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Abstract

Spiking neural networks are an offshoot

of neural computation reasearch. In the recent

years, however, we have witnessed a growing

interest and shift of the emphasis in the arti-

ficial neural network community toward pulse-

coupled neural networks with spike-timing as

they can encode temporal information in their

signals. This paper gives a brief overview of di-

fferent spiking neuron models and we discuss

their ability to operate in large complex ne-

tworks as well as their evolvability.

1. Introduction

Artificial intelligence is a branch of computer science

for which the biological inspiration seems to be crucial.

Neural networks, as used in artificial intelligence, have

traditionally been viewed as simplified models of neu-

ral processing in the brain, even though the first simple

models of ANNs, known as the first generation neural

networks [22], are considered more as mathematical or

computational model for information processing based

on connectionistics approach to computation and the re-

lation between these models and the brain architecture

is not in place.

From some point of view we can see the following

generations of artificial neural networks as continuous

acquiring of novel biological inspirations. For instance

the third generation of neural networks raised the le-

vel of biological realism by employing individual pul-

ses which allow spatial-temporal information in com-

munication and computation, like real neurons do [5].

In this paper, we consider this third generation, i.e., we

compare and contrast various models of spiking neurons

with special attention focused on their ability to effici-

ently operate in complex networks and on “how easily”

they can change their behavior through genetic mutation

- their evolvability. But first of all, we briefly explain

what is common for all spiking neuron models and what

differs them from their non-spiking predecessors.

2. On artificial spiking neurons

Artificial spiking neurons model the relationship be-

tween the inputs and the output of a neuron in terms

of single spikes (or pulses), and describe how such in-

put leads to the generation of output spikes. Non-spiking

neuron models do not employ individual pulses, but their

output signals are computed in each iteration and typi-

cally lie between 0 and 1. So they do not implement the

element of time in communicating. These signals can

also be seen as normalized firing rates (frequencies) of

the neuron within a certain period of time, and therefore

non-spiking neural network is a special case of spiking

neural network from some point of view.

The classical point of view that neurons transmit infor-

mation exclusively via modulations of their mean firing

rates [5, 21] seems to be at odds with growing empiri-

cal evidence that the patterns can be found in the firing

sequences of single neuron [31] or in the relative timing

of spikes of multiple neurons [13, 29] forming a functi-

onal neuronal group [4].

In spiking neuron models the transmission of a single

spike from one neuron to another is mediated by syna-

pses at the point where the two neurons interact. An in-

put, or presynaptic spike arrives at the synapse, which

in turn releases neurotransmitter which then influences

the state, or a membrane potential of the target, or po-

stsynaptic neuron. When the value of this state crosses

some firing threshold (some models do not implement a

fixed threshold, see next section), the target neuron ge-

nerates a spike, and the state is reset by a refractory re-

sponse. The size of the impact of presynaptic spike is

determined by the type and efficacy (weight) of the sy-

napse. In biology, there are known two distinct groups

of neurons: excitatory neurons, which synapses release
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neurotransmitter that increases the membrane potential

of a target cell, and inhibitory neurons with synapses,

that decrease this potential [23]. A good discussion of

artificial spiking neurons can be found in [9]. Let’s take

a look on some of the most useful models of spiking

neurons.

Figure 1: (a) Schematic drawing of a biological neuron.

(b) Incoming postsynaptic potentials alter the

membrane voltage so it crosses threshold value θ;
the neuron spike goes into a refractory state. (c)

Typical forms of excitatory and inhibitory postsy-

naptic potentials over time. [8]

3. Spiking models

There are two main approaches in creating neuron mo-

dels: computational neuroscience approach, trying to

understand and model biological neuron, and connecti-

onism on the other side of the river, trying to solve arti-

ficial intelligence related problems by creating intercon-

nected networks of simple units (i.e. artificial neurons),

which can exhibit complex global behavior, determined

by the connections between the processing units and unit

parameters. In this paper we try to bridge this two con-

cepts in the sake of finding a neuron model (from the

pool of the most useful models of spiking neurons) best

suited for the use in large complex networks for solving

some interesting problems outside biological modeling.

Below we provide a brief review of some widely used

spiking neuron models as a shortened version of re-

view [16]. But instead of Izhikevich’s concern in simu-

lating cortical spiking neurons, we ask different ques-

tion: which model to use as a processing unit in some

large network architecture? Through this section, v de-

notes the membrane potential and v′ denotes its deriva-
tive with respect to time. All the parameters in the mo-

dels are chosen so that v has mV scale and the time has

ms scale.

