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Abstract:

Methods for hidden structure of high-dimensional binary data discovery are one of the most important
challenges facing machine learning community researchers. There are many approaches in literature that
try to solve this hitherto rather ill defined task. To elaborate our approach we propose a most general
generative model of binary data for Boolean factor analysis. Our previous finding has shown that recurrent
neural network is able to learn hidden factors as separate attractors. Proceeding this, we introduce here
new Attractor Neural Network with Increasing Activity, acting as a Boolean Factor Analyzer. Then we
introduce new Expectation-Maximization Boolean Factor Analysis algorithm based on a generative data
model which maximizes likelihood of Boolean Factor Analysis solution. To show maturity of our solutions we
propose here informational measure of Boolean Factor Analysis efficiency. Using the so-called bars problem
benchmark , we compare efficiencies of our two BFA methods with Dendritic Inhibition neural network (DI),
Maximal Causes Analysis and Boolean Matrix Factorization Then we discuss why the methods proposed
by us outperform the rest of methods in the full range of Boolean factor analysis model parameters space.
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1 Introduction

Factor analysis in general is one of the most efficient methods to reveal and to overcome informational
redundancy of high-dimensional signals. Boolean Factor Analysis (BFA) as a special case of factor
analysis implies that components of original signals, factor loadings and factor scores are binary
values. Each binary signal (vector) can be interpreted as a representation of the appearance or
the non-appearance of binary attributes (binary vector components) in the pattern. The number
of considered attributes is the dimensionality of the signal space, the appearance of an attribute is
encoded as One, and absence as Zero. The patterns are assumed to be composed of many “objects”
in different combinations. We define an object as a collection of highly correlated attributes and
suppose that objects are relatively independent of one another. Hence the attributes of different
objects are only slightly correlated. In terms of BFA objects are factors, the attributes constituting
the object are factor loadings, and the presence or absence of an object in the pattern is identified
by the value of the factor score (One or Zero). Correlation between the attributes constituting each
factor can be revealed by statistics over large data set constituted by patterns that contain each factor
many times in different combinations with other factors. The aim of BFA is to detect this hidden
structure of the signal space and to form a representation in which these independent objects are
presented explicitly. Factor may also be interpreted as some hidden cause resulting in the sets of
observations [Lücke and Sahani (2008)] . For example in medical researches, a cause is a syndrome
and an observation is a symptom [Weber and Scharfetter (1984), Veiel (1985)].

In spite of the fact that binary data representation is typical for many fields, including social
science, marketing, zoology, genetics and medicine, BFA methods are rather moderately developed.
We [Frolov et al. (2007)] proposed a BFA method that is based on the Hopfield-like attractor neural
network. This new Attractor Neural Network with Increasing Activity is referred here as ANNIA. The
method builds on the well known property of Hopfield network to create attractors of network dynamics
by tightly connected neurons. Since neurons representing a factor are activated simultaneously each
time when factor appears in the patterns of the data set, and neurons representing different factors
are rather seldom activated simultaneously, then - due to the Hebbian learning rule - factor neurons
become more tightly connected than other neurons. So factors can be revealed as attractors of network
dynamics. In our previous papers [Frolov et al. (2008), Frolov et al. (2006c), Frolov et al. (2009)] we
demonstrated the efficiency of the method solving the task of mushroom data set clustering, in analysis
of parliament voting, and in text analysis.

The well-known benchmark for learning of objects from complex patterns is the Bars Problem
(BP) introduced by [Foldiak (1990)]. The BP in various modifications has been considered in many
papers for references see [Lücke and Sahani (2008)]. In this problem, each pattern of the data set is
n-by-n binary pixel image containing several of L = 2n possible (one-pixel wide) horizontal and vertical
bars (Fig. 1.1). Pixels belonging and not belonging to the bar take values 1 and 0, respectively. For
each image each bar could be chosen with a probability C/L, where C is the mean number of bars
mixed in an image. In the point of intersection of vertical and horizontal bars, pixel takes the value
1. The Boolean summation of pixels belonging to different bars simulates the occlusion of objects.
The task is to recognize all bars as individual objects on the basis of a data set containing M images
consisting of bar mixtures. In most papers where the BP was used as benchmark, C was set to 2 and
n ≤ 8.

In terms of BFA, bars are factors, each image is Boolean superposition of factors, and factor
scores take values 1 or 0 dependently on bar presence or absence in the image. Thus, the bars
problem is a special case of BFA. It was a challenge for us to test our ANNIA method using BP
benchmark, because it is a demonstrative and well investigated example of complex image analysis
[Spratling (2006), Lücke and Sahani (2008)].

To be able to evaluate performance of any BFA method we suggest, first, a general generative
model of signals appropriate for BFA and, second, a general measure of BFA efficiency based on the
comparison of data set entropies when its hidden structure is ignored or taken into account. This
difference of the entropies, that is information gain, we suggest to consider as a general information
theoretic measure of BFA efficiency. Next, we show that this measure is sensitive to both noise in
signals and errors in BFA results. This analysis allows us to conclude that information gain is a
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Figure 1.1: A Sixteen vertical and horizontal bars in 8-by-8 pixel images. B Examples of images in
the standard bars problem. Each image contains two bars on average.

reliable basis for different BFA methods comparison and for detecting the presence of hidden factor
structure in a given data set as well.

In the experimental part of the paper, we compare ANNIA with four other methods supposed
to be most efficient in solving the bars problem. The first method is the Dendritic Inhibition
neural network (DI). This method was suggested and studied by [Spratling and Johnson (2002)],
[Spratling and Johnson (2003)], [Spratling (2006)] and was shown to be more efficient than other
related methods.

The second method, suggested in [Lücke and Sahani (2008)], is Maximal Causes (MCA3) method
based on powerful and popular Expectation-Maximization (EM) algorithm [Dempster et al. (1977),
Neal and Hinton (1998)]. It was shown [Lücke and Sahani (2008)] that it is even more efficient than
DI . The third method, suggested in [Belohlavek and Vychodil (2010)], is fast Boolean Matrix Fac-
torization (BMF). The last method, Expectation-Maximization Binary Factor Analysis (EMBFA),
developed in this paper, is based on EM method, as well as MCA3, however EMBFA is rigorously
built on here suggested BFA generative model, whereas MCA3 is based on different assumption about
the data structure.

The paper is organized as follows. A general generative model is proposed in Section 2. In Section 3,
we propose the procedure for information gain calculation. In Section 5, we provide important details
of ANNIA. Related methods, including the development of EMBFA, are discussed in Section 6. The
sensitivity of information gain to signal noise and to errors in the BFA results is investigated in
Section 4. Abilities of different methods to solve the bars problem are compared in Section 7. The
strengths and weaknesses of the considered BFA methods are discussed in Section 8.

2 A Generative Model of Signals Suitable for Boolean Factor
Analysis

In formulating a generative model of signals suitable for BFA, we follow ideas of [Barlow (1985)],
[Marr (1970)], [Kussul (1992)] and others who assumed that factor revealing is one of the main brain
functions. Explaining Barlow ideas, [Foldiak (1990)] writes: “According to [Barlow (1985)] objects
(and also features, concepts or anything that deserves a name) are collections of highly correlated
properties. For instance, the properties ‘furry’, ‘shorter than a meter’, ‘has a tail’, ‘moves’, ‘animal’,
‘barks’, etc. are highly correlated, i.e., the combination of these properties is much more frequent than
it would be if they were independent (the probability of the conjunction is higher than the product of
individual probabilities of the component features). It is these non-independent, redundant features,
the ‘suspicious coincidences’ that define objects, features, concepts, categories, and these are what
we should be detecting. While components of objects can be highly correlated, objects are relatively
independent of one another ... The goal of the sensory system might be to detect these redundant
features and to form a representation in which these redundancies are reduced and the independent
features and objects are represented explicitly”.

In terms of BFA, each pattern of a signal space is defined by a binary row vector X with dimen-
sionality N equal to the total number of attributes. Every component of X takes value One or Zero,
depending on the presence or absence of the related attribute. Each factor fi is a binary row vector
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of dimensionality N whose One valued entries correspond to highly correlated attributes of the i-th
object. Although the probability of the object’s attribute to appear in a pattern simultaneously with
its other attributes is high, it is not obligatory equal to 1. For example, the attribute “has a tail” does
not always appear with the appearance of the object “dog”. We denote this probability as pij , where
j is the index of an attribute and i is the index of a factor. For attributes constituting the factor,
probability pij is high, and for other attributes it is zero.

As in linear factor analysis, we suppose that additionally to common factors fi, each signal also
contains some specific factors. The contribution of specific factors is defined by a binary row vector
η, which we call “specific noise”. Each specific factor is characterized by a probability qj that j-th
component of vector η takes One.

As a result, any vector X can be presented in the form

X = [
L

⋁
i=1

Sif
′
i] ∨ η, (2.1)

where S is a binary row vector of factor scores of dimensionality L, L is the total number of factors,
f ′i is a distorted version of factor fi and η is a specific noise defining the influence of specific factors.
Factor distortion implies that some Ones of the i-th factor become Zeros with probability 1− pij . We
suppose that each component of the common factor is distorted independently of the presence of other
factors in the pattern and independently of specific noise. Thus, the probability of the j-th component
of X to take the value Xj is

P(Xj) =Xj − (2Xj − 1)(1 − qj)
L

∏
i=1

(1 − pij)Si , (2.2)

where scores Si are assumed to be given. We suppose that different components of X (attributes) are
also statistically independent. Thus

P(X) =
N

∏
j=1
P(Xj). (2.3)

BFA is performed on the set X of patterns Xm containing M representatives. We assume that factor
distortion in each pattern of the data set does not depend on others. Thus

P(X ) =
M

∏
m=1
P(Xm). (2.4)

In most of the examples considered in this paper, we assume that factors appear in patterns (i.e.,
related scores Si take Ones) independently with probabilities πi, i = 1, . . . , L. In some examples we
assume that the number of factors is fixed in each pattern. Then the appearances of different factors
become slightly correlated.

