has
a ’prototype’ distribution G with support R. By using a suitable mapping
η : X → R, an interesting function of distribution F (x) = G(η(x)) was
identified the transformed scalar score of the prototype,

T (x) = SG(η(x)). (3)

Function (3) can be expressed by means of the density f of F as2

T (x) = − 1

f(x)

d

dx

(
1

η′(x)
f(x)

)
. (4)

(4) expresses the relative change of a ’basic component of the density’, which
appeared to be the density divided by the Jacobian of the mapping used.

For comparison of properties of functions (4) of different distributions,
it is necessary to use consistently one concrete mapping for a given support.
We used that one providing simple mathematical forms of (3) for a large
amount of commonly used distributions. According to Johnson,7 we put

η(x) =

{
log(x− a) if X = (a,∞)

log x
1−x if X = (0, 1)

(5)

(a generalization to common intervals is straightforward). The result, (4)
with η given by (5), is called the transformation-based score or shortly the
t-score. Scalar scores of some ’prototypes’ and t-scores of the corresponding
transformed distributions on (0,∞) are given in Fig. 1.
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Figure 1|Transformed distributions. a. Densities and b. scalar scores of distri-

butions with support R. c. Densities and d. t-scores of corresponding transformed

distributions with support (0,∞).

A location-type distribution G(y−µ) is mapped into (0,∞) as distribu-
tion

F (x; τ) = G(η(x)− η(τ)). (6)

The parameter τ = η−1(µ) is the transformed location parameter,8 the ’i-
mage’ on X of the location of the prototype. It can be taken as a ’cen-
ter’ of F (x; τ), as it is, according to (6) and (2), the solution of equation
T (x; τ) = 0, where T (x; τ) is the corresponding t-score. It was proved2 for
these particular class of distributions that it holds true

η′(τ)T (x; τ) = Ψτ (x; τ). (7)

We thus obtained a function which equals the score function for parameter
expressing the position of distribution F on the x-axis. The score function
Ψτ is decomposed into a product of two terms: an individual member char-
acterizing the distribution (obtained by differentiating with respect to the
variable) and the value of the Jacobian of the transformation at τ .

A generalization for arbitrary continuous distribution is the following3:
As a measure of central tendency of distribution F (x; θ) we suggest the

zero of its t-score,
x∗(θ) : T (x; θ) = 0,

called the transformation-based mean or shortly the t-mean (actually, the
transformed mode of the prototype). Function (7) was generalized by using
the t-mean instead of τ . The result,

S(x; θ) = η′(x∗)T (x; θ), (8)

is called the scalar score (actually the ’score function for t-mean’). We
suggest S(x; θ) as a scalar inference function of distribution F , whether
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the t-mean is a parameter of the distribution or not. For particular class of
distributions with location and transformed location parameter it is identical
with the score function for this parameter. In other cases (such as the
inverted gamma distribution, see Table 1 and Fig. 2) it is a new function.

Figure 2| Numerical characteristics of distributions. a. Densities and b.

scalar scores of inverted gamma distributions with parameters chosen in such a

way that t-means are x∗ = 1, 1.5, 2 and score variance ω2 = 1. All the plotted dis-

tributions have neither mean nor variance. It is apparent that t-mean characterizes

a position of distributions on the x−axis and that all three distributions have a

similar character of variability. Scalar scores of inverted gamma distributions are

not sensitive to large values, but exhibit a large sensitivity to observations near

zero.

3 Description of probability distributions

Besides the cumulative distribution function F (x) and probability density
f(x), probability distribution F can be described by the scalar score S(x) =
η′(x∗)T (x). Since (7) is proportional to the influence function of the max-
imum likelihood estimator of τ , value S(x) can be analogically understood
as a relative influence of x ∈ X on an estimate of the t-mean.
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If the probability density of prototype distribution goes to ±∞ slowly as
e−x (the distribution is heavy-tailed), SG is bounded. Due to (3), scalar
scores of heavy-tailed distributions with arbitrary support are bounded.
This property implies the existence of score moments

Mk = ESk(X) =

∫
X
Sk(x)f(x) dx, (9)

which can be used as numeric characteristics of distributions. It is easy to
see that M1 = 0 (scalar score is centered around the t-mean). The t-mean
exists and is unique for distributions with unimodal prototypes (in other
cases, some additional convention is necessary).