3.1. I&F

First group of spiking neuron models are known as in-

tegrate and fire neurons (I&F). The Leaky I&F neuron

is one of the most widely used models in computational

neuroscience

v′ = I + a− bv, if v ≥ vthresh, then v ← c,

where I is the input current, and a, b, c and vthresh are

the parameters. When the membrane potential v reaches

the threshold value vthrash, the neuron is said to fire a

spike, and v is reset to c. From computational neuros-

cience point of view is the leaky I&F one of the worst

models to use in cortical simulations, despite its simpli-

city.

The Leaky I&F has many extensions and modifications

like I&F with adaptation, Integrate-and-Fire-or-Burst

[34], Resonate-and-Fire and Quadratic I&F [20], but for

purposes of this work we describe the Resonate-and-

Fire neuron, which is two-dimensional (2-D) analogue

of I&F neuron

z′ = I + (b + iω)z

if Im (z) = athresh, then z ← z0(z)

where the real part of the complex variable z is the mem-

brane potential. Here b, ω and athresh are parameters,

and z0(z) is an arbitrary function describing activity-

dependent after-spike reset.

By now, I&F family neurons are the only spiking neu-

rons used outside the computational neuroscience com-

munity [1, 35] as they are easy to implement and their

computational efficiency is far better than efficiency

of Hodgkin-Huxley family spiking neuron models (see

next section).

3.2. Hodgkin-Huxley

Second group of spiking neuron models are known as

Hodgkin-Huxley-type (conductance-based) neurons as

they are basicly variations and simplifications of the mo-

del developed by [12] based on data from the squid giant

axon. It consists of four equations and tens of parame-

ters, not provided here, describing membrane potential,

activation of Na and K currents, and inactivation of Na

current.
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The Hodgin-Huxley model is one of the most important

models in computational neuroscience not only because

its parameters are biophysically meaningful and mea-

surable, but also because they allow us to investigate

questions related to synaptic integration, dendritic cable

filtering, effects of dendritic morphology, the interplay

between ionic currents, and other issues related to sin-

gle cell dynamics. However, the end result can be at the

small end tens of parameters which one must estimate or

measure for an accurate model, and for complex systems

of neurons not easily tractable by computer. So careful

simplifications of the Hodkgin-Huxley model were the-

refore needed.

Sweeping simplifications to Hodgkin-Huxley model

were introduced by FitzHugh-Nagumo model [6]. The

parameters in this model

v′ = a + bv + cv2 + dv3 − u

u′ = ε(ev − u)

can be tuned so that model describes spiking dynamics

of many resonator neurons. Although not clearly deri-

vable from biology, the model allows for a simplified,

immediately available dynamic, without being a trivial

simplification [18].

From the other Hodgkin-Huxley family models we

mention Morris-Lecar model [25] as a combination of

Hodgkin-Huxley and FitzHugh-Nagumo into a voltage-

gated Ca channel model with delayed-rectifier K chan-

nel, and the model of thalamic neuron - Hindmarsh-Rose

[32], which is built upon the FitzHugh-Nagumo model

and provide extra mathematical complexity that allows

a great variety of dynamic behaviors for the membrane

potential.

Although these models have much better dynamic pro-

perties than I&F family neuron models, and are better

suited for computer simulations than Hodgkin-Huxley,

they are yet still prohibitive in terms of large-scale si-

mulations (see next section).

3.3. Izhikevich

A simple model of spiking neurons proposed recently by

Izhikevich [15] combines the biologically plausibility of

Hodgkin-Huxley-type dynamics and the computational

efficiency of I&F neurons

v′ = 0.04v2 + 5v + 140− u + I

u′ = a(bv − u)

with auxiliary after-spike resetting if v ≥ +30 mV, then

v ← c, u ← u + d.

Here v represents the membrane potential of the neuron

and represents a membrane recovery variable, which ac-

counts for the activation of K+ ionic currents and inacti-

vation of Na+ ionic currents, and it provides negative fe-

edback to v. After the spike reaches its apex (+30 mV),

the membrane voltage and the recovery variable are re-

set. Synaptic currents or injected dc-currents are delive-

red via the variable I . If v skips over 30, then it is first

reset to 30, and then to c so that all spikes have equal

magnitudes.