The aim of Boolean Factor Analysis is to find the parameters of generative modelΘ = (pij , qj , πi, i =
1, . . . , L, j = 1, . . . ,N) and the factor scores Smi,m = 1, . . . ,M for each of M patterns of the data set.
However, it is supposed that the found factors could also be detected in any arbitrary pattern X ∉ X
if generated by the same model.

3 Information Gain

If the factor structure of the signal space is not taken into account, then representing the j-th com-
ponent of vector X requires h(pj) bits of information, where h(x) = −x log2 x − (1 − x) log2(1 − x) is
Shannon function and pj is probability of the j-th component to take One. Representing the whole
data set requires

H0 =M
N

∑
j=1

h(pj) (3.1)
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bits of information. If the hidden factor structure of the signal space is detected and all factor loadings
and scores are found, then representing the whole data set requires

H =H1 +H2 +H3 (3.2)

bits of information. Here first term

H1 = N
L

∑
i=1

h(ri), (3.3)

where ri is the portion of Ones in i-th factor, is an information that is required for storing factor
loadings, second term

H2 =M
L

∑
i=1

h(πi) (3.4)

is an information required for storing factor scores and third term

H3 =
M

∑
m=1

N

∑
j=1

h(P(Xmj)), (3.5)

where P(Xmj) is given by (2.2), is an information required for storing all patterns of the data set
when factor loadings and scores are given.The information gain is defined as the difference between
H0 and H. Relative information gain is then

G = (H0 −H)/H0. (3.6)

From a practical point of view, BFA is beneficial (in sense of dimensionality reduction) only if G > 0.
So let us optimize our formula in the light of this idea. The first term in (3.2) is proportional to

LN , the second one to ML and the third one to MN . Since in all the cases considered in the sequel,
M ≫ N ≫ L, then one could expect that the third term in (3.2) is always dominant. However, when
noise is absent it vanishes and becomes dominant only when the level of noise is sufficiently high.
At the same time, the first term in (3.2) is always small and hence could be neglected. However in
principle it is essential to avoid the trivial solution of BFA, i.e.when each pattern of the data set is
assumed to be individual factor. In this case, H3 = 0, H2 =M2h(1/M) ≃M log2(Me) and since H0 is
proportional to MN , this solution provides unreasonably high gain if H1 is ignored. On other side, if
it is taken into account, gain is negative since for this solution H1 = H0. Thus, the role of this term
is to prevent the choice of BFA solution with the high gain but incredibly large number of factors. In
all BFA methods considered below the growth of this number is restricted by their own means thus,
we can exclude this term from the gain formula and in the sequel, when speaking about information
gain, we will have the following formula

G = (H0 −H2 −H3)/H0, (3.7)

in mind.
According to (3.4) and (3.5), to calculate the information gain one needs to know factor scores Smi

assigned to patterns of the data set and parameters of the generative model pij and qj . However, this
information is redundant because the knowledge of factor scores allows for calculation of generative
model parameters and conversely the knowledge of these parameters allows for assigning proper factor
scores to patterns of the data set. Since most of the methods considered in the sequel (except EMBFA
developed in the present paper) do not use the notion of BFA generative model introduced here,
hence they cannot provide the search of its parameters in principal but allow for searching for factor
scores. That is why our comparison of their efficiencies has to be based on their abilities to assign
proper factor scores to patterns of the data set. To find the parameters of BFA generative model
required for information gain calculation we suggest the procedure based on maximization of the data
set likelihood under given factor scores provided by any of considered BFA method.
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For the BFA generative model the data set likelihood function takes the form

L = logP(X ) =
M

∑
m=1
Lm, (3.8)

where

Lm = logP(Xm) =
N

∑
j=1

logP(Xmj), (3.9)

and P(Xmj) is given by (2.2). Maximum of L is defined by the following system of L×N+N equations
for pij and qj (i = 1, . . . , L, j = 1, . . . ,N):

∂L
∂pij

=
M

∑
m=1
P(Xmj)−1 ∂P(Xmj)

∂pij
= 0, (3.10)

∂L
∂qj

=
M

∑
m=1
P(Xmj)−1 ∂P(Xmj)

∂qj
= 0,

where

∂P (Xmj)
∂pij

= Smi(2Xmj − 1)(1 − qj)∏l=1,L(1 − plj)Sml

1 − pij
(3.11)

∂P (Xmj)
∂qj

= (2Xmj − 1) ∏
l=1,L

(1 − plj)Sml .

Then (3.10) takes the form

M

∑
m=1

Smi =
M

∑
m=1

SmiXmj

1 − (1 − qj)∏l=1,L(1 − plj)Sml

M =
M

∑
m=1

Xmj

1 − (1 − qj)∏l=1,L(1 − plj)Sml

The obtained system can be solved by iterative procedure

pij(k + 1) = 1

∑M
m=1 Smi

M

∑
m=1

pij(k)SmiXmj

1 − (1 − qj(k))∏l=1,L(1 − plj(k))Sml
(3.12)

qj(k + 1) = 1

M

M

∑
m=1

qj(k)Xmj

1 − (1 − qj(k))∏l=1,L(1 − plj(k))Sml
.

Let us prove that this procedure converges: At its each step ∆pij = pij(k + 1) − pij(k) is

∆pij = pij(k)
∑M

m=1 Smi

M

∑
m=1

Smi(2Xmj − 1)(1 − qj(k))∏l=1,L(1 − plj(k))Sml

Xmj − (2Xmj − 1)(1 − qj(k))∏l=1,L(1 − plj(k))Sml

= pij(k)(1 − pij(k))
∑M

m=1 Smi

M

∑
m=1
P(Xmj)−1 ∂P(Xmj)

∂pij
= pij(k)(1 − pij(k))

∑M
m=1 Smi

∂L
∂pij

.

Similarly ∆qj = qj(k + 1) − qj(k) is

∆qj = qj(k)
M

M

∑
m=1

(2Xmj − 1)(1 − qj(k))∏l=1,L(1 − plj(k))Sml

Xmj − (2Xmj − 1)(1 − qj(k))∏l=1,L(1 − plj(k))Sml

= qj(k)(1 − qj(k))
M

M

∑
m=1
P(Xmj)−1 ∂P(Xmj)

∂qj
= qj(k)(1 − qj(k))

M

∂L
∂qj

.

5



Then

∆L ≃∑
i,j

∂L
∂pij

∆pij +∑
j

∂L
∂qj

∆qj =∑
i,j

pij(k)(1 − pij(k))
∑M

m=1 Smi

( ∂L
∂pij

)
2

+∑
j

qj(k)(1 − qj(k))
M

( ∂L
∂qj

)
2

.

Thus at each iteration step likelihood does not decrease and hence iteration procedure converges.
Since we assume that for attributes constituting a factor, probabilities pij are sufficiently high but

equal to zero for other attributes, at each iteration step we set pij = 0, if pij is small. In particular,
we set it to Zero, if

pij < 1 −∏
l≠i

(1 − πlplj), (3.13)

where the right side of the inequality is the probability that the j-th attribute appears in the pattern
due to other factors except fi. We consider such pij“ cleaning” procedure as factor binarization,
because we treat the component with a high probability pij as constituting the i-th factor (fij = 1),
and the component with a small pij as not constituting it (fij = 0). According to our experience the
iteration procedure converges in 3-5 steps.

As the input to the iterative procedure (3.12), we used pij and qj obtained from probabilities p1ij
that the j-th attribute appears in the pattern when the i-th factor is present and p0ij when it is absent.

On one hand, probabilities p1ij and p0ij can be estimated as frequencies of the j-th attribute taking
One in patterns of the data set containing and not containing the i-th factor. On the other hand,
these probabilities can be estimated as

p0ij = 1 − (1 − qj)∏
l≠i

(1 − πlplj) (3.14)

p1ij = 1 − (1 − qj)(1 − pij)∏
l≠i

(1 − πlplj)

This results in

pij = (p1ij − p0ij)/(1 − p0ij).

As in the previous procedure of likelihood maximization, we set the probability pij to zero, if it satisfies
(3.13).

After finding pij , qj can be obtained from (3.14). Probabilities πi are estimated as the frequencies
of the related scores provided by BFA. Probabilities pj required for calculation of H0 are estimated
as frequencies of related components in the data set.

4 Relevance of Information Gain for the Bars Problem

In this section, we illustrate the general properties of the information gain G defined by (3.6), using
the bars problem data. Particularly, we compare the values of G for

• “theoretical solution”, i.e.for the case when all scores and generative model parameters are
exactly the same as those used for data set generation,

• “ideal solution”, i.e.for the case when all scores are exactly the same as those used in the gener-
ated data set, but parameters of the generative model are found by likelihood maximization (this
case simulates the situation when BFA provides scores ideally matching those in the generated
data set under analysis),

• “erroneous solution”, i.e.for the case when some factors or scores are missed or false factors or
scores are added.

Fig. 4.1 illustrates the dependence of information gain for “theoretical”, “ideal” and “erroneous”
solutions on the probabilities qj and pij , and on the size of the data setM . Here, pij = p for components
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Figure 4.1: Information gain for “theoretical” (thick lines), “ideal” (thin lines marked by u) and
“erroneous” solutions in dependence on the size of the data set M , ◻ – one of the factors was excluded,

F – 16 false factors in the form of crossing bars were added, ▽ – 10 % of randomly chosen scores were
excluded, △ – 10% of randomly chosen scores were added. (a) – dependence on q (specific noise) for
p = 1, (b) – dependence on p (factors distortion) for q = 0 and for both kinds of noise (q = 0.2, p = 0.7).

