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Dostupný z http://www.nusl.cz/ntk/nusl-41751
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Abstract

We show that some classes of logics in the

hierarchy of Implicational Deduction Theorems,

defined in the forthcoming paper [1], are not

equal. This completes the picture of hierarchy of

these logics.

1. Introduction

One of the most important theorems of classical propo-

sitional logic is the Deduction Theorem, independently

discovered by Herbrand [2] and Tarski [3], which con-

nects provability and implication. In its most popular

form it says

Γ, ϕ ⊢ ψ iff Γ ⊢ ϕ → ψ.

It enables us to find some proofs much easier. However,

this theorem does not hold in all logics. For example

in logics without contraction, we usually have so called

Local Deduction Theorem, which says that there exists

some natural k such that

Γ, ϕ ⊢ ψ iff Γ ⊢ ϕ → (. . . (ϕ︸ ︷︷ ︸
k-times

→ ψ) . . .).

The problem is that generally we do not have any (rea-

sonable) upper bound on k.

We can try to estimate k somehow. The immediate idea

is to count how many times the assumption ϕ is used

in the proof of ψ. This idea is captured in the forthco-

ming paper [1] where the situation is shown not to be so

easy. Authors define some hierarchy of logics with Im-

plicational Deduction Theorems and investigate relati-

ons between its members. It is shown that this hierarchy

collapses on some level. In this paper we show in full

details that some of its members are not the same.

This is shown by presenting, for the remaining case, a

counter-example. It is worth to note that this counter-

example was found with the help of computer. For

further details, proofs and references we refer the rea-

der to the forthcoming paper [1] mentioned already.

2. Preliminaries

We use some standard terminology from the theory of

logical calculi (see e.g. [4])—a propositional language

L (a set of logical connectives with some finite arity,

in this paper we have just one binary connective called

implication → and we use the following convention:

ϕ →0 ψ = ψ and ϕ →i+1 ψ = ϕ → (ϕ →i ψ)), the
set of L-formulae FleL over some fixed countably in-

finite set of propositional variables and L-substitutions.
An L-theory Γ is a set of L-formulae. An L-consecution
Γ�ϕ is a pair consisting of a theory Γ and a formula ϕ.

A logic L in the language L is a structural consequence

relation (in the sense of Tarski) on FleL. That is, L is a

set of relations between theories and formulae (writing

Γ ⊢L ϕ, and Γ ⊢L Γ′ as an abbreviation for Γ ⊢L ϕ for

each ϕ ∈ Γ′) satisfying the following conditions:

(i) If ϕ ∈ Γ, then Γ ⊢L ϕ.

(ii) If Γ ⊢L Γ′ and Γ′ ⊢L ϕ, then Γ ⊢L ϕ.

(iii) If Γ ⊢L ϕ, then there is a finite set Γ′ ⊆ Γ s.t.

Γ′ ⊢L ϕ.

(iv) If Γ ⊢L ϕ, then σ(Γ) ⊢L σ(ϕ) for any L-
substitution σ.
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The previous conditions are called reflexivity, cut, fini-

tarity and structurality.

Definition 1 An axiomatic system AX is a set of fini-

tary consecutions closed under substitutions. The mem-

bers of AX with non-empty theories are called de-

ductive rules, these with empty theories are called axi-

oms. We say that AX is MP-based if modus ponens is

its only deduction rule.

Note that we have only finitary rules, and axioms as well

as rules are presented by schemata.

Definition 2 Let AX be an axiomatic system. An AX -

proof of the formula ϕ in theory Γ is a finite tree labelled
by formulae satisfying

(i) the root is labelled by ϕ,

(ii) leaves by either axioms or elements of Γ,

(iii) if a node is labelled by ψ and its preceding nodes

are labelled by ψ1, . . . , ψn then {ψ1, . . . , ψn} �
ϕ ∈ AX .

If such a proof exists we write Γ ⊢pAX ϕ.

We say that AX is an axiomatic system for (a presen-

tation of) a logic L iff L = ⊢pAX . A logic L isMP-based

if it has some MP-based presentation.