The part 0.04v2 + 5v + 140 is chosen so that v has mV

scale and the time has ms scale. The resting potential in

the model is between −70 and −60 mV depending on

the value of b. As most real neurons, the model does not

have a fixed threshold (contrary to I&F neurons); De-

pending on the history of the membrane potential prior

to the spike, the threshold potential can be as low as−55
mV or as high as −40 mV.

By now, this model was used exclusively for large-scale

simulations of cortical neurons within computational

neuroscience research (see [17]). In our opinion, it se-

ems to be suitable for solving artificial intelligence re-

lated tasks as a processing unit of a complex neural ne-

twork and we try to put some arguments for this state-

ment in the next sections.

4. Computational efficiency

The notion of the efficiency of a simulation scheme is

rather loosely defined in the computational neuroscience

literature. [26] argue that efficiency should be defined

as the simulation time required to achieve a prescribed

accuracy goal. A scheme which constrains spike times to

a timegrid is unsatisfactory in this respect if high accu-

racy is required, because the integration error drops only

linearly with decreasing computation time step [11, 33].

In this section we again refer to the work by Izhike-

vich [16]. He compared some of the most useful mo-

dels of spiking and bursting neurons from the biologi-

cal plausibility and computational efficiency points of

view. The summary of his comparison is in Fig. 2. To

compare computational cost, he assumed that each mo-

del, written as dynamical system x′ = f(x), is im-

plemented using a fixed-step first-order Euler method

x(t + τ) = x(t) + τf(x(t)) with the integration time

step τ chosen to achieve reasonable numerical accuracy.

As we are interested in the idea of building a network

connecting tens of thousands of neurons (maybe even

more), we need to choose a neuron model that would be

able to efficiently handle large numbers of neurons in
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complex topologies. Considering this, it is prohibitive to

use any of the Hodgkin-Huxley family neuron models

(all models on the right half of the graph in Fig. 2), even

the FitzHugh-Nagumo neuron model, which has “only”

72 floating-point operations is computationally too ex-

pensive. The reason why it is still not suitable, is that the

efficiency of a single neuron is compared, and not the

efficiency of the whole network. To estimate the com-

putational efficancy of such network we must multiply

the computational cost of its single element by the to-

tal number of its processing elements due to sequential

computer processing (Fig. 3). Thus, we need to look so-

mewhere else in a case of large-scale modeling.

Figure 2: Comparison of the neuro-computational properties of spiking and bursting models. “of FLOPS” is an approximate

number of floating point operations (addition, multiplication, etc.) needed to simulate the model during a 1 ms time

span. Each empty square indicates the property that the model should exhibit in principle (in theory) if the parameters

are chosen appropriately, but the author failed to find the parameters within a reasonable period of time. [16]
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Figure 3: When the implementation is sequential (not paral-

lel), the difference in efficiency of single neurons

must be multiplied by the total number of the ne-

twork’s neurons to get the difference in efficiency

for the networks. In this sample case the neurons

efficiency difference is 59 FLOPS whereas the im-

plementation cost difference for the networks is

177 FLOPS. (a) A sample network of Integrate-

and-Fire-or-Burst neurons. (b) The same sample

network with FitzHugh-Nagumo neurons.

If we want to simulate tens of thousands of spiking neu-

rons in real time with 1 ms resolution, then there are

plenty of models to choose from (all models on the left

half of the graph in Fig. 2). The most efficient is the

Leaky I&F neuron. It is the simplest model to imple-

ment when the integration time step τ is 1 ms. Indeed,

the iteration v(t + 1) = v(t) + I + a − bv(t) takes

only four floating-point operations (additions, multipli-

cations, etc.) plus one comparison with the threshold

vthrash.

The other I & F-type models are practically as efficient

as the Leaky I & F (see table in Fig. 2) and are usable

for large-scale modeling. State-of-the-art solvers for ne-

tworks of I&F neurons allow for routine simulations of

networks of some 105 neurons and 109 connections (sy-
napses) on moderate computer clusters [28].

5. Evolvability

First of all it should be noted that the language of this

section moves between bilological and that of artificial

intelligence systems, so potentially biological terms are

used in less orthodox manner than that used in biological

literature.