Figure 4.2: A Examples of noisy images for p = 0.7, q = 0.2. B Probabilities pij (shown by the shades
of grey) of pixels activation obtained by the likelihood maximization for the ideal solution (M = 100,
p = 1, q = 0.3) in one of the trials.

constituting factors and qj = q for any j. Recall that pij = 0 for components not constituting factors.
In Fig. 4.1, and in subsequent figures, each shown value of G is obtained by averaging over 50 trials.
Each trial is made, using randomly generated data set of a given size M . Patterns of the data set were
8-by-8 binary images (i.e., N = 64). L = 16 vertical and horizontal bars (one pixel width, Fig. 1.1(A))
were randomly mixed in images with probabilities πi = C/L = 1/8, thus 2 bars were mixed in each
image on average. Examples of the standard BP images (p = 1, q = 0) are shown in Fig. 1.1(B), and
their noisy versions for p = 0.7, q = 0.2 are shown in Fig. 4.2(A).

For small M the information gain for “ideal” solution is paradoxically higher (Fig. 4.1) than for
the “theoretical” one. But it is the usual case for the procedure of likelihood maximization: when data
set is relatively small, the procedure provides the solution for pij and qj that better fits randomly
obtained peculiarities of a given data set realization than the “theoretical” solution. That is why
both G and L are higher for the “ideal” solution adjusted to those specific peculiarities. Fig. 4.2(B)
shows values of pij obtained for one of the trials with M = 100, p = 1 and q = 0.3. The black
pixels correspond to pij = 1, the white pixels correspond to pij = 0, and the grey pixels correspond
to the intermediate values. For the pixels constituting bars all pij = 1. However, the factors found
by likelihood maximization contain some additional pixels. For some of them, probability of their
appearance with factors is rather high. It means that for this particular data set those pixels were
activated by chance simultaneously with the activation of the related bar, and this peculiarity of the
data set was detected by likelihood maximization. When M increases, this effect disappears and
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“ideal” solution coincides with “theoretical” one.
As shown in Fig. 4.1, the maximal information gain is achieved when bars mixed in the scenes

are not distorted (p = 1, q = 0), and G decreases when noise increases due to both increasing of q or
decreasing of p. We suppose that when the information gain G is positive, BFA is appropriate for a
given data set analysis, and on the other side when it is negative, BFA has no sense. The smaller is
G, the less explicitly the factor structure of the data set is exposed. For example, when G is small
(Fig. 1(b), p = 0.7, q = 0.2), bars in images are almost invisible (Fig. 4.2(A)).

Information gain also decreases when BFA is not perfect. Particularly, G decreases when one of
the factors is missing (Fig. 4.1). The decrease of G occurs in this case due to increasing qj . G also
decreases when false factors are added to true factors. In the experiments, to the true 16 factors we
added 16 false factors that were crosses of randomly selected vertical and horizontal bars. As shown
below, such kind of false factors is typical for some BFA methods. In the experiment whose results are
depicted in Figs. 4.1 and 4.2, the scores for the false factors were given precisely as those for the true
factors. Additional false factors result in decreasing G due to the increase of the first term in (3.2)
that gives the information required to describe scores. As shown in Fig. 4.1, G also decreases when
true scores were excluded or false scores were added. Thus, all kinds of errors result in decrease of
the information gain. Hence, we can conclude that information gain is a reliable measure for different
BFA methods comparison and for detecting hidden BFA structure in a given data set as well.

5 Attractor Neural Network with Increasing Activity — AN-
NIA

We describe here the basic version of ANNIA method, which is sufficient to solve BP. Some extensions
of the method for more complex problems were presented earlier [Frolov et al. (2007), Frolov et al. (2009)].
At the same time, we describe here some details of the basic version which were omitted in our previous
papers.

In this section, ANNIA operation is illustrated when solving BP for 16 bars on a grid of 8 by 8
pixels. The average number of bars mixed in data set patterns is 2. Both factor distortion and specific
noise are absent.

The method ANNIA is based on the network of N neurons corresponding to N binary coordinates
of signal space. All patterns of the data set are stored in the network by the Hebbian learning rule:

Jij =
M

∑
m=1

(Xmi − qm)(Xmj − qm), i, j = 1, . . . ,N, i≠j, Jii = 0, (5.1)

where qm =
N

∑
i=1

Xmi/N is the total activity of the m-th pattern. Factors are revealed as attractors of

network dynamics in the two-run recall procedure. Its initialization starts by the presentation of a
random initial pattern Xin with kin active neurons (kin is supposed to be smaller than the number
of active neurons in any factor). On presentation of Xin, network activity X evolves to an attractor
according to synchronous discrete time dynamics. At each time step, kin winners with the highest
synaptic excitations are activated. Excitations are calculated as XJ, where X is the network state at
the previous time step. When activity stabilizes at the initial level of activity kin, then a neuron with
the maximal excitation T (kin) is selected over all not active neurons, and added to already active kin
neurons of the attractor. In fact, T (kin) is a threshold of excitation for non-active neurons to activate
only one of them. The obtained pattern with kin + 1 neurons is treated as the initial network state
for the next iteration step, and network activity evolves to an attractor at the new level of activity
kin + 1. The level of activity then increases to kin + 2, and so on, until the number of active neurons
reaches the final level kfin. Thus, one trial of the recall procedure contains kfin − kin external steps
and several internal steps (usually 2-3) inside each external step to reach an attractor for a given level
of activity.

At the end of each external step when network activity stabilizes at the level of k active neurons,
a Lyapunov function is calculated:

λ(k) =X(t + 1)JXT (t)/k, (5.2)
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where J is a matrix of synaptic connections and X(t + 1) and X(t) are the two network states
in a possible cyclic attractor of length 2 (for point attractor, X(t + 1) = X(t)). As suggested by
[Frolov et al. (2007)], the identification of factors was based on the analysis of the change of the
Lyapunov function λ(k) and the activation threshold T (k) in the recall procedure. At the initial part
of the recall trajectory, when k < nf (nf is the number of active neurons in the factor), λ(k) increases
proportionally to k, and then sharply breaks at the point k = nf (Fig. 1(a)). As shown in Fig. 1(b),
the activation threshold T (k) also increases proportionally to k, and then jumps down at the point
k = nf . The increment of R(k) = λ(k)/(k − 1) − T (k)/k has a clearly expressed peak at this point
(Fig. 1(d)). Thus, the peak of R′(k) = R(k) − R(k − 1) was used as an indicator of factor on each
recall trajectory. The pattern of the network activity at the peak gives the factor loadings for the
found factor.

Some trajectories have a second, weaker, peak of R′(k) at the points k = 15 or k = 16. These
peaks correspond to pairs of factors most often appearing together in the data set images. The point
k = 15 corresponds to crossing bars, and k = 16 corresponds to parallel bars. Similar but weaker peaks
appear also at points k = 22, k = 23 and k = 24 (not depicted in Fig. 5.1) corresponding to images
containing three bars that most often appeared together in the data set, and so on. Thus, the method
is able to extract some additional information on the data set besides revealing its factor structure.

As shown in Fig. 1(a), sometimes Lyapunov function jumps up from one to another continuous
trajectory. In this step, network activity transfers to an attractor far from the attractor at the previous
step. As shown in Fig. 1(d), such a transfer could also produce a peak of R′. To avoid false treating
of such transfers as factors, we calculated on each point of each trajectory the similarity Sim(k)
between patterns of network activity in the current attractor Xattr(k) and in the previous attractor
Xattr(k − 1) as

Sim(k) = a − (k − 1)k/N
(k − 1)(1 − k/N) , (5.3)

where a is the number of common Ones in Xattr(k) and Xattr(k−1). If Xattr(k) contains Xattr(k−1),
then Sim(k) = 1. If Xattr(k) and Xattr(k − 1) are independent, then Sim(k) is equal to zero on
average. We assumed that pattern of the network activity changes smoothly along the trajectory if
Sim(k) ≥ Simthr, where Simthr = 0.8. In the opposite case, we treated the transfer from Xattr(k − 1)
to Xattr(k) as a jump. Thus, the point on the trajectory with the largest peak of R′ could be
considered as related to factor only if there was no jump at this point.

The sizes of attraction basins around factors are distributed in a large range. They are proportional
to the values of the Lyapunov function of factors, which, in turn, is proportional to the frequency of
their appearances in the data set. When the initial network states are chosen randomly, as in the
procedure described above, network activity tends to converge to factor with the largest attraction
basin. To suppress the dominance of such factor in a subsequent search, we deleted it from the network
memory according to the Hebbian unlearning rule, i.e., by subtracting ∆Jij from synaptic connections
Jij :

∆Jij = J̄[(Xi(t) − r)(Xj(t + 1) − r) + (Xi(t + 1) − r)(Xj(t) − r)], j ≠ i, ∆Jii = 0, (5.4)

where X(t) and X(t + 1) are the successive patterns of network activity in the attractors (this un-
learning rule takes into account that attractor can be cyclic of the length two), J̄ = λ/(nf − 1) is the
mean weight of synaptic connections between the factor neurons, and r = nf /N is the level of factor
activity.

Network dynamics can converge not only to true attractors corresponding to factors, but also to
spurious attractors far from all factors [Frolov et al. (2007)]. The Lyapunov function for the spurious
attractors is smaller than that for factors (Fig. 1(a)). To separate true attractors from spurious
ones, we used the following heuristic method. After finding a peak of R′ on the recall trajectory, we
activated random set of kp neurons (kp is the number of active neurons at the peak) and found the
maximal synaptic excitation over all neurons of the network. We repeated this procedure 100 times
and calculated mean m(kp) and standard deviation σ(kp) of maximal excitations. If the Lyapunov
function in the peak exceeded the value hmax = m(kp) + 2σ(kp), we treated the found point on the
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Figure 5.1: Lyapunov function λ (a), activation threshold T (b), function R = λ/(k − 1) − T /k (c)
and its derivative R′ (d) in dependence on the number of active neurons k. Dashed lines in (a) are
thresholds for separating true and spurious trajectories at the beginning (upper line) and at the end
(lower line) of the recall procedure. Results were obtained for data set consisting of M = 400 patterns.
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trajectory as a factor, in the opposite case — as a spurious state. The borders hmax separating true
and spurious trajectories at the beginning (upper curve) and at the end (lower curve) of the recall
procedure are shown in Fig. 1(a) by the dashed lines. We did no unlearning when spurious states were
identified. When all factors were found and deleted from the network memory, only spurious attractors
can be activated. The appearance of only spurious attractors in the recall procedure indicates that all
factors are found. We stopped the recall procedure when ten sequential recall attempts lead to spurious
attractors only. Initially, almost all trajectories were true. So, only about 16 trials were required to
find all factors. Note that both λ(k) for true trajectories and the border hmax(k) separating true and
spurious trajectories markedly decrease as factor discovering proceeds, due to sequential deleting of
factors with the highest values of the Lyapunov function. The spurious trajectories shown in Fig. 1(a)
appeared only after deleting all factors.

