
Static Load Balancing of Parallel Mining of Frequent Itemsets Using Reservoir
Sampling

Kessl, Robert
2010

Dostupný z http://www.nusl.cz/ntk/nusl-41752

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 02.05.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-41752
http://www.nusl.cz
http://www.nusl.cz

Robert Kessl Static Load Balancing of Parallel Mining of Frequent Itemsets ...

Static Load Balancing of Parallel Mining of Frequent Itemsets
Using Reservoir Sampling

Post-Graduate Student:

ING. ROBERT KESSL

Supervisor:

PROF. ING. PAVEL TVRDÍK, CSC.

Institute of Computer Science of the ASCR, v. v. i.
Pod Vodárenskou věžı́ 2

182 07 Prague 8, CZ 1

Department of Computer Systems
CTU FIT

Kolejnı́ 550/2

160 00 Prague 6, CZ

kesslr@cs.cas.cz tvrdik@fit.cvut.cz

Field of Study:

Computer Science

Abstract

One of the important data mining tasks is

the search for co-occurences among the items

in the databases, the so called frequent itemset

mining. Let us consider a retail store. We track

the contents of baskets of customers. The con-

tent of the baskets is stored in the database as

transactions. In this database, we search for sets

of items (itemsets in short) that occurs in at least

min support transactions.
The automated collection of data in compa-

nies allows to store huge amount of data. This

creates the need for parallel mining of frequent

itemsets. In this paper, we present a new method

for parallel mining of frequent itemsets based

on the reservoir sampling that statically load-

balance the workload.

1. Introduction

The automated data collection causes extreme growth

of the database sizes. Processing of databases of such

sizes is almost impossible with a single processor. The-

refore, new parallel algorithms that are able to process

such amount of data are needed.

Today, large shared-memory machines parallel are still

quite expensive. Distributed-memory multiprocessors

can easily be built from cheap computers connected with

a special network. Therefore, we consider designing al-

gorithms for distributed-memory parallel machines.

One of the important data mining tasks is the search for

co-occurences among the data. Let us consider a retail

store. We track the contents of baskets of customers.

The content of the baskets is stored in the database as

transactions. In this database, we search for sets of items

(itemsets in short) that occurs in at least min support
transactions. These itemsets are so called frequent item-

sets (or FIs in short). From FIs, we create rules of type

X ⇒ Y , where X,Y are two FIs. For example {butter,
bread} ⇒ {milk}. The search of these co-occurences is

divided into two parts: 1) find all frequent itemsets; 2)

create association rules from the FIs.

The task of mining of FIs is computationally and me-

mory demanding. It seems that the finding of all FIs

is the most time-consuming part of the whole process.

With the growth of retail-store databases it is important

to design parallel algorithms for mining of FIs.

In [1] and [2] we have proposed new parallel methods

for mining of FIs. We denote the set of all FIs by F . The

basic idea of the algorithms is to create a sample F̃s that
is used to create disjoint partitions Fi, Fj ⊆ F such that

|Fi|/|F| ≈ 1/P , where P is the number of processors.

The relative size |Fi|/|F| is estimated using the sample

F̃s. The partitions Fi are then independently processed

by each processor. In [1, 2], we have proposed a me-

thod of creation of F̃s, based on a modified coverage

algorithm. The problem with these two methods is that

the sample F̃s is non-uniform and therefore, we do not

have any guarantees on the load-balance. Additionally,

the two methods needs an algorithm for mining of ma-

ximal frequent itemsets (MFIs in short). The MFIs are

hold in main memory and used in the modified coverage

algorithm. Since the number of MFIs can be quite large,

the methods are in some cases very memory consuming.

In this paper, we show how to create a uniform sample

F̃s using a different, faster and less memory consuming,

method. The new method does not need an algorithm

1The author is also assistant professor at CTU FIT, Department of Theoretical Informatics and doctoral student of CTU FEE, Department of

Computers.

PhD Conference ’10 62 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0188810

Robert Kessl Static Load Balancing of Parallel Mining of Frequent Itemsets ...

for mining of MFIs and therefore is less memory con-

suming. Our new method needs only the algorithm for

mining of FIs.

2. Notation

Let B = {bi} be a base set of items (items can be num-

bers, symbols, strings etc.). An arbitrary set of items

U ⊆ B will be further called an itemsets. Further, we

need to view the baseset B as an ordered set. The items

are therefore ordered using an arbitrary order <: b1 <
b2 < . . . < bn, n = |B|. Hence, we can view an itemset

U = {bu1
, bu2

, . . . , bu|U|
}, bu1

< bu2
< . . . bu|U|

, as an

ordered set denoted by U = (bu1
, bu2

, . . . , bu|U|
).

Let U ⊆ B be an itemset and id a unique identifier. We

call the pair (id, U) a transaction. The id is called the

transaction id. A database D is a set of transactions. In

our algorithms, we need to sample the databaseD. A da-

tabase sample is denoted by D̃. We define the support as

the number of transactions containing U , but in some li-

terature, the relative support is defined by Supp∗(U) =
Supp(U)/|D|. We call U frequent in database D if

Supp(U,D) ≥ min support. We can also define the

frequent itemset using the relative support, denoted by

min support∗, 0 ≤ min support∗ ≤ 1, i.e., an item-

set is frequent iff Supp∗(U,D) ≥ min support∗.