2.1. Matrix models and semantics

A matrix M for L is a pair 〈A,D〉, where A is an L-
algebra and D ⊆ A is the set of designated elements

of M. An M-evaluation for matrix M = 〈A,D〉 is a
mapping e : FleL → A which commutes with all con-

nectives in L.

Logics can be defined semantically through logical ma-

trices. Any class of L-matrices C is called matrix se-

mantics for L. We say Γ |=C ϕ iff for each M ∈ C,
M = 〈A,D〉, and each evaluation e in M, e(ϕ) ∈ D
whenever e[Γ] ⊆ D.

Notice that |=C is a logic for C being a finite set of finite

L-matrices. By relaxing either of the finiteness conditi-

ons we obtain a consequence relation, but not necessa-

rily a finitary one.

3. Implicational Deduction Theorems

In this section we define some basic notions concerning

the study of Implicational Deduction Theorems. First,

we define an analog to a Local Deduction Theorem.

Definition 3 A logic L has Simple Implicational De-

duction Theorem (IDT0) if for each theory Γ and for-

mulae ϕ, ψ:

Γ, ϕ ⊢L ψ iff there is n such that Γ ⊢L ϕ →n ψ.

We immediately obtain the following important property

of logics with IDT0, which is a consequence of our as-

sumptions concerning finitarity.

Lemma 1 A logic L with IDT0 is MP-based.

Now we present a finer analysis of Local Deduction

Theorems arising from the idea of counting number of

occurrences of ϕ in the leaves of some proof of ψ in Γ
and ϕ.

Definition 4 Let n > 0. A logic L has n-Implicational

Deduction Theorem (IDTn) if

(i) L has an MP-based presentation AX ,
(ii) for each theory Γ, formula ψ, mutually different

formulae ϕi, 1 ≤ i ≤ n, and for each AX -proof
P of ψ in Γ ∪ {ϕi | 1 ≤ i ≤ n}:

Γ ⊢ ϕ1 →j1 (ϕ2 →j2 . . . (ϕn →jn ψ) . . .),

where ji is the number of occurrences of ϕi in the
leaves of P .

It may seem that eg. IDT2 can be obtained just by double

application of IDT1, but it is not true.

Example 1 Let we assume that

ϕ, ψ, ϕ → (ψ → χ) ⊢ χ. (1)

IDT2 gives

ϕ → (ψ → χ) ⊢ ψ → (ϕ → χ) (2)

and IDT1 gives

ψ, ϕ → (ψ → χ) ⊢ ϕ → χ, (3)

but now we cannot use IDT1 once again to obtain (2).

We only know that ϕ → χ is provable from ψ and

ϕ → (ψ → χ), but we do not know how many times

ψ has to be used.

From now on, we shall use IDTn also for the class of

all logics satisfying IDTn. The meaning will be obvious

from context.

In the paper [1] we prove
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Theorem 1

(i) If a logic L has IDTn then L has IDTm for any

m ≤ n.

(ii) If a logic L has IDT3 then L has IDTm for any

m ≥ 3.

(iii) IDT0 �= IDT1 and IDT1 �= IDT2.

The previous theorem shows that the hierarchy of lo-

gics with Implicational Deduction Theorems has the

following properties

IDT0 � IDT1 � IDT2 ⊇ IDT3 = IDT4 = . . .

The remaining problem is whether IDT2 = IDT3 or not,

which is the result of this paper. We solve this problem

negatively in the next section. Before we proceed we re-

call an important characterisation lemma:

Lemma 2 Let L be a logic and n > 0 then L has IDTn
iff

(i) L is MP-based,

(ii) ⊢L ϕ → ϕ,

(iii) for each natural ai, bi, for 1 ≤ i ≤ n, holds

ϕ1 →a1 (. . . (ϕn →an (χ → ψ)) . . .),

ϕ1 →b1 (. . . (ϕn →bn χ) . . .)

⊢L ϕ →a1+b1 . . . (ϕn →an+bn ψ) . . .).

4. IDT2 �= IDT3

In this section we prove that there is a logic with IDT2

but without IDT3. The proof is based on the matrix M

in Table 1. The only denoted element of M is 1. Let us

note that the matrix was found with the help of compu-

ter.