To find factor scores, we calculated similarity between each pattern of the data set and each
found factor as Q = a/nf , where a is the number of common Ones in the factor and in the pattern.
Usually, the distribution of Q has two clearly separate modes (Fig. 5.2). The mode with the larger Q
corresponds to patterns containing the factor, the second one corresponds to patterns not containing
it. To separate these modes, we used the threshold

Qthr =m
Q
+ 2σ

Q
, (5.5)

where m
Q
= ∑

j∶pij≠0
pj , σQ =

√
∑

j∶pij≠0
pj(1 − pj), pj is the frequency of appearance of the j-th signal

component in the data set, and summation is performed only over the attributes j constituting the
i-th factor. The values m

Q
and σ

Q
are estimations of mean and standard deviation of Q. So we put

the score to be One if Q > Qthr and Zero in the opposite case. As shown in Fig. 5.2, this threshold
provides successful separation of two modes even in the case of large noise in images.

Thus, the basic version of the ANNIA Boolean Factor Analysis procedure by consists of three
steps:

1. Patterns of the data set are stored in the network according to the Hebbian learning rule (5.1).

2. Factors are searched by the two-run recall procedure with the Hebbian unlearning (5.4). Factors
are identified as the peaks in the R′ curves, by comparison of their Lyapunov function values
λ with hmax, and taking into account the continuity of the recall trajectory. Pattern of the
network activity at the peak gives the factor loadings.
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3. Factor scores for each revealed factor and each pattern of the data set are determined by simi-
larity Q between the factor and the pattern.

6 Related Methods

In this section, we consider four other BFA related methods investigated in this paper. Some of them
were supposed [Spratling (2006), Lücke and Sahani (2008)] to be the most efficient for BFA, at least
for solving the bars problem.

6.1 Boolean Matrix Factorization — BMF.

Boolean Matrix Factorization [Belohlavek and Vychodil (2010)] implies presentation of binary matrix
of observed data set X in the form

X = S⊗F, (6.1)

where each row of binary M ×N matrix X is an observed pattern, each row of binary L ×N matrix
F is a representation of factor in the signal space and each row of binary M × L matrix S is a
set of factor scores defining which factors are mixed in the patterns. Boolean matrix product ⊗
means that each component of matrix X is obtained as Xmj = L

⋁
i=1

Smifij . This representation of

each scene corresponds to formula (2.1), when noise (both factor distortion and specific noise) is
absent, that is pij = 1 and qj = 0. The method implies identification of a minimal set of factors that
provide representation of the observed data in the form (6.1). Since this combinatorial problem is
NP complete [Miettinen et al. (2008)] existing methods give reasonable, but not obligatory optimal
solutions. Recently [Belohlavek and Vychodil (2010)] revealed a tight relationship between BMF and
formal concept analysis [Ganter et al. (1999)] and developed two simple greedy algorithms of BMF.
In our computer simulation we used the second faster algorithm. Since Boolean matrix factorization
implies exact (non-noisy) observations as an input, only the first term in (3.2) is nonzero.

6.2 Dendritic Inhibition Network — DI

This method was developed by [Spratling and Johnson (2002)] for finding parts-based decompositions
of images [Hoyer (2004)]. The method is based on a feed-forward neural network with lateral inhibi-
tion. The main idea of the method is to use lateral inhibition of individual synapses instead of total
inhibition of a neuron. As a result of network learning, neurons of the output layer acquire specific
sensitivity to factors constituting patterns of the data set: the appearance of a factor in the pattern
presented to the input layer leads to the strong activation of the related neuron at the output layer.
Output neurons can be activated when factors are partially distorted and in the presence of noise.
Thus, activity of each neuron at the output layer provides a gradual estimation of the confidence that
this pattern contains the related factor. To assign binary factor scores to the pattern we chose the
neurons with highest activity as winners. The threshold of this binarization procedure is chosen to
maximize the information gain. Thus, for the used measure of BFA efficiency, this procedure provides
the optimal outcome of the method.

[Spratling and Johnson (2003)] and [Spratling (2006)] compared the efficiency of DI with the method
suggested by [Foldiak (1990)] and some methods of nonnegative matrix factorization, which were
treated as related methods. Since those related methods showed lower efficiency than DI, we do not
consider them.

6.3 Expectation-Maximization Method for Maximal Causes Analysis — MCA3

Recently [Lücke and Sahani (2008)] have studied the bars problem with the Expectation-Maximi-
zation (EM) method [Dempster et al. (1977)]. The method allows for finding parameters of a given
probabilistic generative signal model to maximize the likelihood of the observed data. In the generative
model studied by [Lücke and Sahani (2008)], multiple active hidden causes (factors in terms of BFA)
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combine to determine the values of an observed variable through a max function. Each cause results
in a set of observations given by a vector of generative influences (factor loadings in terms of BFA).

If several causes result in the same observation, then the strongest influence alone determines
the value of the observed variable. If all influences have the same value, then the max function is
equivalent to Boolean summation of the influences and the generative model becomes almost equiv-
alent to the generative model of BFA introduced in Section 2. The special case of noise studied by
[Lücke and Sahani (2008)] is a random choice of the observed variable according to Poisson distri-
bution with the mean equal to the strongest influence. [Lücke and Sahani (2008)] suggested three
EM methods for the described generative model that provided similar results, but the method called
MCA3 was slightly better than others. The method is restricted to the case of sparse scores when
each pattern of the data set contains not more than three factors.

The output of MCA3 are probabilities that patterns of the data set contain found factors. To
assign binary factor scores to the pattern we performed the same binarization procedure as described
for DI.

6.4 Expectation-Maximization Method for Boolean Factor Analysis — EMBFA

We applied the EM approach directly to the generative model introduced in Section 2 and call the
method as EMBFA. The EM method maximizes the likelihood of the observed data by maximizing
the free energy [Dempster et al. (1977)]

F(Θ, g) =
M

∑
m=1

∑
S

gm(S)[logP (Xm∣S,Θ) + logP (S∣Θ)] +H(g),

where gm(S) is the expected distribution of factor scores for them-th pattern andH(g) = ∑mH(gm(S))
is the Shannon entropy of g. Note that in Section 3 parameters of the generative modelΘ = {pij , qj , πi}
were estimated by likelihood maximization under the given scores, while EM maximizes the likelihood
optimizing model parameters as well as factor scores. The iterations of EM alternatively increase F
with respect to the distributions gm, while holding Θ fixed (the E-step), and with respect to Θ (as
in Section 3), while holding gm fixed (the M-step).

At the E-step, when Θ is fixed, the distributions gm which maximize F(Θ,g) are calculated
according the following equation

gm(S∣Θ) = P (S∣Θ)P (Xm∣S,Θ)
∑S P (S∣Θ)P (Xm∣S,Θ) ,

where P (S∣Θ) = ∏i=1,L πi
Si(1 − πi)1−Si , P (Xm∣S,Θ) = ∏j=1,N P (Xmj ∣S,Θ), and P (Xmj ∣S,Θ) is

given by (2.2). The obtained distributions gm provide the equality F(Θ,g) = ∑M
m=1E∣S[Lm] [Neal and Hinton (1998)],

where Lm is defined by (3.9). Thus, they provide the expected likelihood of the observed data over
factor scores under the given parameters of the generative model.

At the M-step, when distributions gm are fixed, πi can be found by

πi = (1/M)
M

∑
m=1

Smi,

where

Smi =∑
S

gm(S∣Θ)Si. (6.2)

Respectively, pij and qj can be found by maximization of F(Θ,g) according to the system of L∗N+N
equations

∂F
∂pij

=
M

∑
m=1

∑
S

gm(S∣Θ)P (Xmj ∣S,Θ)−1 ∂P (Xmj ∣S,Θ)
∂pij

= 0, (6.3)

∂F
∂qj

=
M

∑
m=1

∑
S

gm(S∣Θ)P (Xmj ∣S,Θ)−1 ∂P (Xmj ∣S,Θ)
∂qj

= 0,
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where ∂P (Xmj ∣S,Θ)/∂pij and ∂P (Xmj ∣S,Θ)/∂qj are given by (3.11). To solve the system (6.3), we
use the same iterative procedure as defined by (3.12). Thus we obtain

pij(k + 1) = 1

∑M
m=1∑S gm(S∣Θ)Si

M

∑
m=1

∑
S

gm(S∣Θ) Sipij(k)Xmj

1 − (1 − qj(k))∏l=1,L(1 − plj(k))Sl

qj(k + 1) = 1

M

M

∑
m=1

∑
S

qj(k)Xmj

1 − (1 − qj(k))∏i=l,L(1 − plj(k))Sl
. (6.4)

As shown in Section 3, this iterative procedure provides monotonic increase (not decrease) of likelihood
function at each step. Since we assume that probabilities pij are sufficiently high for components
constituting the i-th factor (fij = 1) and equal to zero for other components (fij = 0), at each iteration
step we put pij = 0 if the j-th component satisfies inequality (3.13). It is interesting to note that
without this threshold truncation, EM does not converge because of uncertainties arising from the
competition between factors defined by pij and noise defined by qj . For example, one of the factors
(let it be the first factor f1) could contain all signal components (f1j = 1 for j = 1 . . .N) then let us
suppose that it appears in all patterns of the data set. In this case the presence of such factor is
equivalent to the introduction of specific noise defined by probabilities qj = p1j . Thus, this factor will
compete with the specific noise during the iteration process but threshold truncations of pij allows
for avoiding such competition.