The value M2 = ES2 of location and transformed location distributions
is, respectively, the Fisher information for the location and transformed
location parameter. Accordingly, ES2 is the Fisher information for the t-
mean which could be taken as information of distribution F . The usual
regularity conditions secure that it is finite. The reciprocal value

ω2 =
1

ES2
, (10)

appears to be a natural measure of the variability (dispersion) of the distri-
bution even in cases in which the usual variance does not exist.3 We call it
a score variance. For distributions with support (0,∞), (10) turns into

ω2 =
(x∗)2

ET 2

. t-means and score variances of some distributions are given in Table 1.
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Table 1|t-mean and score variance of some distributions

Distribution f(x) T (x) x∗ ω2

exponential 1
τ e
−x/τ x

τ − 1 τ τ2

gamma γα

Γ(α)x
α−1e−γx γx− α α/γ α/γ2

lognormal c√
2πx

e−
1
2

log2(x
τ

)c c log(xτ )c τ τ2/c2

Pareto c/xc+1 c− c+1
x

c+1
c

c+2
c3

Lomax α
(1+x)α+1

αx−1
x+1

1
α

α+2
α3

inverted gamma γα

Γ(α)x
−(α+1)e−γ/x α− γ/x γ/α γ2/α3

The exponential and lognormal are transformed location distributions. The last

three distributions are heavy-tailed, having for certain range of parameters neither

mean nor variance.

Let us remark that γ = M3/M
3/2
2 characterizes skewness; a real skewness

for distributions with support R and skewness with respect to the basic
form for distributions supported by (0,∞) (which is itself skewed). M4

characterizes flatness. An analog of Pearson’s measure of kurtosis,9 M4/M
2
2 ,

forms a logical structure precisely contrary to the ordinary kurtosis.
Function S2(x) attains its minimum at x∗, which is the least informa-

tive point of the distribution10, and ES2 describes information. S2(x) can
thus be thought of an information function, expressing relative information
contained in observation x.

In the sample space of distribution F , a distance between x1, x2 ∈ X can
be introduced by relation

d(x1, x2) = |S(x2)− S(x1)|. (11)

Parametric forms of (11) are in fact introduced when using maximum likeli-
hood estimators in cases of location and transformed location distributions.
It is apparent that the meaning of (11) is the distance of relative influences
of x1 and x2. For standard normal and standard exponential distributions
S(x) = x, so that in cases of normal end exponential models, (11) is lin-
ear. However, for skewed and/or heavy-tailed distributions it can be highly
nonlinear. As an analogy, the temperature scale is linear. However, the
distance, say, between −272◦C and −272.3◦C can be expressed in millions
dollars, whereas the distance, say, between 1, 000, 000◦C and 1, 200, 000◦C is
not very interesting. One could imagine that a nonlinear temperature scale
would be more suitable. The distance between x1, x2 ∈ X = (−273.15oC,∞)
could be measured by (11) with S being a ’scalar score function’ derived by
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means of (4) and (8) with f describing ’a rate of incidence of temperature
data in man’s life’. It could resemble, perhaps, the scalar score of the in-
verted gamma distribution (Fig. 2).

Writing (11) in the form d(x1, x2) =
∫ x2
x1
dS(x), we obtain another sig-

nificant function of distribution F, function w(x) = dS(x)/dx, which could
be, perhaps, explained as the weight function, giving to any x ∈ X a relative
weight of the observation in the assumed model. Basic functions describing
two standard probability distributions are plotted in Fig. 3.

Figure 3| Functions describing distributions. Density, scalar score, infor-

mation function and weight function of a. Weibull distribution (c = 2) and b.

standard inverted gamma distribution.

4 Data characteristics

Given data x1, ..., xn and a model family Fθ, new sample characteristics of
central tendency (’center’) and dispersion (square of ’radius’) can be ob-
tained as functions of estimated parameters: the sample t-mean x̂∗ML =

x∗(θ̂ML), the sample score variance ω̂2
ML = ω2(θ̂ML) (and, possibly, the

sample coefficient of skewness γ̂ML = γ(θ̂ML)). They can be alternatively

8



used for the description of data samples, particularly of samples from skewed
and/or heavy-tailed distributions, for which the usual characteristics can-
not be used (Fig. 4, 5). By using them, it is easy to compare results of the
estimation in different models.4

Figure 4| Typical value of a sample. A sample (the one with the small largest

value) of length n = 20 was generated from Pareto distribution with α = 0.95,

i.e., from a distribution without mean. The sample mean (3) can be determined,

as well as the standard deviation, but they are theoretically unjustified. The 20%

trimmed mean (2) is known to be very robust estimator, however, it does not take

into account properties of the distribution. The sample t-mean (1) characterizes

the typical value of the sample.