We denote the set of all frequent itemsets computed

from D by F . The set of all frequent itemsets compu-

ted from D̃ is denoted by F̃ . In our algorithms, we need

to sample the set F . A sample of frequent itemsets is

denoted by F̃s. In our case, the set F̃s is a sample of F̃ ,

i.e., F̃s ⊆ F̃ .

The basic property of frequent itemsets is the so called

monotonicity of support. It is an important property for

all FIs mining algorithms and is defined as follows:

Theorem 3 (Monotonicity of support) Let U, V ⊆ B
be two itemsets such that U � V and D be a da-

tabase. Then for the supports of U and V we have

Supp(U,D) ≥ Supp(V,D).

The multivariate hypergeometric distribution describes

the following problem: let the number of colors be C
and the number of balls colored with color i is Mi

and the total number of balls is N =
∑
iMi. Let Xi,

1 ≤ i ≤ C, be a random variable representing the

number of balls colored by the ith color. The sample

of size n is drawn from balls and Xi balls, such that

n =
∑C
i=1 Xi are colored by the ith color. Then the

probability mass function is:

P (X1 = k1, . . . , XC = kC) =

∏C
i=1

(
Mi

ki

)
(
N
n

) .

We denote the number of processors by P and processor

i by pi.

3. The lattice of all itemsets

It is well known that the powerset the powerset P(B) of
a set B is a complete lattice. The join operation is the set

union operation and meet the set intersection operation.

To decompose the P(B) into the prefix-based equiva-

lence classes, we need to order the items in B. An equi-

valence relation partitions the ordered set P(B) into

disjoint subsets called prefix-based equivalence classes:

Definition 4 (prefix-based equivalence class) Let

U ⊆ B, |U | = n be an itemset. We impose some order

on the set B and hence view U = (u1, u2, . . . , un), ui ∈
B as an ordered set. A prefix-based equivalence class

(PBEC in short) of U , denoted by [U]l, is a set of

all itemsets that have the same prefix of length l, i.e.,
[U]l = {W = (w1, w2, . . . , wm)|ui = wi, i ≤ l,m =
|W | ≥ |U |, U,W ⊆ B}

To simplify the notation, we use [W] for the PBEC [W]l
iff l = |W |. Each [W],W ⊆ B is a meet sublat-

tice of (P(B),⊆). Additionally, we use the term pre-

fix for both: (a) ordered set; (b) unordered set; if clear

from context, e.g., let B = {1, 2, 3, 4, 5} with the order

1 < 2 < 3 < 4 < 5 and U = {3, 1, 2} then the term

prefix means U = (1, 2, 3). The extensions of the PBEC
[U], U ⊆ B is an ordered setΣ ⊆ B such that U∩Σ = ∅
and for eachW ∈ [U],W \U ⊆ Σ. We denote the PBEC

together with the extensions Σ by [U |Σ].

Let B = {b1, . . . , bn}, b1 < . . . < bn. Let Ui = {bi}
and Σi = {bj |bi < bj} then [Ui|Σi] forms disjoint

PBECs. Each PBEC [Ui|Σi] can be recursively divided

into disjoint PBECs in the following way: let Wk =
Ui ∪ {bk}, bk ∈ Σi and Σ′

k = {b ∈ Σi|bk < b} then

[Wk|Σ′
k] forms disjoint PBECS. We omit the extensions

from the notation if clear from context.

Further, we need to partition F into n disjoint sets, de-

noted (F1, . . . , Fn), satisfying Fi ∩ Fj = ∅, i �= j,
and

⋃
i Fi = F . This partitioning can be done using

the PBECs. The PBECs can be collated into n par-

titions as follows: let have disjoint PBECs [Ul], such
that

⋃
l[Ul] = F , 1 ≤ l ≤ m and sets of indexes

of the PBECs Li ⊆ {l|1 ≤ l ≤ m}, 1 ≤ i ≤ n

PhD Conference ’10 63 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0188810

Robert Kessl Static Load Balancing of Parallel Mining of Frequent Itemsets ...

such that Li ∩ Lj = ∅ and
∑
i |Li| = m then Fi =⋃

l∈Li
([Ul] ∩ F).

The basic idea of our algorithm is to create a database

sample D̃ that allow us to estimate the support of an ar-

bitrary itemset and using D̃, we create identically (but

not independently distributed) sample of all FIs F̃s. Let
Ui be a prefix of the PBEC [Ui|Σi]. Using the sample,

we can estimate the relative size of an arbitrary PBEC

[Ui]
|[Ui]∩F|

|F| ≈ |[Ui]∩F̃s|

|F̃s|
. The knowledge of the re-

lative size of PBECs allow us to create the partitions

Fi, 1 ≤ i ≤ P such that |Fi|/|F| ≈ 1/P .

4. Database sample

The time complexity of the decision whether an itemset

U is frequent or not is in fact the complexity of compu-

ting the relative support Supp∗(U,D) in the input da-

tabase D. If we know the approximate relative support

of U , we can decide whether U is frequent or not with

certain probability. We can estimate the relative support

Supp∗(U,D) from a database sample D̃, i.e., we can

use Supp∗(U, D̃) instead of Supp∗(U,D) – this signi-

ficantly reduces the time complexity. The approach of

estimating the relative support of U was described by

Toivonen [3]. Further, we denote the set of all FIs com-

puted from the database sample D̃ by F̃s.