The obtained values of pij , qj and πi are used as the input for the next E-step. EM iterative proce-

dure terminates once all
√
∑j(poldij − pnewij )2/∑j p

old
ij remained smaller than 2.5 ⋅ 10−3 for 20 sequential

iterations. The same criterion was used by [Lücke and Sahani (2008)] to terminate EM procedure in
MCA3.

The procedure convergence provides some maximum of the likelihood function. When procedure
converges, the final values Smi are estimates of the factor scores. To satisfy the generative model,
we binarized those values. As for DI and MC3, the threshold of binarization was chosen to provide
maximal information gain for a given set of data.

As [Lücke and Sahani (2008)] did for MCA3, we also restricted EMBFA algorithm to the case of
sparse scores, when only a small number of factors (no more then 3) are supposed to be mixed in the
observed patterns. In this case, summation over S in the above formulas is reduced to

∑
S

(. . . ) = (. . . )S=0 +∑
i

(. . . )S=Si +∑
i<j

(. . . )S=Sij + ∑
i<j<k

(. . . )S=Sijk
, (6.5)

where Si is the vector of factor scores with all zeros except Si, Sij is the vector of factor scores with all
zeros except Si and Sj , and Sijk is the vector of factor scores with all zeros except Si, Sj and Sk. An
increase of the number of terms in (6.5) leads to the considerable rise in computational complexity.

7 Performance of BFA Methods in Solving Bars Problem

In this section, we compare efficiency of the five methods for Boolean Factor Analysis: ANNIA, BMF,
DI and two EM methods: MCA3 and EMBFA. We especially emphasize two BFA methods: ANNIA,
since it was already shown to be efficient in various tasks by [Frolov et al.( 2006a), Frolov et al. (2008),
Frolov et al. (2009)], and thus is expected to be efficient for BFA in general, and EMBFA, since it
represents the application of powerful EM technique to the proposed general generative BFA model,
and thus is also expected to be efficient for BFA in general.

The methods are compared according to two criteria. The first one is information gain introduced in
this paper. The second one is a commonly used measure, which is the estimation of the number of true
factors Ltrue

f among the whole set of found factors Lf [Spratling (2006), Lücke and Sahani (2008)].
Each of the considered BFA methods provides weights wij evaluating the confidence that j-th attribute
pertains to i-th found factor. To estimate Ltrue

f , the sum of the weights corresponding to each true
factor was calculated for each found factor. Since true factors are horizontal and vertical bars, the
sums of weights for each found factor are calculated over all rows and columns of the image grid.
A found factor is considered to represent a particular bar if the total weight corresponding to that
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Figure 7.1: Information gain G (a) and number of true found factors Ltrue
f (b) for five BFA methods

in dependence on data set size M . Noise is absent (q = 0, p = 1). △ – ANNIA, ◯ – EMBFA, ☆ – BMF,
◻ – DI, F – MCA3, u – EMBFA with fixed number C=2 of mixed bars, v – MCA3 with fixed
number C=2 of mixed bars. Thick line – “ideal” solution.

bar was twice that of the sum of the weights for any other bar, and if the minimum weight in the
row or column corresponding to that bar was greater than the mean of all the weights for that found
factor. In ANNIA the weights wij are binary. They are determined by patterns of the network
activity relating to the peaks on the curves for R′. In BMF the weights are binary components of
matrix F in the equation (6.1). In methods DI, MCA3 and EMBFA, the weights are gradual. In
DI, these are weights of synaptic connections between neurons of input and output layers of the
network. In MCA3, weights are represented by influences of causes on observed variables. In EMBFA,
weights are represented by probabilities pij . Note that in contrast to the first criterion the second
one requires a priori knowledge concerning true factors, and thus it can be applied only to artificial
data set when signal hidden structure is known in advance. Since this criterion is approved for the
bars problem, it is reasonable to compare the performances of the BFA methods by both criteria.
Note that information gain G is calculated with the use of the likelihood procedure presented in
Section 3. In contrast, Ltrue

f is estimated before this procedure as in original papers on the bars
problem [Spratling (2006), Lücke and Sahani (2008)].

7.1 Clean Factors

Initially, the methods are compared for the case of clean, undistorted bars (p = 1 and q = 0). As above,
we consider patterns of the data set that are 8-by-8 binary images, the factors are 16 vertical and
horizontal bars (one pixel width), 2 bars are mixed in each image on average.

ANNIA

The information gain obtained by ANNIA is shown in Fig. 1(a) depending on the size of the data set.
The information gain obtained by ANNIA almost coincides with that for ideal one shown in Fig. 1(a)
by thick line, and discrepancy is visible only when M is relatively small.

To clarify the origin of the discrepancy we show in Fig. 1(b) the average number of factors correctly
found by ANNIA. The fraction of not revealed true factors increases when M decreases. When sample
data set is small, some factors by chance could appear much less frequently than they would on average.
Since the Lyapunov function of factor is proportional to the frequency of its appearance in the data
set, for some factor that happens occurs less frequently, it could be smaller than hmax. As a result,
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Figure 7.2: Factors found by EMBFA (A – before, B – after likelihood maximization) and by
MCA3 (C), D – examples of images where bars were identified by EMBFA but not by MCA3. M = 800.

this factor could not be found. However, the omission of the factor by ANNIA leads to a smaller
decrease of gain than shown in Fig. 4.1 for the case when one factor is missed (3% in Fig. 1(a) vs 5%
in Fig. 4.1). It happened because ANNIA omits the factor with the lowest frequency of appearance,
and thus the influence of its omission to the gain is minimal. For the case shown in Fig. 4.1, the
omitted factor was chosen randomly and thus on average the influence of its omission is larger. When
M increases the difference between the frequencies of appearance of different factors becomes smaller,
and this effect disappears.

EMBFA

For EMBFA, as well as for DI and MCA3, the number of desired hidden factors has to be set in advance.
In the majority of computer experiments performed by [Spratling (2006)] and [Lücke and Sahani (2008)],
this number was taken twice higher than the actual number of factors. In most cases, such setup en-
sured the successful search of all 16 true factors among predefined 32 factors. In our experiments with
EMBFA, DI, and MCA3 the predefined number of hidden factors was also taken twice higher than
the actual number of factors.

To start the EM procedure, we set πi = 1/32, qj = 0 and initialized pij with random values uniformly
distributed in the range from 0.3 to 0.8.

As shown in Fig. 7.2(A), in EMBFA false factors are mainly mixtures of two bars, and some true
factors are not complete: they contain only 7 pixels (the last three bars of the first row). According to
the used criterion these factors are not identified as true, and the average number of found true factors
is less than 14 (Fig. 1(b)). However, as shown in Fig. 7.2(B), the procedure of likelihood maximization
corrected some of those incomplete factors, and after it the average number of factors identified by
this criterion as true increases to about 15.

Although after likelihood maximization on average 15 of 16 true factors were revealed correctly,
the information gain G provided by EMBFA is less than that in Fig. 4.1 for the case when one factor
is missing. This gain decrease occurs because of some missing scores. According to (6.5), the method
is able to identify scores only in patterns containing not more than three mixed factors. For the
used generative model, the number of mixed factors k has binomial distribution B(k,C/L,L) where
C = 2, L = 16. According to this distribution, 13% of patterns containing more than three factors are
generated. Since only three factors can be identified in these patterns, 18% of scores are expected to
be missed. However, the actual gain obtained by EMBFA is higher than that shown in Fig. 4.1 for the
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case with only 10% of missing scores. The reason is that EMBFA was sometimes able to recognize all
the bars in a pattern containing a mixture of 5 bars. This occurs if EMBFA considered the pattern to
be the mixture of 3 found factors: one is true factor corresponding to single bar, and two others are
false factors that are the mixtures of two bars. Some examples of patterns in which some true factors
were recognized by EMBFA are shown in Fig. 7.2(D). Particularly, the first of the shown patterns is
recognized as created by true factors 4 and 7 in the upper row, and by false factor 13 in the lower
row in Fig. 7.2(A). Another example is the last image in Fig. 7.2(D), where EMBFA recognizes factor
13 in the upper row and factors 8 and 12 in the lower row of (A). Two remaining bars are treated by
EMBFA as specific noise. So, totally EMBFA missed less than 10% of scores.

To expose the effect of the limitation of EMBFA algorithm to the case when each image of the
data set contains not more than three bars, we tested it for the case when each pattern of the data
set contains exactly two randomly chosen bars. Those results are shown in Fig. 7.1 (curves marked by

u). For this generative model, EMBFA provides perfect solution. So, we conclude that the observed
decrease of information gain compared to the “ideal” one results from this restriction.

Other Methods

As shown in Fig. 7.1, the BMF method proposed by [Belohlavek and Vychodil (2010)] provides an
exact solution of the bars problem. Both information gain and the number of correctly found factors
coincide with the ideal solution.

In the computer experiments involving DI and MCA3 we used parameters recommended in the
original papers [Spratling (2006), Lücke and Sahani (2008)]. When the size of sample data set is
sufficiently large, both methods precisely reveal of all true factors (Fig. 1(b)). This is achieved at
M = 200 for DI and at M = 300 for MCA3. In spite of the fact that all true factors were found, the
information gains obtained by both methods are less than the ideal one. Just as for EMBFA, the
reason for G decrease is omission of some factor scores. For DI, the fraction of missing scores was
2.3%, and for MCA3 it was to 23%. The fraction of missing scores for MCA3 is about twice higher
than that for EMBFA, and even slightly higher than 18%. Recall that namely this fraction of missing
scores is expected in both EM methods if not more than three factors can be found in each pattern,
as claimed in the formulation of these methods according to formula (6.5). Note that unlike EMBFA,
for MCA3 this principal weakness of EM methods is not compensated by false factors. As shown in
Fig. 7.2(C), false factors in MCA3 are mainly not mixtures of bars but their duplicates. Thus, in
distinction to EMBFA, MCA3 could not reveal true factors in images containing mixture of four or
more factors shown in Fig. 7.2(D).