The human brain contains over 11 billion specialized

nerve cells, or neurons, capable of receiving, processing,

and relaying the electrochemical pulses on which all our

sensations, actions, thoughts, and emotions depend [7].

But it is not the sheer number of neurons alone that is

most striking about the brain, but how they are organi-

zed and interconnected.

Despite our goal is not to create an artificial brain, it is

hardly imaginable to build a large-scale network with

spatio-temporal structure of activity without a proper

construction algorithm. In our opinion, the only way

how to solve this complex problem is to use evoluti-

onary computation techniques (e.g. genetic algorithms,

artificial embryogeny). However, this approach is consi-

derably challenging and it has many unresolved issues.

Through this section we try to shed some light on the

problem of system’s ability to evolve, and we try to ap-

ply this information to compare different spiking neuron

models.

Evolvability is a concept in evolutionary biology that

tries to measure an organism’s ability to evolve (see

[2, 19, 27, 37]). We see this concept as an important part

of the design process of a system, which we want to

evolve. As estimating a system’s evolvability is not an

easy task, we divide the problem in two aspects, which

we think are crucial, namely phenotype-genotype com-

pression and evolutionary potential.

5.1. Phenotype-genotype compression

From the evolutionary neuroscience point of view, there

is a vaxing problem with the notion that genome pro-

vides complete information for the construction of the

nervous system of humans and other mammals. It is es-

timated that just human neocortex alone has about 1015

(one thousand million million) synapses [14]. Since the

human genome has only about 3.5 billion (3.5 x 109)
bits of information (nucleotide base pairs), with 30% to

70% of these appearing silent [3], some neural and mo-

lecular scientists have concluded that our genes simply

do not have enough storage capacity to specify all of

these connections, in addition to including information

on the location and type of each neuron plus similar in-

formation for the rest of the body. Considering this, there

must be some kind of phenotype-genotype compression

for every biological unit with no exception for neurons.

Most probably is such representational efficiency made

possible through gene reuse mechanism. Natural orga-

nisms implement gene reuse through a process of deve-

lopment, or embryogeny. The same genes can be used at

different points in development for different purposes,

and the order in which activations of genes take place

determines when and where a particular gene is expres-

sed [30].

In our opinion there is present more general phenome-

non, that is, principle of reducing the number of genes

by preserving phenotype functionality, either by gene

reuse or by other mechanism. Let us give an exaplme

for better understandig: suppose we want to compare
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evolvability of two neural cells with exactly the same

current behavior but different length of their genomes

(the neuron with shorter genome has better phenotype-

genotype compression). Let’s say there is some novel

function that both neurons are able to perform if their

genome is changed accordingly (by some mutations).

We say that the neuron with shorter genome has better

chance to gain the novel function faster, simply because

its genome needs fewer mutations to “search the space

of its mutants”. Therefore we can conclude that the neu-

ral cell with shorter genome has better ability to evolve

and would be more successful than the neuron with lon-

ger genome, in case that the novel function increases or-

ganisms’s chance for reproduction.

To put it in analogy with spiking neuron models, we de-

fine genome of given neuron model (i.e. some piece of

genome of the network) as a set of dimensionless pa-

rameters of the model, and we define its phenotype as

a full description of the model - its differential equati-

ons with given values of its parameters, i.e, the model’s

dynamical behavior.

If we want to compare evolvability of different spi-

king models considering only their phenotype-genotype

compression, than the models with fewer parametes

are better, with the Resonate-and-Fire neuron as the

most evolvable (it has only three parameters plus an ar-

bitrary function) and Hodgkin-Huxley with the worst

phenotype-genotype compression (Fig. 4). If this two

neuron models behave as integrators and we want them

to respond as resonators (see [16]), we predict that ge-

nome (parameters) of the Resonate-and-Fire neuron ne-

eds much fewer mutations to change its phenotype (dy-

namical behavior) than genome of the Hodgkin-Huxley

neuron.

Figure 4: Comparison of the number of dimensionless para-

meters and the neuro-computational properties of

spiking neuron models. Location of most of the

dots is given approximately as the number of dif-

ferent parameters can vary for some of the models.