Toivonen uses a database sample D̃ for the sequential

mining of frequent itemsets and for the efficient esti-

mation of theirs supports. Toivonen’s algorithm works

as follows: 1) create a database sample D̃ of D; 2) com-

pute all frequent itemsets in D̃; 3) check that all these FIs

computed using D̃ are also FIs in D and correct the out-

put. If an itemset is frequent in D and not in D̃, correct

the output using D. Toivonen’s algorithm is based on an

efficient probabilistic estimate of the support of an item-

set U . We reuse this idea of estimating the support of

U in our method for parallel mining of FIs, i.e., we use

only the first two steps.

We define the error of the estimate of Supp∗(U,D)

from a database sample D̃ by: errsupp(U, D̃) =

|Supp∗(U,D)− Supp∗(U, D̃)|

The database sample D̃ is sampled with replacement.

The estimation error can be analyzed using the Chernoff

bound without making other assumptions about the da-

tabase. The error analysis then holds for a database of

arbitrary size and properties.

Theorem 4 [3] Given an itemset U ⊆ B and a random
sample D̃ drawn from database D of size

|D̃| ≥ 1

2ǫ2
D̃

ln
2

δD̃
,

then the probability that errsupp(U, D̃) > ǫD̃ is at most

δD̃.

Using a database sample D̃ with size given by the pre-

vious theorem, we can estimate Supp∗(U,D) with error
ǫD̃ that occurs with probability at most δD̃: It follows
from Lemma 4 that if we compute the approximation

F̃ of F from the database sample D̃ of size |D̃| ≥
1

2ǫ2
D̃

ln 2
δD̃

, we should get an estimate of the supports of

itemsets U ∈ F̃ , i.e., potentionally, we have a close ap-

proximation F̃ of F .

5. The reservoir sampling algorithm

In this section, we show the reservoir sampling algori-

thm that creates an uniformly but not independently dis-

tributed sample F̃s of F̃ on the contrary of the previous

section.

Vitter [4] formulates the problem of reservoir sampling

as follows: given a stream of records; the task is to create

a sample of size n without replacement from the stream

of records without any prior knowledge of the length of

the stream.

We can reformulate the original problem in the terms

of F̃ and F̃s: let’s consider a sequential algorithm that

outputs all frequent itemsets F̃ from a database D̃. We

can view F̃ as a stream of FIs. We do not know |F̃ |
in advance and we need to take |F̃s| samples of F̃ , see

Theorem 5. We take the samples F̃s using the reservoir

sampling algorithm. This solves our problem of making

a uniform sample F̃s ⊆ F̃ . The sampling is done using

an array of FIs (a buffer, or in the terminology of [4] a

reservoir) that holds F̃s.

The reservoir sampling uses the following two procedu-

res: 1) READNEXTFI(L): reads next FI from an output

of an arbitrary sequential algorithm for mining of FIs

and stores the itemset at the location L in memory; 2)

SKIPFIS(k): skips k FIs from the output of an arbitrary

algorithm for mining of FIs. And the following function:

RANDOM() which returns an uniformly distributed real

number from the interval [0, 1]

The simplest reservoir sampling algorithm is summa-

rized in Algorithm 2. It takes as an input an array

R (reservoir/buffer) of size n = |F̃s|, the function

READNEXTFI(L) that reads an FI from the output of

PhD Conference ’10 64 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0188810

Robert Kessl Static Load Balancing of Parallel Mining of Frequent Itemsets ...

an FI mining algorithm and stores it in memory at lo-

cation L, and finally the function SKIPFIS(k) that skips
k FIs. The algorithm samples |F̃s| FIs and stores them

in memory into the buffer R.

The RESERVOIR-ALGORITHM follows:

Algorithm 2 The RESERVOIR-SAMPLING algorithm.

RESERVOIR-SAMPLING(In/Out: Array R of size n,
In: Integer n,
In: Function ReadNextFI,

In: Function SkipFIs)

1: for j = 0 to n− 1 do

2: ReadNextFI(R[j])
3: end for

4: t = n
5: while not eof do

6: t = t + 1
7: m = ⌊t×RANDOM()⌋ {pick uniformly a number

from the set {1, . . . , t− 1}}
8: if m < n then

9: ReadNextFI(R[m])
10: else

11: SkipFIs(1)
12: end if

13: end while

The RESERVOIR-SAMPLING is quite slow, it is linear in

the number of input records read by READNEXTFI(R),

i.e., it is linear in |F̃ |. Vitter [4] created a faster al-

gorithm with the average running time O(|F̃s|(1 +

log |F̃|

|F̃s|
)), where |F̃s| is the size of the array R used by

RESERVOIR-SAMPLING. The algorithm has the same

parameters as the RESERVOIR-SAMPLING and we de-

note the Vitter’s variant of the reservoir sampling algo-

rithm by VITTER-RESERVOIR-SAMPLING.

Now, we analyse the relative size of a PBEC using the

samples taken by the reservoir sampling algorithm. The

reservoir sampling samples the set F̃ without replace-

ment, resulting in F̃s. The reservoir sampling process

can be modeled using the hypergeometric distribution.

In the rest of this chapter, we analyze the bounds on the

relative size of a set of itemsets using the sample made

by the reservoir sampling using a hypergeometric distri-

bution.