We also tested MCA3 for the data set with patterns containing exactly two randomly chosen bars.
MCA3 (as well as EMBFA) provides perfect solution for this generative model.

7.2 Sensitivity to Noise

Figures 7.3 and 7.4 demonstrate sensitivity of BFA methods to noise. As in Section 4, the noise was
assumed to be distributed uniformly over signal components and factors so that qj = q for any j, and
pij = p for any i and j. We tested BFA methods using data sets of the size M = 800. As shown in
Fig. 7.1, in the absence of noise both the information gain G and the number of found true factors
Ltrue
f reach saturation at that particular M . We checked that saturation is also reached for M = 800

in the presence of noise for all methods except BMF.

Specific Noise: q > 0, p = 1

As shown in Fig. 3(a), BMF is most sensitive to the presence of noise. Its information gain G drops
to zero at the noise level that all other methods easily handle. Note that in spite of the fast drop
of G, the number of true factors Ltrue

f found by BMF remains high (Fig. 3(b)) and scores for true
factors are found precisely. As follows from the BMF description in Section 6.1, it treats specific noise
as common factors, and thus as q increases, the total number of found factors Lf increases as well.
For example, for q = 0.001 Lf = 40, and for q = 0.01 Lf increases to 85. Since BMF provides precise
decomposition of the data set matrix in the form (6.1), the second term in (3.2) for BMF is always

17



0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

G

q
(a)

0.0 0.1 0.2 0.3
0

2

4

6

8

10

12

14

16

fo
un

d 
fa

ct
or

s

q
(b)

Figure 7.3: Information gain G (a) and number of found true factors Ltrue
f (b) in dependence on q

for p = 1. △ – ANNIA, ◯ – EMBFA, ☆ – BMF, ◻ – DI, F – MCA3, u – EMBFA with fixed number
C=2 of mixed bars, v – MCA3. Thick line – “ideal” solution.

equal to zero. Thus, the drop of G occurs only due to the increase of the first term, which gives the
entropy of scores. Although the frequency of each false factor in the data set is small (and hence its
contribution to the entropy of scores is small), the total effect of false factors is high due to their large
number, and so G quickly drops when q increases.

For BMF an increase in M results in an increase of Lf , and consequently in the decrease of G. For
example, for q = 0.005 G = 0.27 for M = 400, G = 0.0024 for M = 800 and G becomes negative under
a further M increase. In this case, all true factors could be found precisely while the number of false
factors grows incredibly. Thus, according to the criterion of the number of found true factors, BMF
performs perfectly. But this is counterintuitive because the portion of true factors among all found
factors is negligibly small.

The information gain G obtained by MCA3 and DI also demonstrate strong sensitivity to q
(Fig. 3(a)). For DI an increase of q results in a decrease of G, because the number of found true
factors decreases (Fig. 3(b)). For MCA3, both G and Ltrue

f drop near to zero when q increases to 0.2.
In this case, the solution of the bars problem by MCA3 becomes unstable, i.e., it drastically depends
on the peculiarities of the data set or on the choice of initial parameters for the EM procedure. With
one random realization of the data set MCA3 may provide perfect solution (after approximately 300
steps of the EM procedure), with another random realization chosen from the same distribution the
procedure converges to some random images as factors (in just 3-5 steps). For q = 0.2, we observed a
successful search of bars by MCA3 only in 2 of 50 trials.

As mentioned above, poor performance of MCA3 could be explained by omission of scores in images
containing more than 3 mixed factors. Then, one could expect that, as for the case without noise (see
Fig. 7.1), information gain should significantly increase if exactly C = 2 bars are mixed in every image
instead of two on average. However, it does not happen, because the above-mentioned instability of
MCA3 appears even at the smaller q. Particularly, successful search of true factors was not observed
in any of the 50 trials already at q = 0.1. Probably, the presence of specific noise contradicts the
generative model behind MCA3.

The results obtained by ANNIA were close to the precise ones. As shown in Fig. 5.2, for p = 1
and q = 0.2 the threshold Qthr used in ANNIA to separate patterns containing and not containing the
factor happened to be slightly shifted to the left relative to the point providing perfect separation of
the two similarity modes. As a result, some images not containing factors were identified as containing
them, i.e.some false scores were added to precisely found true scores. However, the portion of false
scores is small, and so is reduction of G.
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Figure 7.4: (a) Information gain G vs p for q = 0 and q = 0.2. (b) Number of found factors vs p for
q = 0. △ – ANNIA, ◯ – EMBFA, ☆ – BMF, ◻ – DI, F – MCA3, u – EMBFA with fixed number
C=2 of mixed bars, v – MCA3. Thick line – “ideal” solution.

It is interesting that due to the competition between common and specific factors, Ltrue
f found by

EMBFA does not depend monotonically on q. At q < 0.1, some pixels of true factors are assigned to
specific factors which results in an increase of the estimated value of q compared to its actual value
in the generative model. At q > 0.1, some pixels are added to true factors which results in a decrease
of the estimated value of q. In both cases, these factors are not identified as true. For q of about 0.1,
there is an equilibrium between these tendencies, and the number of true found factors is maximal.
As discussed above, true factors are repaired by likelihood maximization and the errors in their factor
loadings obtained by EMBFA do not influence information gain calculated after this procedure. Thus,
EMBFA also provides G close to the theoretical value.

As could be expected, EMBFA performance can be improved by fixing the number of mixed
factors in each image of the data set. However, in this case not only all true factors were found, but
G paradoxically exceeded the ideal value. For fixed number of factors, the tendency of adding pixels
to true factors dominates. The probability pij of added pixels is about 0.4 − 0.6 (while for true pixels
pij = 1). As a result, probability of specific noise q decreases (e.g., EMBFA estimates it as 0.19, while
the exact value used in the generative model is 0.2). The increase of G due to decreasing q happened
to exceed the decrease of G due to adding some extra pixels to bars.

Distortion of Factors: q = 0, p < 1

For this kind of noise the information gain obtained by BMF also drops faster than that for other
methods (Fig. 4(a)). The reason is similar to the case of specific noise: the increasing number of false
found factors which are distorted versions of bars. For p = 0.998, the number of found factors amounts
to 40, and for p = 0.99 to 85. Most of found factors are distorted bars, so that only 5 not distorted
bars were identified as factors for p = 0.9 (Fig. 4(b)). As for the case of specific noise, G obtained by
BMF increases when M decreases. For example, at p = 0.99 G amounts to 0.045 for M = 800, and to
0.31 for M = 400.

DI exhibits similar sensitivity to factor distortion as to specific noise, while MCA3 is not sensitive
to this kind of noise at all. The reason is that factor distortion is a part of the MCA3 generative
model. All true factors are found by this method (Fig. 4(b)) and the information gain G (Fig. 4(a)) is
smaller than ideal only due to missing scores in images containing more than 3 bars, as explained in
Section 7.1. Thus, MCA3 performance could be improved by fixing a number of factors in each image.
This actually leads to an increase of G. However, when probability of factor distortion increases (i.e.,
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Figure 7.5: Information gain G (a) and number of found factors (b) vs C for 16-by-16 pixel images
at M = 800. △ – ANNIA, ◯ – EMBFA, ☆ – BMF, ◻ – DI, F – MCA3, ∎ – DI for fixed number of
mixed bars in patterns, ��� – DI with repeated initializations of factor search.

p decreases), MCA3 loses stability, as described above for the case of specific noise. For p = 0.6, MCA3

provides reasonable solution for only 7 out of 50 trials.
Both ANNIA and EMBFA again provide G close to ideal (Fig. 4(a)). And again (compare with

Fig. 3(a)), for EMBFA, G is high in spite of omission of some true factors (Fig. 4(b)). EMBFA
performance is higher when the number of bars in each image is fixed, and its gain for this case
reaches even higher values than those for ANNIA (which happened to be more sensitive to factor
distortion than to specific noise). Fig. 5.2 shows that at p = 0.7 for both q = 0 and q = 0.2 the
similarity threshold necessary for detection of factors in images is shifted to the left compared to the
threshold for undistorted factors (p = 1). This leads to the omission of some factor scores and, in turn,
to a drop in G compared to the ideal solution.

Fig. 4(a) also demonstrates the sensitivity of BFA methods to both kinds of noise applied simul-
taneously (q = 0.2, p < 1). For such noise parameters, BMF and MCA3 practically failed (thus, their
gain is not depicted in Fig. 4(a)). As shown in Fig. 3(a), at q = 0.2 the values of G for MCA3 were
close to zero even in the absence of factor distortion, and BMF failed for much smaller q. DI provides
considerably smaller G than the ideal one. The information gain G obtained by ANNIA and EMBFA
is again close to the ideal one and for small p it is even higher. This is especially amazing for ANNIA,
because usually it finds not all true factors. For example, at p = 0.7 only about 14 true factors were
found out of 16. The effect of increasing G is paradoxically explained by omission of some factor
scores. ANNIA missed factors in images where they were highly distorted. The images containing
missing factors were excluded from estimation of pij by likelihood maximization. Then, estimated
values of pij increased, while estimated values of qj remained almost unchanged. For example, at
p = 0.7 the average estimated values of pij increased from 0.7 to 0.77, while qj increased from 0.2 to
0.22 only. So, the increase in pij dominates over the increase of qj , and thus G increased.