Figure 5| Standard deviations. σ and score standard deviation ω are shown as

functions of the reciprocal value of parameter c of Weibull and Pareto distributions.

σ of heavy-tailed Pareto distribution does not exist if c ≤ 2. For large c, ω ' σ.

For c small, a description of variability of both distributions by the standard score

deviation ω is the only sensible method we know.
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Besides the maximum likelihood estimates, one can use the score moment
estimates as the solution of equations

θ̂SM :
1

n

n∑
i=1

Sk(xi; θ) = EθS
k, k = 1, ...,m, (12)

derived from (9) using the substitution principle. The score moments are
often expressed by elementary functions of parameters.11 Since the scalar
scores of heavy-tailed distributions are bounded, a large observation xi has
no decisive influence on estimates since it enters into estimation equations
by means of S(xi; θ) only.

In some cases, the first equation of (12) has a form

x̂∗SM :
n∑
i=1

S(xi;x
∗) = 0.

Then the sample score variance of samples from distributions with support
(0,∞) is given by

ω̂2 =
(x̂∗SM )2

n−1
∑n

i=1 T
2(xi; x̂∗SM )

.

Examples are given in Table 2. In a general case, however, the sample
characteristics are to be determined as x̂∗ = x∗(θ̂) and ω̂2 = ω2(θ̂), where θ̂
is either the maximum likelihood or the score moment estimate. The score
moment estimates are generally not efficient (that is, they are asymptotically
normal but their asymptotic variances are not lowest possible, contrary to
the maximum likelihood estimates), but they are robust in cases of heavy-
tailed models.12
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Table 2|Sample t-mean and sample score variance of distribu-
tions from Table 1

Distribution x̂∗ ω̂2

exponential x̄ = 1
n

∑
xi x̄2

gamma x̄ 1
n

∑
(xi − x̄)2

lognormal x̄G = 1
nΠxi

1
n

∑
log2 xi/x̄G

Pareto x̄H = n/
∑

1/xi (2x̄H − 1)(x̄H − 1)2

Lomax x̄L =

∑ 1
xi+1∑ xi
xi+1

x̄2
L(2x̄L + 1)

inverted gamma x̄H
x̄2H

1
n

∑
(1−x̄H/xi)2

The formulas for sample t-mean and sample score variance are determined from

the score moment equations (12). x̄ is the arithmetic mean, x̄G geometric mean

and x̄H harmonic mean. The t-mean of the Lomax distribution (a simple member

of the generalized logistic family9) is given by an original closed form. The sample

score variance of one-parameter distributions is a function of the sample t-mean.

For the sample score variance of two-parameter distributions in the table we found

closed-form formulas. In a general case, both x̂∗ and ω̂2 are to be computed by an

iterative way.

Confidence intervals for x̂∗SM can be established by the modification of

the Rao score test1 or by the use of the distance d(x̂∗SM , x0)/
√
ES2, where

d is given by (11).5

5 Other applications

Since the scalar score of a normal distribution is S(x;µ, σ) = (x − µ)/σ2,
the t-mean is the mean and score variance is the variance. If the model
distribution is non-normal, scalar scores can be used for the solution of
traditional statistical problems. We mention three of possible applications.
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i) Linear regression with non-normal residuals.

Let Y = α0 + α1X + ε, where ε is random variable with distribution
Fε. For the estimation of the coefficients α0 and α1, a criterion of minimal
Fisher information of residual errors has been used in the form

1

n

n∑
i=1

S2
ε (εi) = min ., (13)

where Sε is the scalar score of Fε and εi = yi − (α0 + α1xi) are residual
errors. For normally distributed residuals, (13) reduces to the least squares
method. For skewed heavy-tailed Fε we obtained results different from those
provided by robust regression (Fig. 6).

Figure 6| Linear regression. Comparison of least-squares regression, robust

regression and score regression lines for data y = −2.3 + 1.2x + ε where ε was

generated as random variable with Lomax distribution. The score regression line

is below the robust regression line since the scalar score takes into account the

non-symmetry of the distribution (and, consequently, the generated data).
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ii) Distribution-dependent correlation coefficient.