Using the bounds from [5], i.e., estimation of the relative

size of a PBEC but using an uniformly but not indepen-

dently distributed sample. From these bounds follows

the following theorem:

Theorem 5 (Estimation of the relative size of F ⊆ F̃)

Let F ⊆ F̃ be a set of itemsets. The relative size of F ,
|F |

|F̃|
, is estimated with error ǫF̃s

with probability δF̃s

from a hypergeometrically distributed sample F̃s ⊆ F̃
with parametersN = |F̃ |,M = |F | (see [5] for details)
of size:

|F̃s| ≥ −
log(δF̃s

/2)

D(ρ + ǫF̃s
||ρ)

Where D(x||y) is the Kullback-Leibler divergence of
two hypergeometrically distributed variables with para-

meters x, y and ρ = |F |/|F̃ |.

The expected value of the size |F | is E[|F ∩ F̃s|] =

|F̃s| · |F |

|F̃|
.

Proof: Can be found in [5].

6. Summary of the previous two methods

In [1] we have proposed the PARALLEL-FIMI-SEQ me-

thod and in [2] we have proposed the PARALLEL-FIMI-

PAR method. The idea of the two methods is to partition

all FIs into P disjoint sets Fi, using PBECs of relative

size
|Fi|
|F| ≈ 1

P . Each processor pi then processes parti-

tion Fi. The whole method consists of four phases.

The four phases are designed in such a way that they

statically load-balance the computation of all FIs. Pha-

ses 1–2 prepares the static load-balancing for Phase 4.

In the Phase 3, we redistribute the database partitions

so each processor can proceed independently with some

PBECs. In the Phase 4, we execute an arbitrary algori-

thm for mining of FIs. To speedup Phases 1–2, we can

execute each of Phase 1–2 in parallel.

The input and the parameters of the whole method

are the following: 1) Minimal support min support∗;
2) The sampling parameters: real numbers 0 ≤
ǫD̃, δD̃, ǫF̃s

, δF̃s
≤ 1, see Sections 4 and 5; 3) The re-

lative size of a PBEC: the parameter ρ, 0 ≤ ρ ≤ 1, see
Sections 5; 4) Partition parameter: real number α, 0 ≤
α ≤ 1; 5) Database parts Di, 1 ≤ i ≤ P . The database

partitions are loaded by each processor at the beginning

of the methods.

We assume that at the beginning of the computation,

processor pi loads its database partition Di to a local

memory. The database partitions Di has the following

properties: Di ∩Dj = ∅, i �= j, and |Di| ≈ |D|
P . Addi-

tionally, without loss of generality, we expect that each

PhD Conference ’10 65 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0188810

Robert Kessl Static Load Balancing of Parallel Mining of Frequent Itemsets ...

bi ∈ B is frequent. Therefore, each processor pi compu-

tes local support of all items bj ∈ B in its database part

Di. The support is then broadcast and each pi removes

all bj that are not globally frequent. The four phases are

summarized below:

Phase 1 (sampling of FIs): the input of Phase 1 is the

minimal support min support∗, a partitioning of the

database D into P disjoint partitions Di, and the real

numbers 0 ≤ ǫD̃, δD̃, ǫF̃s
, δF̃s

≤ 1. Output of Phase 1

is a sample of frequent itemsets F̃s ⊆ F̃ . Generally,

the only purpose of the first phase is to compute a sam-

ple F̃s. First, each processor samples Di (in parallel)

and creates partD′
i and broadcasts them to other proces-

sors (all-to-all scatter1). Each processor pi then creates

D̃ =
⋃
iD′

i. The the processors compute the set of all

MFIs from D̃, denoted by M̃. The set M̃ is the upper

boundary in the sense of set inclusion of the set F̃ , i.e.,

for each U ∈ F̃ exists m ∈ M̃ such that U ⊆ m.

We need to take a sample F̃s � F̃ . This can be done

using a modified coverage algorithm. The modified co-

verage algorithm randomly chooses m ∈ M̃ with pro-

bability |P(m)|/∑
m′∈M̃

|P(m′)|. Then it picks uni-

formly a set U ∈ P(m). This approach does not genera-

tes an identically distributed sample F̃s, but it gives rea-
sonably good results and it is very quick. The difference

between PARALLEL-FIMI-SEQ and PARALLEL-FIMI-

PAR methods is that the second computes a set M , such

that M̃ ⊆ M ⊆ F̃ , i.e., it computes a superset of M̃.

Computation of M̃ in parallel makes the PARALLEL-

FIMI-PAR faster then PARALLEL-FIMI-SEQ.

Phase 2 (lattice partitioning): the input of this phase is

the sample F̃s, the database sample D̃ (both computed

in Phase 1) and the parameter α. In Phase 2 the algori-

thm creates prefixes Ui ⊆ B and the extensions Σi of
each PBEC [Ui|Σi], and estimates the size of [Ui|Σ]∩F
using F̃s. The PBECs [Ui|Σi] are then assigned to the

processors and the assignment is broadcast to the pro-

cessors.

Phase 3 (data distribution): the input of this phase is

the assignment of the prefixes Ui and the extensions

Σi to the processors pi and the database partitioning

Di, i = 1, . . . , P . Now, the processors exchange data-

base partitions: processor pi sends Sij ⊆ Di to pro-

cessor pj such that Sij contains transactions needed by

pj for computing support of the itemsets of its assigned

PBECs.