7.3 Sensitivity to Image Complexity C

To investigate sensitivity of BFA methods to complexity C, we increased the size of images to the
grid of 16-by-16 pixels. As in the preceding, we considered two bar-choice cases: 1) each of 32 bars is
chosen for each image independently with probability C/32 or 2) the number of mixed bars in each
image is fixed to C. The increased image size allowed us to study the effects of increasing C up to
C = 10. Here, we investigated only noiseless case, i.e., we put p = 1, q = 0.

Both ANNIA and BMF appeared insensitive to increasing C, and provide precise solution of the
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bars problem even for C = 10 (Fig. 7.5). DI performance is getting worse with an increasing C,
resulting in a decrease of both G and Ltrue

f . The reason is the solution stability loss similar to the
case for MCA3, described above in Section 7.2. When the number of active neurons at the input of the
DI network becomes relatively large because of large C, DI fails. This disadvantage can be overcome
by repeating factors search with other initial synaptic weights. We randomly changed synaptic weights
until more than a half of bars were found, but made maximally 10 attempts. As shown in Fig. 7.5,
this modification essentially improved DI performance.

It seems that the presence of the images with few mixed factors in the data set facilitated factors
search by DI. To check this hypothesis, we studied DI performance for the case when the number
of mixed bars in each image was exactly C (i.e there were no images containing less than exactly C
bars). As shown in Fig. 7.5, this actually worsened DI performance for C > 4.

Since MCA3 and EMBFA are both restricted to the case of sparse scores (C ≤ 3), one would expect
that those methods are most sensitive to the increase of C. This actually happened for MCA3: it
failed for C = 4. However, EMBFA amazingly gives reasonable results until C = 8, although with less
efficiency. The reason is the above mentioned peculiarity of EMBFA to treat some redundant bars as
noise when the number of bars mixed in the image exceeds three.

8 Discussion

We discuss below the results obtained in the study in three aspects: substantiation of the proposed
generative model, validity of the information gain as an indicator of BFA performance, and comparison
of 5 investigated BFA methods.

8.1 The Generative Model

The generative model of binary signals suitable for BFA follows the general idea that the exter-
nal world is organized regularly and the typical form of such regularity is the existence of objects
characterized by the set of highly coherent attributes. To create notions of objects, the brain
has to calculate statistics on incoming signals in order to characterize them by some representa-
tive variables, the number of which is much smaller than signal dimensionality. It is generally
accepted that such a reduction of information redundancy of the incoming signals is one of the
main brain function [Marr (1970), Marr (1971), Barlow (1985), Foldiak (1990), Doya (1999)]. We be-
lieve that this function is performed in the brain by associative attractor neural networks, which
specify the main way of brain functioning [Amit (1992), Kussul (1992)]. In our previous papers
[Frolov et al. (2004b), Frolov et al. (2007), Frolov et al. (2009)], we showed that this kind of network
(ANNIA) is actually able to extract hidden signal primitives in the form of objects from the incoming
signals. This ability is based on the fact that, due to the Hebbian learning, the attributes inherent
to the object activate the related neurons simultaneously, and thus create tightly connected groups of
neurons. These groups become attractors of the network dynamics, and can be revealed by a simple
procedure. In terms of statistics, objects are factors, the attributes characterizing the object define
factor loadings, and the presence or absence of an object in scene define factor scores.

We also believe that this kind of signal redundancy is typical for many fields including social
science, marketing, zoology, genetics, medicine and others that operate with nominal data. We already
successfully applied ANNIA to the analysis of parliament voting [Frolov et al. (2006b)], mushrooms
catalogue [Frolov et al. (2008)], and textual data [Frolov et al. (2004a), Frolov et al. (2009)]. In the
present paper, we consider the application of BFA methods to the bars problem, which is a well-known
benchmark test in image analysis [Foldiak (1990), Spratling (2006), Lücke and Sahani (2008)].

We assume that expression (2.1) provides a rather general form of signal representation, which
is a good model defining BFA. Most important here is the introduction of two kinds of noise: the
distortion of common factors and a noise in the form of specific factors. The presence of specific factors
is a typical assumption of linear factor analysis, whereas distortion of common factors is a peculiarity
of BFA. For example, for textual data, a factor is some topic characterized by keywords related to
factor loadings, and each factor score is defined by whether a given document is dedicated to the topic.
Though each topic is represented by a set of keywords, there are no or few documents containing the
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whole set. Moreover, some keywords are more common for the topic (one can say that they create
the topic ”kernel”) and others are less common (topic ”fringe”). Factor distortion means the absence
of some keywords from a topic keyword list in a given document dedicated to the topic. Each specific
factor relates to each individual word. It is characterized by the probability of the related word to be
present in the document independently of topics.

Signals containing certain factor could be grouped. Since a signal can contain several factors,
it can be related to several groups. In this aspect, BFA is close to fuzzy clustering. However, BFA
provides an explicit knowledge explaining why the signal is shared between clusters. BFA efficiency for
fuzzy clustering is demonstrated by [Frolov et al. (2009)]. When noise is absent, BFA is equivalent
(compare (2.1) and (6.1)) to Boolean matrix factorization [Belohlavek and Vychodil (2010)]. Since
in BFA model, scores are assumed to be nonnegative (1 or 0), it could be related to the methods
of Nonnegative Matrix Factorization [Zafeiriou et al. (2006)]. Since factor scores are assumed to be
sparse (BFA evidently fails for dense factor scores [Frolov et al. (2007)]), BFA could be related to
the methods of Sparse Component Analysis [Georgiev et al. (2005)]. Since factors are assumed to
be independently distributed in data set, BFA could be also related to the methods of Independent
Component Analysis [Koldovsky et al. (2006)].

The general generative model in the form (2.1) does not imply any specific form of factor dis-
tributions in the data set. However, most results were obtained in the present paper under the
assumption that factors were distributed independently, i.e., factor scores S are drawn from a multi-
variate Bernoulli distribution. If nothing is known in advance concerning distribution of factor scores,
it is reasonable to consider them as distributed independently. If something is known concerning their
distribution, this information can be taken into account by modifying the respective model formulas.

The generative model (2.1) does not also imply any specific form of noise distribution. However,
most formulas were obtained under the assumption that distortion of each attribute in each factor
and in each signal occurs independently of other attributes, other factors, specific noise and other
signals. We again suppose that such an assumption is reasonable without any a priori information
about peculiarities of noise distribution. Note that three of five considered BFA methods (namely
BMF, ANNIA and DI) are indifferent to the form of factor or noise distributions, MCA3 was obtained
for another generative model at all, and only EMBFA was developed in this paper using Bernoulli
distributions.

8.2 Information Gain

Information gain is a difference between two entropies. First one is calculated for the given signals data
set assuming that its factor structure unknown and second one is calculated for that same data set
supposing factor structure is revealed by BFA and taken into account. Entropy of data set is obtained
as a sum of Shannon entropies of all binary signals on the assumption that signal components are
distributed independently. If data set factor structure is ignored, the probability of each component
to take value One can be evaluated as the frequency of corresponding Ones in the data set. If data set
factor structure is taken into account, this probability for the j-th component and the m-th signal is
determined by the factors mixed in the signal, (i.e., by the vector of factor scores Sm for the signal),
and by the probabilities pij and qj characterizing factors distortion and specific noise. Since most
BFA methods (exception is EMBFA) give only factor loadings and factor scores, but not probabilities
pij and qj , those probabilities have to be evaluated. For their evaluation, we suggest the procedure
based on likelihood maximization. This is one of the most powerful and efficient statistical methods
that can be easily implemented for the given generative model of signals, and uses only factor scores,
but not factor loadings.

When probabilities pij and qj are found and factor scores are given, the probabilities that the
j-th component of the m-th signal in the data set takes One are given by (2.2). Note that neither
likelihood maximization nor entropy calculation require knowledge of the factor scores distribution.
Both procedures use the distribution of factor scores in the given data set provided by BFA.

We have shown that information gain is sensitive both to noise in data and to errors in BFA. When
noise increases (in the form of factor distortion or specific factors), information gain decreases and
becomes zero or negative even if scores are given precisely. Looking at the bar images with small gain

22



(as shown, for example, in Fig. 4.2(A)) one might agree that zero gain corresponds to the threshold
of our feeling that attempts to detect some hidden but regular structure in the data set are useless.
Gain also decreases when some true factors are missing or factor scores are found not correctly. Thus,
this gain can be used for comparing different BFA methods. Note, that gain is a measure of BFA
efficiency that does not require any a priori knowledge concerning signal structure.

It seems amazing that for high noise levels some BFA methods provide information gain that
exceeds the gain obtained by precise solution (see, for example, Fig. 4(a)). We have specially analyzed
and thoroughly described those exceptions to show that in all cases the factor structure prescribed by
BFA to the given data set was quite reasonable, and actually exposed the peculiarities of the data set
provoked by noise better than the precise solution. Thus, those special cases only confirm the validity of
information gain for estimating BFA performance. In [Frolov et al. (2009)], we compared information
gain provided by ANNIA and by Program Committee of one of Neural Networks Conferences for the
task of allocating conference papers to topics. It is interesting that for ANNIA the information gain
happened to be three times bigger.

8.3 Performance of the BFA Methods

The bars problem is a common benchmark [Spratling (2006), Lücke and Sahani (2008)] to reveal
strengths and weaknesses of the BFA methods. Binary Matrix Factorization (BMF) algorithm in-
troduced in [Belohlavek and Vychodil (2010)] is perfect in the absence of noise and seems to be in-
sensitive to the size of data set and to the number of mixed factors C in each signal. However, it
fails even for very low noise levels that are easily handled by other methods. This is evidently not the
weakness of the algorithm proposed by [Belohlavek and Vychodil (2010)], but the weakness of BMF
approach in general, because it implies precise presentation of the data set matrix in the form (6.1).
Thus, it treats specific noise and distorted factors as true factors and fails because of fast growth in
the number of the found factors vs noise level. Since the number of factors is restricted by the size of
data set M , this effect is less manifested for smaller M . As it is difficult to imagine any real data set
without noise, the use of BMF is limited.

