
Ontology Matching in the Context of Web Services Composition

Tyl, Pavel
2010

Dostupný z http://www.nusl.cz/ntk/nusl-41756

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 08.08.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-41756
http://www.nusl.cz
http://www.nusl.cz


Pavel Tyl Ontology Matching in the Context of Web Services Composition

Ontology Matching in the Context of Web Services
Composition

Post-Graduate Student:

ING. PAVEL TYL

Supervisor:

ING. JÚLIUS ŠTULLER, CSC.
Institute of Computer Science of the ASCR, v. v. i.
Pod Vodárenskou věžı́ 2
182 07 Prague 8, CZ

Faculty of Mechatronics, Informatics and Interdisciplinary Studies
Technical University of Liberec
Hálkova 6
461 17 Liberec 1, CZ

Institute of Computer Science of the ASCR, v.v.i.
Pod Vodárenskou věžı́ 2

182 07 Prague 8, CZ

pavel.tyl@tul.cz stuller@cs.cas.cz

Field of Study:

Technical Cybernetics

This project is partly realized under the state subsidy of the Czech Republic within the research and development

project “Advanced Remediation Technologies and Processes Center” 1M0554 – Programme of Research Centers

PP2-DP01 supported by the Ministry of Education, under the financial support of the ESF and the state budget of the

Czech Republic within the research project CZ.1.07/2.2.00/07.0008 – ESF OP EC “Intelligent Multimedia E-Learning

Portal” and cofinanced from the student grant SGS 2010/7821 “Interactive Mechatronics Systems Using the

Cybernetics Principles”.

Abstract

Web services became one of the best me-

ans for web application interoperability. There

is a need to have a scalable and extensible model

to deliver distributed information and functiona-

lity integrated as independently provided, inte-

roperable services in a distributed environment.

Several distributed services can be dynamically

composed (chained) as a new service to accom-

plish specific tasks. Such a model of service

composition (chaining) is one of the most im-

portant research topics of next generation web

services.

This paper discusses possibilities of using onto-

logy matching techniques for web services in-

teroperability and composition, describes such

processes, explain their difficulties and propose

a model for web service composition based on

suitable ontology matching techniques.

1. Motivation

Let’s suppose this motivation scenario:

We want to deliver some electronic product from a web

shop to some address by a shipping service. Online

electronic shop service provides its output description

in some ontology. Shipping service uses a second onto-

logy for its input description. Then the matching of these

ontologies could be used for:

• checking that what is delivered by the first service,

e. g., a DVD Player, matches what is expected

by the second one, e. g., some Object (shipping

service does not accept life animals),

• verifying preconditions of the second service,

e. g., Size in centimeters, etc.

We can see only two parts of a chain in this short

example, but there could be many more. For exam-

ple there are web services able to compare products

(e. g., DVD Players) from different data sources (ca-

talogues), some web services do it even more sophisti-

cated using user preferences, etc.

2. Introduction

2.1. Ontology matching

Ontology matching is the process of finding “correspon-

dences” (also called relationships [3]) between elements

within different ontologies which have to be (semanti-

cally) compared and, eventually, joined. The output of

the matching process is a set of such correspondences

between two (or, in general, more ontologies) called an

ontology alignment. The “oriented” version of an onto-

logy alignment is an ontology mapping.

Given two source ontologies o and o′, an input (“pre-

liminary”) alignment A, a set of parameters (e. g.,

PhD Conference ’10 112 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0188814



Pavel Tyl Ontology Matching in the Context of Web Services Composition

threshold) and resources (e. g., provenance metadata),

the matching process (see Fig. 1) can be described by

function f returning a new alignment A′ between onto-

logies o and o′:

A′ = f(o, o′, A, p, r).

Ontology matching is in most cases performedmanually

or semiautomatically, often with support of some gra-

phical user interface. Manual specification of ontology

parts for matching is time consuming and moreover

error prone process. It results in a strong need for deve-

lopment of faster and/or less laborious methods, which

can process ontologies at least semiautomatically.

Matching (f )

o′

o
p

r

A A′

o, o’ ... ontologies
A, A’ ... alignments
p ... parameters
r ... resources

Figure 1: Schema of a matching process [3].