Note that we have intentionally choosed neuro-

computational features that both neuron models are able

to reproduce (see table in Fig. 2). What if chosen novel

function would be the tonic bursting? It is clear that the

Resonate-and-Fire neuron model is not able to evolve

that way, thus we should not compare the neuron mo-

dels only by phenotype-genotype compression, i.e, we

should also compare their number of different neuro-

computational properties. This conclusion leads to ano-

ther important aspect of evolvability - evolutionary po-

tential.

5.2. Evolutionary potential

The term evolutionary potential was defined from the

genetics point of view as the array of successful mu-

tants of selected gene for chosen novel function [10]. In

case of neural cell we can define its evolutionary poten-

tial as the array of successful mutants of selected neuron

for chosen novel behavior (i.e. response) of the neuron.

Such definition does not exclude the existence of some

novel behavior for which there are no mutants of given

neural cell at all (its internal structure and genetic con-

stitution simply does not allow to be changed that way).

So the question is, how many different novel behaviors

can a neural cell acquire through its evolution, and how

many succesful mutants exist for each of these behavi-

ors?

It seems really difficult to answer this question for bio-

logical neurons but not as difficult for artificial neurons,

which we are able to investigate as dynamical systems.

At least we are able to give more or less satisfying an-

swer on the first part of the question above. If we take

a look at the table in Fig. 2, we see that I&F family

models can not reproduce some of the most important

neuro-computational properties of real neurons, and the-

refore it seems that they are in general less evolvable

than Hodgkin-Huxley-type neurons considering evolu-

tionary potential. But more serious research on evoluti-

onary potential of dynamical systems is needed and it

would be interesting to investigate all of the dynami-

cal behavior possibilities for spiking neuron models, and

not “only” 20 (plus chaos) of the most prominent featu-

res of biological spiking neurons (table in Fig. 2).

6. Discussion

Neural structures are very well suited for complex in-

formation processing and it seems that the current re-

search in computational neuroscience, evolutionary neu-

roscience, evolutionary computation, as well as in artifi-

cial neural networks has a promising future ahead.

Even though, almost all of the models used in compu-

tational neuroscience were created mainly to model phy-

siologically realistic spike trains, some of these models

appear also as an application in explicitly computational
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contexts [36]. We see such phenomenon of overlapping

of different approaches as a very important in the sake

of building information systems like artificial neural ne-

tworks.

In this paper some of the most useful models of spi-

king neurons have been proposed and compared from

two perspectives - computational efficiency and evolva-

bilty. As our goal is to construct a large-scale complex

network of spiking neurons using evolutionary compu-

tation techniques, we need a neuron model suitable for

this kind of approach. From that point of view, compu-

tational efficiency and evolvability of given neuron mo-

del are its crucial properties. So which one to choose?

We argue that the neuron model proposed by Izhike-

vich [15] is the most suitable to fill our expectations,

even though, the model was developed to understand the

fine temporal structure of cortical spike trains, and to use

spike-timing as an additional variable to understand how

the mammalian neocortex processes information [16],

i.e., it has not been used outside the biology yet. So what

are the arguments for using the model as a processing

element in an evolution driven complex network?

First: Izhikevich’s model has the same implementation

cost as the Integrate-and-Fire-or-Burst spiking neuron

model (Fig. 2), and therefore it is as good as some of

the I&F neurons from the computational efficiency point

of view. Indeed, the model have been used to simu-

late a sparse network of 10.000 spiking cortical neurons

with 1.000.000 synaptic connections in real time using a

desktop PC and C++ programming language [15].

Second: as it has only four dimensionless parame-

ters and it can reproduce all of the important neuro-

computational features (see Fig. 4), we can conclude

that the model has the best evolvabilty of all persen-

ted spiking neuron models considering both aspects -

phenotype-genotype compression together with evolu-

tionary potential.

These attributes of the model allows for the process of

evolution to “experiment” with many types of model’s

behavior because there are plenty of them and the tran-

sition of neuron dynamics is manageable by only four

parameters. In favor of this statement speaks the fact

that author (in [16]) failed to find the parameters (wi-

thin a reasonable period of time) for some of the neuro-

computational properties for all of the Hodgkin-Huxley-

type models, not surprisingly, the models with the worst

phenotype-genotype compression.

In conclusion, having a “good-looking” efficient and

evolvable spiking neuron model is only a beginning

of the story of creating complex large-scale neural ne-

tworks for information processing. There are still many

problems to be solved but the main idea of this paper

is that our most prominent tools for building complex

systems should be the principles of emergence and self-

organization.
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