Phase 4 (computation of FIs): as the input to each

processor are the prefixes Ui ⊆ B, the extensions

Σi, and the database parts needed for computation of

supports of itemsets V ∈ [Ui] ∩ F and the original

Di. Each processor computes the FIs in [Ui] ∩ F by

executing an arbitrary sequential algorithm for mining

of FIs. Additionally, each processor computes support

of W ⊆ Ui in Di, i.e., Supp(W,Di). The supports

are then send to p1 and p1 computes Supp(W,D) =∑
1≤i≤P Supp(W,Di)

7. Proposal of a new DM parallel method

Our new method is called Parallel Frequent Itemset

MIning – Reservoir (Parallel-FIMI-Reservoir in short).

This method works for any number of processors P ≪
|B|. The basic idea is the same as in PARALLEL-FIMI-

SEQ and PARALLEL-FIMI-PAR methods. The main di-

fference is the usage of the so called reservoir sampling

algorithm instead of the modified coverage algorithm.

This allow us to take an identically but not independently

distributed sample F̃s. We make the sample F̃s in paral-
lel: in Phase 1, we execute an arbitrary algorithm for

mining of FIs in parallel and the output of the FI mi-

ning algorithm is sampled using the reservoir sampling

(in parallel). The input parameters are the same as in the

PARALLEL-FIMI-SEQ and PARALLEL-FIMI-PAR me-

thods

7.1. Detailed description of Phase 1

In this Section, we give a detailed description of the sam-

pling process based on the reservoir sampling [4] that

samples F̃ uniformly, i.e., it creates an identically dis-

tributed sample of F̃ .

In our parallel method, we are using the VITTER-

RESERVOIR-SAMPLING Algorithm, the faster reservoir

sampling algorithm. To speedup the sampling phase of

our parallel method, we execute the reservoir sampling

in parallel. The database sample D̃ is distributed among

the processors – each processor having a copy of the

database sample D̃. The baseset B is partitioned into

P parts Bi ⊆ B of size |Bi| ≈ |B|/P such that

Bi ∩ Bj = ∅, i �= j. Processor pi then takes part Bi

and executes an arbitrary sequential depth-first search

(DFS in short) algorithm for mining of FIs, enumerating

[(bj)] ∩ F̃ , bj ∈ Bi. The output, the itemsets [(bj)] ∩ F̃ ,

of the sequential DFS algorithm are read by the reservoir

sampling algorithm. If a processor finished its part Bi, it

asks other processors for work. For terminating the pa-

rallel execution, we use the Dijkstra’s token termination

algorithm.

1All-to-all scatter is a well known communication operation: each processor pi sends a message mij to processor pj such that mij �= mik ,

i �= k.

PhD Conference ’10 66 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0188810

Robert Kessl Static Load Balancing of Parallel Mining of Frequent Itemsets ...

The task of the process is to take |F̃s| = − log(δF̃s
/2)

D(ρ+ǫF̃s
||ρ)

samples, see Theorem 5. Because the reservoir sam-

pling algorithm and the sequential algorithm is executed

in parallel, it is not known how many FIs is computed

by each processor. Denote the unknown number of FIs

computed on pi by fi, the total number of FIs is deno-

ted by f =
∑

1≤i≤P fi. Because, we do not know fi in

advance, each processor samples |F̃s| frequent itemsets

using the reservoir sampling algorithm, producing F̃s,
and counts the number of FIs computed by the sequen-

tial algorithm. When the reservoir sampling finishes,

processor pi broadcasts fi to all other processors. The

processors then pick P random variables Xi, 1 ≤ i ≤ P
frommultivariate hypergeometrical distribution with pa-

rameters: number of colorsC = P ,Mi = fi and choose
Xi itemsetsU ∈ F̃s at random out of theN = |F̃s| sam-

pled frequent itemsets computed by pi. The samples are

then send to processor p1. p1 stores the received samples

in F̃s.

7.2. Detailed description of Phase 2

In Phase 2 the method partitions F sequentially on pro-

cessor p1. As an input of the partitioning, we use the

samples F̃s, the database D̃ (computed in Phase 1), the

set B, and a real number α, 0 < α ≤ 1. For the pur-

pose of this section, we denote the prefixes by Uk, the
extensions of Uk by Σk, i.e., Uk and Σk forms a PBEC

[Uk|Σk]. The set of the indexes of the PBECs assigned
to processor pi is denoted by Li, and the set of all FIs

assigned to processor pi is denoted by Fi. Each Fi is
the union of FIs in one or more PBECs [Uk|Σk], i.e.,
Fi =

⋃
k∈Li

([Uk|Σk]) ∩ F . Each processor pi then in

Phase 4 processes the FIs contained in Fi. The output of
Phase 2 are the index sets Li of PBECs, computed on

p1, and the PBECs [Uk|Σk].

The DFS sequential FI mining algorithm usually dy-

namically changes the order of items in B for each

PBEC, i.e., the algorithm uses different order of items

in the extensions. The PBECs are still disjoint and ad-

ditionally the sequential algorithm is faster. Therefore,

we need to prepare the PBECs in the same way as

the sequential algorithm does. Let U be a prefix and

Σ = {ǫ1, . . . , ǫn} ⊆ B the extensions. The sequential

algorithm orders the items ǫi: ǫ1 < . . . < ǫn such that

Supp(U ∪ {ǫ1}) < . . . < Supp(U ∪ {ǫn}). We use the

supports estimated using D̃ for making the order of the

extensions.