2.2. Web services

A web service is a network accessible interface to web

application functionality. It is described in machine-

readable format, most often in standardized web ser-

vice description language, WSDL [15]. Way of com-

munication between other computers and web service

is specified in the web service’s description with the

help of Simple Object Access Protocol, SOAP [12].

SOAP messages are transfered by well-established pro-

tocols1. SOAP andWSDL protocols have easy machine-

readable XML [17] syntax. Both SOAP and WSDL

were designed to be independent on selected version of

XML language, but obligated to be XML compatible.

The W3C [13] defines a web service as ”a software

system designed to support interoperable machine-to-

machine interaction over a network. It has an interface

described in a machine-processable format (specifically

Web Services Description LanguageWSDL). Other sys-

tems interact with the web service in a manner pre-

scribed by its description using SOAP messages, typi-

cally conveyed using HTTP with an XML serialization

in conjunction with other web-related standards” [14].

Web services expose their interfaces to the web so that

users (agents) can invoke them. Semantic web ser-

vices provide a richer and more precise way to de-

scribe services through the use of knowledge represen-

tation languages and ontologies [4], e. g., OWL-S [11]

or WSDL-S [16].

2.3. Web service composition

Web service discovery and integration is the process of

finding web service able to deliver a particular service

and composing several services in order to achieve a par-

ticular goal [8].

Web services are often designed to be independent and

replaceable and, therefore, web service processors are

able to incorporate new services in their workflows and

customers can dynamically choose new and more pro-

mising services. For that purpose, they must be able to

compare the descriptions of these services (in order to

know if they are really relevant) and to route the know-

ledge they process (in order to compose different servi-

ces) by routing the output of some service to the input

of another service.

Both for finding the appropriate service and for inter-

facing services, some data “mediator” is important as a

bridge between different vocabularies [9]. Based on the

correspondences between the terms of the descriptions,

mediators must be able to translate the output of one ser-

vice into a suitable input for another service (see Fig. 2).

service1 output

o

Mediator input

o′

service2

Matcher

A

Generator

Figure 2: Web service composition.

In this case it is useful to (1) match relevant parts of

ontologies o and o′, thus resulting in alignment A
and (2) generate a mediator between service1
and service2 in order to enable transformation of

actual data [3].

The headstone of a mediator definition is an align-

ment between two ontologies. And this can be provided

through matching the corresponding ontologies either

offline when someone is designing a preliminary service

1Reason for SOAP messages “encapsulation” is an absence of trust from existing systems.

PhD Conference ’10 113 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0188814



Pavel Tyl Ontology Matching in the Context of Web Services Composition

composition, or online (dynamically) [5], when new ser-

vices are searched for completing a request.

3. Web service composition by ontology matching

There are two possibilities one could use ontology

matching techniques for web service composition:

1. Entire web service is described by the service on-

tology (WSMO2).

2. Web service is described by the traditional means

and only its inputs and outputs are described by

the ontologies.

Ontologies classifying and describing services are called

service ontologies. According to our opinion it is not

necessary to describe web services by ontologies (i. e.,

using WSML3 [5]), because inner behavior of a web

service need not (sometimes rather must not) be always

transparent or accessible. But at least web services’ out-

puts and inputs have to be described using ontologies for

successful application of ontology matching techniques.

Every web service has its input(s) and output(s), in

our case described as input ontologies o(in s1) and

o(in s2) and output ontologies o(out s1) and o(out s2)
(see Fig. 3). They can be part of the web service I/O in-

terface or can be stored outside the web service itself.

Web service in our model is devided into two main

parts – its internal structure and a repository. The in-

ternal structure is responsible for functional achievment

of the exposed service, finding direct or intermediate an-

swers. If the web service is able to provide a direct an-

swer (reply to the primary request), the input ontology

o(in s1) is processed in the internal structure and re-

sults are transferred to the output ontology o(out s1). In
the case of intermediate answer, if the web service 1 is

compliant to be a part of a chain, o(out s1) is produced
and devolved upon a web service chain repository with

a goal of searching for the best available web service for

the chain, so that its appropriate alignment (e. g., A12) is

in the alignments repository.