The score correlation coefficient of random variables X, Y with distri-
butions FX , FY and scalar scores SX , SY , respectively, is

ρscore(X,Y ) =
E(SX , SY )

(ES2
XES

2
Y )1/2

.

It holds that −1 ≤ ρS ≤ 1 and ρS(X,Y ) = 0 for independent X and Y .
Simulation experiments have shown that ρscore can detect an association of
random variables even if they have heavy-tailed distributions, similarly to
the Spearman rank correlation coefficient.13 This is illustrated in Fig. 7.

Figure 7| Correlation coefficient. Couples (X,Z) were generated as indepen-

dent random samples of length 75 points from the Lomax distribution. The sample

correlation coefficients between X and Y = αX + (1 − α)Z were estimated. The

theoretical value of correlation is r=0.2. a. Average values of correlation coeffi-

cients Pearson (o), score (*) and Spearman (x) correlation coefficients, and b. their

average standard deviations as functions of variability ω of the distribution. It is

apparent from the lower plot that the usual Pearson correlation coefficient loses for

heavy-tailed distribution any meaning. Estimates of the score correlation coefficient

are in this particular case closed to the Spearman rank correlation coefficient and,

although biased, can detect an association of random variables with heavy-tailed

distributions.
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iii) Spectral properties of heavy-tailed processes.

If the distribution of random process {Xt} is heavy-tailed, random vari-
able Xt does not possess finite variance and {Xt} does not possess spectral
density. Since the moments of random variable S(Xt) are finite for any fixed
t, one can study spectral densities of process {S(Xt)}. We have found that
the score power spectrum of a process with small variability (small ω) is
similar to that of the original process, whereas for processes with large vari-
ability it seems to be a sensible estimate of the spectral content of {Xt},14

as illustrated in Fig. 8.

Figure 8.| Power spectra. Average power spectra of autoregressive signal Xt =

0.4Xt−1+Zt, where Zt is a white noise with Lomax distributions with three different

ω. Dashed lines: spectra of logXt (the used way of estimating spectra of positive

signals), full lines: spectra of S(Xt), where S is the scalar score of the Lomax

distribution, dotted line: spectrum of Xt with standard normal Zt. The estimated

power spectra are similar for low ω. With increasing variability ω, the score spectra

are still usable, whereas the log-spectra are largely distorted.
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6 Conclusions

We describe the way to an introduction of a new inference function of math-
ematical statistics and show some of its advantages, the main of them is that
it enables to introduce relevant characteristics of data samples taken from
arbitrary continuous distribution. Similarly as in any parametric method,
the results of processing real data are crucially dependent on the model
adopted. The sample t-mean and sample score variance may now make
it possible to compare the results of estimation in arbitrarily parametrized
models.
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for support and valuable comments. The research presented was supported
by projects AV0Z10300504 and GACR 205/09/1079.

15



Bibliography.

1. Casella, G., Berger, R.L. (2002). Statistical inference. Duxbury.
2. Fabián, Z. (2001). Induced cores and their use in robust parametric
estimation. Comm. Statist. Theory Methods 30, 537-556.
3. Fabián, Z. (2007). Estimation of simple characteristics of samples from
skewed and heavy-tailed distribution, in Skiadas, C. (Ed.), Recent Advances
in Stochastic Modeling and Data Analysis. World Scientific, Singapore, 43-
50.
4. Fabián, Z. (2008). New measures of central tendency and variability of
continuous distributions. Comm. Statist. Theory Methods 37, 159-174.
5. Fabián, Z. (2009). Confidence intervals for a new characteristic of central
tendency of distributions. Comm. Statist. Theory Methods 38, 1804 - 1814.
6. Hampel, F. R., Rousseeuw, P. J., Ronchetti, E. M. and Stahel, W.
A. (1986). Robust Statistic. The Approach Based on Influence Functions,
Wiley, New York.
7. Johnson, N.L. (1949). Systems of frequency curves generated by methods
of translations. Biometrika 36, 149-176.
8. Marshall A. W., and Olkin I. (2007). Life distributions. Structure of
nonparametric, semiparametric and parametric families. Springer.
9. Johnson, N. L., Kotz, S., Balakrishnan, N. (1994, 1995). Continuous
univariate distributions 1, 2. Wiley.
10. Fabián, Z. (2009). The t-information and its use in multivariate prob-
lems and time series analysis. J. Statist. Planning and Inference 139, 3773-
3778.
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