The partitioning of F is a two step process:

(1) p1 creates a list of prefixes Uk such that the esti-

mated relative size of the PBEC [Uk]∩F satisfies

|[Uk]∩F̃s|

|F̃s|
≤ α · 1

P , where 0 < α < 1 is a parame-

ter of the computation set by the user. The PBECs

are created recursively, see Section 3. The reason

for making the PBECs of relative size ≤ α · 1
P is

to make the PBECs small enough so that they can

be scheduled and the schedule is balanced, i.e.,

each processor having a fraction ≈ 1/P of FIs.

Smaller number of large PBECs could make the

scheduling unbalanced.

(2) p1 creates set of indexes Li such that |Fi|/|F| ≈
1/P .

In the second step, we need to create index sets Li,
such that Fi =

⋃
k∈Li

([Uk] ∩ F) and maxi |Fi|/|F|
is minimized. This task is known NP-complete problem

with known approximation algorithms. We use the LPT-

SCHEDULE algorithm (LPT stands for least processing

time). The LPT-SCHEDULE algorithm (see [6] for the

proofs) is a best-fit algorithm, see Algorithm 3:

Algorithm 3 The LPT-SCHEDULE algorithm

LPT-SCHEDULE(In: Set S = {(Ui,Σi, si)}, Out: Sets

Li)

1: Sort the set S such that si < sj , i �= j.
2: Assign each (Ui,Σi, si) (in decreasing order by si)

to the least loaded processor pi. The indexes as-

signed to pi, are stored in Li.

Lemma 5 [6] LPT-SCHEDULE is 4/3-approximation
algorithm.

The index sets Li together with Uk and Σk are then

broadcast to the remaining processors.

7.3. Detailed description of Phase 3

The input of Phase 3 for processor pi is the set of inde-
xes of the assigned PBECs Li together with the prefi-

xes Uk and its extensions Σk. Processor pi needs for the
computation of Fi =

⋃
k∈Li

([Uk]∩F) a database parti-
tion D′

i. The database partition D′
i should contain all the

information needed for computation of Fi. At the be-

gginning of this phase, the processors has disjoint data-

base partitions Di such that |Di| ≈ |D|
P . We expect that

we have a distributed memory machine whose nodes are

interconnected using a network such as Myrinet or In-

finiband, i.e., a network that is not congested while an

arbitrary permutation of two nodes communicates with

each other. The problem is the congestion of the network

in Phase 3.

PhD Conference ’10 67 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0188810

Robert Kessl Static Load Balancing of Parallel Mining of Frequent Itemsets ...

To construct D′
i on processor pi, every processor pj ,

i �= j, has to send a part of its database partition D′
j ne-

eded by the other processors to all other processors (an

all-to-all scatter takes place2). That is: processor pi send
to processor pj the set of transactions {t|t ∈ Di, k ∈
Lj , and Uk ⊆ t}, i.e., all transactions that contain at le-

ast one Uk, k ∈ Lj as a subset: D
′
j =

⋃
i{t|t ∈ Di, k ∈

Lj , and Uk ⊆ t} = {t|t ∈ D, exists k ∈ Lj , Uk ⊆ t}.
The all-to-all scatter is done in ⌊P2 ⌋ communication

rounds.

We can consider the scatter as a round-robin tournament

of P players [7], which is the following procedure: if P
is odd, a dummy processor can be added, whose sche-

duled opponent waits for the next round and the proces-

sors performs P communication rounds. For example

let have 14 processors, in the first round the following

processors exchange their database portions:

1 2 3 4 5 6 7

14 13 12 11 10 9 8

The processors are paired by the numbers in the co-

lumns. That is, database parts are exchanged between

processors p1 and p14, p2 and p13, etc. In the second

round one processor is fixed (number one in this case)

and the other are rotated clockwise:

1 14 2 3 4 5 6

13 12 11 10 9 8 7

This process is iterated until the processors are almost in

the initial position:

1 3 4 5 6 7 8

2 14 13 12 11 10 9

7.4. Detailed description of Phase 4

The input to this phase, for processor pq, 1 ≤ q ≤ P, is
the database partition Dq (the database partition that is

the input of the whole method, the database partition),

D′
q (computed in Phase 3), the set π = {(Uk,Σk)|Uk ⊆

B,Σk ⊆ B, Uk ∩ Σk = ∅} of prefixes Uk and the ex-

tensions Σk, and the sets of indexes Lq of prefixes Uk
and extensions Σk assigned to processor pq .

In Phase 4, we execute an arbitrary algorithm for mining

of FIs. The sequential algorithm is run on processor pq
for every prefix and extensions (Uk,Σk) ∈ π, k ∈ Lq

assigned to the processor, i.e., pq enumerates all item-

sets W ∈ [Uk|Σk], (Uk,Σk) ∈ π. Therefore, the data-

structures used by a sequential algorithm, must be pre-

pared in order to execute the sequential algorithm for

mining of FIs with particular prefix and extensions. To

make the parallel execution of a DFS algorithm fast, we

prepare the datastructures by simulation of the execu-

tion of the sequential DFS algorithm, e.g., to enumerate

all FIs in a PBEC [Uk|Σk] Phase 4 simulates the sequen-

tial branch of a DFS algorithm for mining of FIs up to

the point the sequential algorithm can compute the FIs

in [Uk|Σk].