When a preliminary alignment A12 exists (provided

manually or by (semi)automatic means), it should be

stored in the alignments repository for simple iden-

tification of reuse opportunities (see Sec. 3.1). In-

put/output ontologies o(out s1) and o(in s2), align-

mentsA12, A13, . . . , A1n and saved readymadeweb ser-

vice chains are in the web service repository identified

by their URIs4. It allows interaction with other servi-

ces in order to negotiate operations the current service

just cannot provide (e. g., when the current service is

not available). Therefore at least the alignments (or the

whole repository) should be always exposed in the same

way as the inputs and the outputs of the web service.

If the suitable service (e. g., web service 2) is found and

preliminary alignment exists, o(out s1) and o(in s2)
are checked for their compatibility in a compatibility

checker and if they pass, o(out s1) is easily converted

in an I/O converter by using stored alignment A12 into

o(in s2) and the request is passed on. Successful con-

version and checks should be stored and cached.

If there is no alignment related to web service 2 in

our alignments repository, traditional matching methods

(Matcher in Fig. 3) or manual matching have to be used.

If related alignment exists, we can successfully apply an

alignment reuse methods (see Sec. 3.1). According to [7]

there are four matchmaking functions based on which

web services can be chained: Exact, PlugIn, Subsume

and Intersection. Otherwise (Disjoint), services are in-

compatible:

• Exact – if the output parameter out sy of sy
and the input parameter in sx of sx are equiva-

lent concepts (e. g., DVD Player from our mo-

tivation example could be certainly delivered, be-

cause it is an Object and its Size is less than

maximal allowed),

• PlugIn – if out sy is a subconcept of in sx (e. g.,
DVD Player will be be delivered, if a shipping

service is able to deliver whatever we want, any

owl:Thing),

• Subsume – if out sy is a superconcept of in sx,

• Intersection – if the intersection of out sy and

in sx is satisfiable,

• Disjoint – if the out sy and in sx are incompati-

ble.

With Exact and PlugIn functions we are always able to

match required web services, the matcher can fail in case

of Subsume and Intersection.

2Web Service Modelling Ontology – http://www.wsmo.org.
3Web Service Modelling Language.
4Uniform Resource Identifier.

PhD Conference ’10 114 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0188814



Pavel Tyl Ontology Matching in the Context of Web Services Composition

WEB SERVICE 1

W
S
1
 C
o
m
p
a
ti
b
ili
ty
 C
h
e
c
k
e
r

WS1 REPOSITORY

WS1 Chain 

Repository

WS1 INTERNAL STRUCTURE (service algorithms)

WS1 I/O Ontology 

Interface

o(out_s1)

o(in_s1)

WS1 Alignments 

Repository

A1n

A13A12

WS1 CACHE

Requests
WS Chains

WS1–WS2

WS1–WS3

WS4–WS1

Alignments

W
S
1
 I
/O
 C
o
n
v
e
rt
o
r

Conversions

Checks

Matcher

Exact

PlugIn

Subsume

Intersection

WEB SERVICE 2

W
S
2
 C
o
m
p
a
ti
b
ili
ty
 C
h
e
c
k
e
r

WS2 REPOSITORY

WS2 INTERNAL STRUCTURE (service algorithms)

WS2 I/O Ontology 

Interface

o(out_s2)

o(in_s2)

WS2 Alignments 

Repository

A2n

A23A25

WS2 CACHE

Requests
WS Chains

Alignments

W
S
2
 I
/O
 C
o
n
v
e
rt
o
r

Conversions

Checks

Request 

passed on

Searching for o(in_s2)

Primary 

request

WS1 Chain 

Repository

WS1–WS2

WS2–WS3

WS2–WS5

Matcher

Exact

PlugIn

Subsume

Intersection

Figure 3: Proposed model for the web service composition with using of an ontology matching.

3.1. Candidate matching techniques for web service

composition

It would be nice if we could always automatically cre-

ate input and output ontology alignments at runtime.

But it is not an easy task in the case of heterogenous

web service compositions. In addition such algorithms

should be fast enough, there is no time for tuning pa-

rameters, manual corrections, etc. Therefore in our mo-

del we suppose at least preliminary ontology alignments

of o(out sy) and o(in sx) at design time. Consequently

we can always take an advantage of them. And at this

moment an alignment reuse can come on scene.

Alignment reuse is motivated by an idea that many on-

tologies that should be matched are similar to already

matched ones, especially if they describe the same do-

main(s). Ontologies from the same application domain

usually contain many similar elements, typical for this

domain. Therefore their mappings can provide good re-

usable candidates.