Dendritic Inhibition (DI) neural network [Spratling (2006)] is sensitive to noise of both kinds and
to task complexity C growth. When C increases, the method becomes unstable in the sense that its
operation strongly depends on the realization of initial synaptic weights of the basic network. For a
set of initial weights DI may converge to true factors, for other initial weight realizations it converges
to a random solution. It is especially evident for large C (see Fig. 7.5). Another peculiarity of DI is its
sensitivity to hints in data set, i.e.to patterns with only a few mixed factors which seems to facilitate
significantly the search for true factors. So, DI fails when the number of mixed factors in each pattern
is large and fixed (Fig. 7.5).

Maximal Causes Analysis (MCA3) [Lücke and Sahani (2008)] is most sensitive to the increase of qj
and C. First, MCA3 is based on the generative model, which does not take into account specific noise
defined by qj . Second, it is restricted to the case of sparse scores and ignores signals where more than
three factors are mixed. Taking into account signals with C > 3, however, would require prohibitive
computation time. Similar to DI, MCA3 depends on the choice of parameters and its set of adjustable
parameters is rather large. This is also inherent to all methods of Maximal Causes Analysis suggested
by [Lücke and Sahani (2008)].

Although Expectation-Maximization Binary Factor Analysis EMBFA proposed in this paper is
also restricted to the case of sparse scores (C ≤ 3), it is less sensitive to the rise of C compared to
MCA3. It gave reasonable results even when C = 6 (Fig. 7.5). When C > 3, EMBFA treated some
bars as specific noise. The peculiarity of EMBFA is the competition between two kinds of noise.
When specific noise is large, EMBFA prescribes additional pixels to bars. When factor distortion is
large, EMBFA deletes some pixels from bars, adjusting itself to the specific noise realization in the
data set. Paradoxically, due to this peculiarity information gain provided by EMBFA often exceeds
the ideal gain given by precise solution (Fig. 7.5). Low sensitivity of EMBFA to both kinds of noise
and its overall high efficiency is due to using powerful EM approach together with the proposed BFA
generative model. In contrast, MCA3 that is also based on EM is very sensitive to specific noise
because it is not a part of its generative model. Note that EMBFA operation does not require any
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tuning parameters.
Our methods Attractor Neural Network with Increasing Activity (ANNIA) as well as EMBFA,

demonstrate low sensitivity to noise, however ANNIA has a lower sensitivity to the rise of C. It
should be noted that in this paper we used a simplified version of ANNIA. Full ANNIA version is
described in [Frolov et al. (2007), Frolov et al. (2009)]. In principle, ANNIA is restricted by two limits
related to two critical amounts of factors present in a data set [Frolov et al. (2007)]. The first limit
defines the condition when factors cease the ability to create attractors of network dynamics. This
occurs when the Lyapunov function of spurious attractors becomes equal to that of true attractors.
The second limit is given by the condition when number of spurious attractors becomes so large that
random search fails to reveal factors. When dimensionality of the signal space N is relatively small,
the first limit is crucial. When N increases, the second limit becomes crucial. For the bars problem
both limits are inaccessible, so they do not influence an analysis. It can be seen that for majority of
practical tasks those limits would not be broken either.

Finally, it is interesting to compare computational complexity of all considered BFA methods. Here
and below we estimate it in the limit of large M , L and N . In this limit, the number of operations for
BMF is proportional to ΩBFM =MLN2 < nf >< pj >, where < nf > is mean number of Ones in factors
and < pj > is mean probability of each signal component to be One in a data set. For PC Core2 6400,
2.13 GHz the execution time of one operation in seconds amounts to about 10−11. For all methods,
this time was estimated by dividing the total execution time by Ω when M , L and N were sufficiently
large so that their doubling resulted in 5% change of estimated value.

The number of operations for DI in one iteration step is approximately proportional to ΩDI =
2LMN < pj > and the execution time for one step amounts to about 10−7ΩDI . Usually about 15-20
steps are required.

The number of operations required for one iteration step of EMBFA, according to formulas (6.4)
and (6.5), is proportional to ΩEM = MN(2L)3 < pj > and execution time for one step amounts to
5 ⋅ 10−9ΩEM .

For EMBFA the mean number of iteration steps till convergence is about 100. Thus to evaluate
the total execution time one must multiply the execution time for one step by a factor of 100.

The number of operations required for one iteration step of MCA3 is the same as for EMBA.
However, the mean time of one operation for PC Core2 2.13 GHz is approximately twice higher than
for EMBFA, and the mean number of iteration steps until convergence is about 300. Thus, the total
execution time for MCA3 is six times higher than for EMBFA.

The execution time required for ANNIA is composed of two terms T1 and T2. The first time is
required to create connection matrix: T1 ≃ 3 ⋅ 10−9MN2 sec. The second time is required to find
factors: T2 ≃ 3 ⋅ 10−8LN < n2

f > sec.
Note that for BMF and ANNIA L is an actual number of factors unknown in advance. For other

methods, the required number of factors is given in advance. It must be set certainly larger than actual
number of factors. In DI, EMBFA and MCA3 it was taken twice higher than the actual number of
factors. That is why in formulas for ΩDI and ΩEM we use 2L instead of L. For the bars problem
nf =

√
N , L = 2

√
N , and in the absence of noise < pj >≃ C/√N .

As a whole, to perform BFA for data set of 3200 images of 64-by-64 pixels, containing two not
distorted bars, about 460 sec is required for BFM, 110 sec for DI, 240 hours for MCA3, 40 hours for
EMBFA and 200 sec for ANNIA (T1 = 160 sec, T2 = 40 sec).

In conclusion, we analyzed strengthes and weaknesses of five most efficient BFA methods. Each
of them has a specific application range. BMF is suited and performs well for not distorted data.
MCA3 shows good performance in the absence of specific factors and at small number of factors in
a pattern. EMBFA and ANNIA are less sensitive to increasing noise level and number of factors in
a pattern. When the amount of factors in a data set is large, computational complexity of EMBFA
is higher than that of ANNIA, so in this case ANNIA is preferable. However, for signals of large
dimensionality, computational complexity of ANNIA becomes higher than that of EMBFA, and so
EMBFA could be preferable. If the properties of a data set are unknown in advance, the best strategy
is to perform BFA by all methods, to compare their efficiencies by information gain, and to select the
best method for a particular application.

24



Bibliography

[Amit (1992)] D. J. Amit. Modeling brain function: The world of attractor neural networks. Cam-
bridge Univ Press, 1992.

[Barlow (1985)] H. B. Barlow. Cerebral cortex as model builder. In D. Rose and V. G. Dodson,
editors, Models of the visual cortex, pages 37–46. Wiley, Chichester, 1985.

[Belohlavek and Vychodil (2010)] R. Belohlavek and V. Vychodil. Discovery of optimal factors in
binary data via a novel method of matrix decomposition. Journal of Computer and System
Sciences, 76(1):3–20, 2010.

[Dempster et al. (1977)] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Method-
ological), 39(1):1–38, 1977.

[Doya (1999)] K. Doya. What are the computations of the cerebellum, the basal ganglia and the
cerebral cortex? Neural networks, 12(7-8):961–974, 1999.

[Foldiak (1990)] P. Foldiak. Forming sparse representations by local anti-hebbian learning. Biological
Cybernetics, 64:165170, 1990.

[Frolov et al. (2004a)] A. A. Frolov, D. Husek, P. J. Polyakov, H. Rezankova, and V. Snasel. Binary
Factorization of Textual Data by Hopfield-Like Neural Network. In Proc. Computational Statistics
(Compstat’04), pages 1035–1041, Prague, Czech Republic, August 2004.

[Frolov et al. (2004b)] A. A. Frolov, A. M. Sirota, D. Husek, I. P. Muraviev, and P. J. Polyakov.
Binary factorization in Hopfield-like neural networks: single-step approximation and computer
simulations. Neural Network Word, 14:139–152, 2004.

[Frolov et al.( 2006a)] A. A. Frolov, D. Husek, P. Polyakov, and H. Rezankova. New Neural Net-
work Based Approach Helps to Discover Hidden Russian Parliament Voting Patterns. In 2006
IEEE World Congress on Computational Intelligence (WCCI’06), pages 6518–6523, Vancouver,
Canada, July 2006.

[Frolov et al. (2006b)] A. A. Frolov, D. Husek, P. J. Polyakov, and H. Rezankova. Binary Factor-
ization of Textual Data by Hopfield-Like Neural Network. In Proc. Computational Statistics
(Compstat’06), pages 1035–1041, Roma, Italy, August 2006.

[Frolov et al. (2007)] A. A. Frolov, D. Husek, I. P. Muraviev, and P. Y. Polyakov. Boolean factor
analysis by attractor neural network. IEEE Transactions on Neural Networks, 18(3):698–707,
2007.

[Frolov et al. (2009)] A. A. Frolov, D. Husek, and P. Y. Polyakov. Recurrent neural network based
Boolean factor analysis and its application to automatic terms and documents categorization.
IEEE Transactions on Neural Networks, 20(7):1073–1086, 2009.

[Frolov et al. (2009)] Alexander Frolov, Dusan Husek, and Pavel Polyakov. Estimation of Boolean
factor analysis performance by informational gain. In Proceedings of the 6th Atlantic Web Intel-
ligence Conference (AWIC’2009), pages 83–94, Praha, Czech Republic, September 2009.

25



[Frolov et al. (2006c)] Alexander A. Frolov, Dusan Husek, Pavel Polyakov, and Hana Rezankova. New
Neural Network Based Approach Helps to Discover Hidden Russian Parliament Voting Patterns.
In IEEE International Joint Conference on Neural Networks, pages 6518–6523, 2006.

[Frolov et al. (2008)] Alexander A. Frolov, Dusan Húsek, Hana Rezanková, Václav Snásel, and Pavel
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