7.5. The PARALLEL-FIMI-RESERVOIR algorithm

This algorithm samples F̃ using the reservoir sam-

pling. The reservoir sampling samples F̃ uniformly.

To make the algorithm faster, the reservoir sampling

is executed in parallel. The method is summarized in

the PARALLEL-FIMI-RESERVOIR method, see Algori-

thm 4.

8. Experimental evaluation

We have measured the speedup of our new method, the

PARALLEL-FIMI-RESERVOIR method, on a cluster of

workstations using three datasets.

The cluster of workstations was interconnected with the

Infiniband network. Every node in the cluster has two

dual-core 2.6GHz AMD Opteron processors and 8GB

of main memory.

The datasets were generated using the IBM database

generator. We have used datasets with 500k transactions

and supports for each dataset such that the sequential

run of the Eclat algorithm is between 100 and 12000
seconds (≈ 3.3 hours) and two cases with running

time 33764 (9.37 hours) and 132186 (36.71 hours) se-

conds. The IBM generator is parametrized by the ave-

rage transaction length TL (in thousands), the number

of items I (in thousands), by the number of patterns

P used for creation of the parameters, and by the ave-

rage length of the patterns PL. To clearly differentiate

the parameters of a database we are using the string

T[number in thousands]I[items count

in 1000]P[number]PL[number]TL[number],

e.g. the string T500I0.4P150PL40TL80 labels a da-

tabase with 500K transactions 400 items, 150 patterns

of average length 40 and with average transaction length
80. All experiments were performed with various values

of the support parameter on 2, 4, 6, and 10 processors.

The databases and supports used for evaluation of our

algorithm is summarized in the Table 1.

2All-to-all scatter is a well known communication operation: each processor pi sends a message mij to processor pj such that mij �= mik ,

i �= k.

PhD Conference ’10 68 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0188810

Robert Kessl Static Load Balancing of Parallel Mining of Frequent Itemsets ...

In Phase 4 in our experiments, we use the ECLAT al-

gorithm for mining of FIs. We have used the ECLAT in

Phase 1 and 4 of the PARALLEL-FIMI-RESERVOIR me-

thod. The PARALLEL-FIMI-RESERVOIRmethod achie-

ves speedup up to 8.6 on 10 processors.

There is an advantage of the PARALLEL-FIMI-

RESERVOIR over the two previous methods [1, 2]:

the need of computation of MFIs. The number of

MFIs can be very large and the program imple-

menting the PARALLEL-FIMI-SEQ method or the

PARALLEL-FIMI-PAR can run out of main memory.

The PARALLEL-FIMI-RESERVOIR does not suffer

from this problem.

Figure 1 clearly demonstrate that for reasonably large

and reasonably structured datasets, the speedup is linear

with speedup ≈ 6 on 10 processors. The numeric values

of the speedup are located in Table 2.

In [2], we have evaluated the PARALLEL-FIMI-PAR

as faster then the PARALLEL-FIMI-SEQ method. We

can compare the speedup of the PARALLEL-FIMI-

RESERVOIR method with the PARALLEL-FIMI-PAR

method. In the PARALLEL-FIMI-PAR method we have

used the Eclat algorithm in Phase 4 and the Fpmax* [8]

algorithm in Phase 1 as the algorithm for mining of

MFIs. The speedup of PARALLEL-FIMI-PAR method is

shown in Figure 1 the numerical average speedup values

are located in Table 2. We can see that the speedup of

the PARALLEL-FIMI-PAR is a bit smaller then the spe-

edup of PARALLEL-FIMI-RESERVOIR. Additionally, in

some cases, we were not able to finish the execution of

the PARALLEL-FIMI-PAR due to large amount of used

memory. In such cases the speedup is shown to be 0.

Algorithm 4 The PARALLEL-FIMI-RESERVOIR method.

PARALLEL-FIMI-RESERVOIRIn: Double min support∗,
In: Doubles ǫD̃, δD̃, ǫF̃s

, δF̃s
, ρ, α,

Out: Set F)

1: for all pi do-in-parallel

// Phase 1: sampling.

2: Read Di and set ND̃ ← 1
2ǫ2

D̃

ln 2
δD̃

.

3: Creates a sample D′
i ⊆ Di and broadcast it to each other processor.

4: D̃ ← ⋃
iD

′
i.

5: Execute in parallel an arbitrary algorithm for mining of FIs on database D̃ in parallel and create the sample F̃s
using the VITTER-RESERVOIR-SAMPLING.

// Phase 2: partitioning.

6: p1 creates PBECs [Uk] such that
|[Uk]∩F̃s|

|F̃s|
< α · 1

P .

7: p1 creates Lj , 1 ≤ j ≤ P using the LPT-MAKESPAN algorithm.

8: // Phase 3: data re-distribution.

9: Redistribute the database partition Di

10: // Phase 4: parallel computation of FIs.

11: compute support of W ⊆ Uk in Di and send the supports to p1
12: p1 outputs W
13: all pi executes an arbitrary algorithm for mining of FIs in parallel that computes supports of Supp(W,D′

q),W ∈⋃
k∈Lq

[Uk|Σk], (Uk,Σk) ∈ π.
14: end for

The database replication: we define the database repli-

cation factor as follows: let D′
i is the database partition

used by the ith processor in Phase 4, i.e., the database

part received in Phase 3. The database replication fac-

tor is defined as follows:
∑P

i=1
|D′

i|

|D| . One would expect

that the database replication factor will be small, e.g.,

for P = 10 a replication factor between 2− 6 would be

expected. The oposite is the true. The replication factor

is in all our experiments ≈ P . The minimalization of

the database replication factor is a hard task. The mini-

mization of the database replication factor is an opened

problem.