At first, matching problems are decomposed, then a set

of ontology fragments is generated and finally previous

match results can be applied at the level of ontology

fragments rather than at the level of the whole ontolo-

gies [3]. According to [2] alignments of ontologies (e. g.,

oy and ox) can be saved in a repository in three possible
forms:

• Direct mappings (oy ↔ ox) – ideal for reuse,

one or multiple mappings are already available for

the given match problem. Such mappings repre-

sent the shortest possible mapping paths, which

do not involve any intermediary ontologies.

• Complete mapping paths (oy ↔ oi, oi ↔ ox or

oj ↔ oy , ox ↔ oj) – such mapping paths consist

only of existing mappings.

• Incomplete mapping paths (same as complete,

but i. e., oi ↔ ox and oj ↔ oy are to be matched)

– the default match operation is first applied and

missing alignments can be computed with less

effort than directly matching the input ontologies.

All match results are compared (e. g., average similarity

in the path, expected computational effort expressed by

the path length, etc.) and ontologies composed.

Although alignment reuse seems to be the most impor-

tant technique in the proposed model (more than tech-

nique we could call it matching strategy), there are some

other basic techniques that cannot be omitted in the web

service composition. In the following we list some of

them together with the reason for their use:

• Internal structure (constraint) based tech-

niques – before creating an ontology alignment,

but much more for later use, we can do a verifi-

cation of criteria as the set of the entity properties

(e. g., their multiplicity), the range and the domain

of the properties, cardinality, datatypes, etc. These

techniques are easy to implement and if the onto-

logies (o(out sy) versus o(in sx)) pass them, it

PhD Conference ’10 115 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0188814



Pavel Tyl Ontology Matching in the Context of Web Services Composition

will provide a basis on which other parts of an ap-

plication can rely.

• External ontologies based techniques – external

reference ontology (oext) can provide a common

ground on which an alignment can be based. It can

help in the case of disambiguity of multiple possi-

ble meanings of terms in given domain of interest.

For example an alignment between o(out sy) and
o(in sx) can be derived from two other align-

ments with external ontology (A(o(out sy), oext
and A(o(in sx), oext)

5. External ontology is in

the most cases a general reputable upper-level on-

tology (e. g., FMA6 in medicine).

• Further we can use relational structure tech-

niques (e. g., taxonomy relations), propositional

and description logic techniques (these tech-

niques cannot find an alignment alone, but when

alignment is generated, we can ensure its comple-

teness and consistency), etc.

4. Potential problems of web services composition

Issues worth mentioning to deal with when composing

web services are:

Third-party sources – Two things remain unchanged

with the web services in general:

• they use third-party sources and

• they have questionable reliability.

This is not to say that web services are unreliable, but it

simply means that we have not a primary control of the

source for our web application. When our sources are

offline, our web service or web application is also of-

fline. One way to avoid this problem is to keep an actual

cache of all queries issued to our data sources in case of

a service failure.

Caching is a good idea in general because it will defini-

tely speedup repeated requests.

Rate limiting – Many public service interfaces may

have to limit the number of requests an application or

user can make within certain period of time. (This can

be done by tracking the number of requests made by a

single IP address or the system may require authenti-

cation.) This is another issue that could be partially or

fully solved by request caching. Fig. 4 shows the posi-

tion of web services among other web applications. As

can be seen, they are supposed to be dynamic, but in

contrast to P2P systems they should stay always correct.

Schema integration, B2B large application

Ontology import and merging

Data integration, Catalogue matching

Web services

P2P systems

Agent communication, Query answering

dynamics

Figure 4: Example applications ordered by their dynamics.

Space under semantic web services shows that

three top applications are considered to be dyna-

mic.

Reliability – Keeping the current cache of recent

requests can help keeping our service online until our

sources are back online. If more than one public ser-

vice interface is available to provide the information,

our composite web service requires then a fallback me-

chanism to be implemented. It allows our web service

to switch to another source until our primary source

has been reestablished or to find another reliable (data)

source forever.

Vendor locking – This could be a huge problem in the

future as more and more web service compositions will

be created. What to do if a public application interface

that serves alignments to thousands of web services and

web applications suddenly goes offline for one day or fo-

rever or starts charging for their service? It is therefore

necessary to share accessible sources or prepare mecha-

nisms for rapid finding of other appropriate services.

Licensing restrictions – Some public web services re-

strict for what we can use them and sometimes which

web services can we use together with them. We have

to thoroughly read restrictions which may apply before

adopting them to our web service chain 7. This problem

is similar to the above one and has the same possible

solutions.

5. Conclusion and future work

In this paper the possibility of using ontology matching

techniques in web service composition is presented and

a complex model for such composition is proposed.

There are many different applications which require or

could take an advantage of ontology matching. But in

5Here we can omit the input alignment, the resource and the parameters.
6Foundational Model of Anatomy – http://sig.biostr.washington.edu/projects/fm.
7One more disadvantage is that these restrictions or rules can be time invariant and practically stochastic.

PhD Conference ’10 116 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0188814



Pavel Tyl Ontology Matching in the Context of Web Services Composition

the comparison with traditional applications such as in-

formation or schema integration, web service composi-

tion has its specific requirements – after preliminary

steps (creating and processing alignments) it should be

automatic and dynamic enough. Therefore we have to

store these alignments and find the way how to replace

them if necessary.

The next step I would like to work on is a design and

implementation of an application according to the pro-

posed model that will be able to compose e-learning sys-

tems for advanced testing (could be seen as web servi-

ces) with the help of ontology matching (or, in general,

ontology integration) techniques.

References

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju,

“Web Services. Concepts, Architectures and Ap-

plications”. Springer, Berlin, 2004. ISBN 3-540-

44008-9.

[2] H. Do, “Schemamatching and mapping-based data

integration”. PhD thesis, University of Leipzig,

Leipzig, DE, 2005.

[3] J. Euzenat and P. Shvaiko, “Ontology Matching”.

Springer-Verlag, Berlin/Heidelberg, 2007. ISBN

978-3-540-49611-3.

[4] D. Fensel, H. Lausen, A. Polleres, J. de Bruijn, M.

Stollberg, D. Roman, and J. Domungue, “Enabling

semantic web services: the web service modelling

ontology”. Springer, Heidelberg, 2004. ISBN 978-

3-540-34519-0.

[5] F. Guinchiglia, F. McNeil, and M. Yatskevich,

“Web service composition via semantic matching

of interaction specifications”. Technical Report

DIT-06-080, University of Trento, 2006.

[6] D. McCandless, L. Obrst, and S. Hawthorne, “Dy-

namic Web Service Assembly Using OWL and a

Theorem Prover”. In Proc. 3rd IEEE Internatio-

nal Conference on Semantic Computing, Berkeley,

USA, 2009.

[7] F. Lécué, A. Delteil, and A. Léger, “Applying Ab-

duction in SemanticWeb Service Composition”. In

Proc. 2007 IEEE International Conference on Web

Services, p. 94–101, IEEE CS, 2007.

[8] M. Paolucci, T. Kawamura, T. Payne, and K. Sy-

cara, “Semantic matching of web services capa-

bilities”. In Proc. 1st International Semantic Web

Conference (ISWC), volume 2342 of LNCS. p.

333–347, Chia Laguna, IT, 2002.

[9] D. Roman, H. Lausen, and U. Keller, “Web service

modeling ontology standard (WSMO standard)”.

Working Draft D2v0.2, WSMO, 2004.

[10] OWL – Web Ontology Language / W3C Semantic

Web Activity [online]:

http://www.w3.org/2004/OWL.

[11] OWL-S – Semantic Markup for Web Services [on-

line]:

http://www.w3.org/Submission/OWL-S.

[12] SOAP – Simple Object Access Protocol [online]:

http://www.w3.org/TR/soap.

[13] W3C – World Wide Web Consortium [online]:

http://www.w3.org

[14] W3C – Web Services Glossary [online]:

http://www.w3.org/TR/ws-gloss

[15] WSDL –Web Services Description Language [on-

line]: http://www.w3.org/TR/wsdl.

[16] WSDL-S – Web Service Semantics [online]:

http://www.w3.org/Submission/WSDL-S.

[17] XML – Extensible Markup Language / W3C XML

Activity [online]:

http://www.w3.org/XML.

PhD Conference ’10 117 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0188814