9. Acknowledgment

This paper was supported from the Czech Science Foun-

dation, grant number GA ČR P202/10/1333.

PhD Conference ’10 69 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0188810

Robert Kessl Static Load Balancing of Parallel Mining of Frequent Itemsets ...

Dataset Supports

T500I0.1P100PL20TL50 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18
T500I0.4P250PL10TL120 0.2, 0.25, 0.26, 0.27, 0.3
T500I1P100PL20TL50 0.02, 0.03, 0.05, 0.07, 0.09

Table 1: Databases used for measuring of the speedup and used supports values for each dataset.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 3 4 5 6 7 8 9 10

linear speedup
min_support=0.11
min_support=0.12
min_support=0.13
min_support=0.14
min_support=0.15
min_support=0.16
min_support=0.17
min_support=0.18

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 3 4 5 6 7 8 9 10

linear speedup
min_support=0.3
min_support=0.27
min_support=0.26
min_support=0.25
min_support=0.2

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 3 4 5 6 7 8 9 10

linear speedup
min_support=0.09
min_support=0.07
min_support=0.05
min_support=0.03
min_support=0.02

Figure 1: Speedup of the PARALLEL-FIMI-RESERVOIR method parametrized with the Eclat algorithm, measured on the

T500I0.1P100PL20TL50, T500I0.4P250PL10TL120, T500I1P100PL20TL50 (from left to right).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 3 4 5 6 7 8 9 10

linear speedup
min_support=0.11
min_support=0.12
min_support=0.13
min_support=0.14
min_support=0.15
min_support=0.16
min_support=0.17
min_support=0.18

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 3 4 5 6 7 8 9 10

linear speedup
min_support=0.3
min_support=0.27
min_support=0.26
min_support=0.25
min_support=0.2

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 3 4 5 6 7 8 9 10

linear speedup
min_support=0.09
min_support=0.07
min_support=0.05
min_support=0.03
min_support=0.02

Figure 2: Speedup of the PARALLEL-FIMI-PARmethod parametrized with the Eclat algorithm, measured on the

T500I0.1P100PL20TL50, T500I0.4P250PL10TL120, T500I1P100PL20TL50 (from left to right).

datafile/PARALLEL-FIMI-RESERVOIR 2 4 6 10

T500I0.1P50PL10TL40 1.523 2.633 3.380 5.342

T500I0.4P250PL10TL120 1.389 2.481 3.470 4.932

T500I1P100PL20TL50 1.240 2.010 2.340 2.544

Total average 1.384 2.375 3.063 4.273

datafile/PARALLEL-FIMI-PAR 2 4 6 10

T500I0.1P50PL10TL40 1.596 2.668 3.438 5.135

T500I0.4P250PL10TL120 1.010 2.050 2.891 4.186

T500I1P100PL20TL50 1.227 1.714 1.876 1.401

Total average 1.277 2.144 2.735 3.574

Table 2: Numerical values of average speedup of the PARALLEL-FIMI-RESERVOIR and PARALLEL-FIMI-PAR methods for

number of processors P = 2, 4, 6, 10.

PhD Conference ’10 70 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0188810

Robert Kessl Static Load Balancing of Parallel Mining of Frequent Itemsets ...

References

[1] R. Kessl and P. Tvrdı́k, Probabilistic load balan-

cing method for parallel mining of all frequent

itemsets. In PDCS ’06: Proceedings of the 18th

IASTED International Conference on Parallel and

Distributed Computing and Systems, pages 578–

586, Anaheim, CA, USA, 2006. ACTA Press.

[2] R. Kessl and P. Tvrdı́k, Toward more parallel

frequent itemset mining algorithms. In PDCS

’07: Proceedings of the 19th IASTED Internatio-

nal Conference on Parallel and Distributed Com-

puting and Systems, pages 97–103, Anaheim, CA,

USA, 2007. ACTA Press.

[3] H. Toivonen, Sampling large databases for associ-

ation rules. In T. M. Vijayaraman, A. P. Buchmann,

C. Mohan, and N. L. Sarda, editors, In Proc. 1996

Int. Conf. Very Large Data Bases, pages 134–145.

Morgan Kaufman, 09 1996.

[4] J.S. Vitter, Random sampling with a reservoir.

ACM Trans. Math. Softw., 11(1):37–57, March

1985.

[5] M. Skala, Hypergeometric tail inequalities: ending

the insanity. http://ansuz.sooke.bc.ca/professional/

hypergeometric.pdf.

[6] R.L. Graham, Bounds on multiprocessing timing

anomalies. SIAM Journal of Applied Mathematics,

17(2):416–429, 1969.

[7] http://en.wikipedia.org/wiki/Round robin

tournament.

[8] G. Grahne and J. Zhu, Efficiently using prefix-

trees in mining frequent itemsets. In FIMI ’03,

Frequent Itemset Mining Implementations, Proce-

edings of the ICDM 2003 Workshop on Frequent

Itemset Mining Implementations, 19 December

2003, Melbourne, Florida, USA, volume 90 of

CEUR Workshop Proceedings, 2003.

PhD Conference ’10 71 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0188810