→ 1 a b c d e f g

1 1 a b c d e f g

a 1 1 a a a c d f

b 1 1 1 a a b d e

c 1 1 1 1 a a c e

d 1 1 1 1 1 a a d

e 1 1 1 1 1 1 a b

f 1 1 1 1 1 1 1 a

g 1 1 1 1 1 1 1 1

Table 1: ModelM.

From now on, we use the following notation. We abbre-

viate e(ϕ) =M 1 by ϕ = 1, because model M is fixed

and the evaluation is obvious from the context. We shall

also abbreviate it simply saying ϕ is 1.

Lemma 3 The logic L given by modelM does not have

IDT3.

Proof: There is a proof of

ϕ, ψ, ϕ → (ψ → χ) ⊢ χ,

where ϕ,ψ and ϕ → (ψ → χ) are used only once. IDT3

would give

⊢ (ϕ → (ψ → χ))→ (ψ → (ϕ → χ)),

which is not true. Consider an evaluation e(ϕ) =
a, e(ψ) = b and e(χ) = g.

Now we shall show that L has IDT2. First, we establish

some useful properties ofM.

Observation 1 The following statements are true inM:

(i) ϕ → ϕ = 1,

(ii) 1→ ϕ = ϕ,

(iii) if ϕ = 1 and ϕ → ψ = 1 then ψ = 1 (MP holds

inM).

Definition 5 We define the ordering < on the elements

ofM by

g < f < e < d < c < b < a < 1.

We use x ≤ y with the standard meaning x = y or

x < y. In the very same way as for = we use ϕ ≤ ψ
which means that for given evaluation e it holds that

e(ϕ) ≤ e(ψ).

Lemma 4 The modelM has the following properties:

(i) ψ ≤ ϕ → ψ,

(ii) ϕ0 ≤ ϕ implies ϕ → ψ ≤ ϕ0 → ψ,

(iii) ψ0 ≤ ψ implies ϕ → ψ0 ≤ ϕ → ψ.

These properties of implication inM play a very impor-

tant role in the rest of the section.

Lemma 5 For any evaluation such that ϕ1, ϕ2, ϕ3, ϕ4

are different from 1 holds

ϕ1 → (ϕ2 → (ϕ3 → (ϕ4 → ψ))) = 1.
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Proof: By Lemma 4 the worst case is ϕ1 = ϕ2 = ϕ3 =
ϕ4 = a and ψ = g, but even for such evaluation lemma

holds.

Observation 1 and Lemma 5 are very important. From

Lemma 2 we immediately obtain that we only need to

check finitely many cases to show that logic L given by

modelM has IDT2.

Corollary 1 The logic L given by model M has IDT2
iff

ϕ1 →a1 (ϕ2 →a2→ (χ → ψ)) = 1 (4)

and

ϕ1 →b1 (ϕ2 →b2 χ) = 1 (5)

imply

ϕ1 →a1+b1 (ϕ2 →a2+b2 ψ) = 1 (6)

for any a1 + a2 + b1 + b2 < 4.

Now we can proceed by exhaustive checking of all

possible variants, or we can simplify our work signifi-

cantly as shown by following three lemmata.

Lemma 6 Given (4) and (5), and if

(i) ψ = 1,

(ii) χ = 1,

(iii) χ = g,

(iv) ϕ1 = g (for a1 + b1 > 0),

(v) ϕ2 = g (for a1 + b1 > 0),

then the condition (6) holds.

Proof: Cases (i), (iv) and (v) are evident. If χ = 1 then

1 = ϕ1 →a1 (ϕ2 →a2 (1→ ψ))

= ϕ1 →a1 (ϕ2 →a2 ψ)

≤ ϕ1 →a1+b1 (ϕ2 →a2+b2 ψ).

If χ = g then χ ≤ ψ and hence

1 = ϕ1 →b1 (ϕ2 →b2 χ)

≤ ϕ1 →b1 (ϕ2 →b2 ψ)

≤ ϕ1 →a1+b1 (ϕ2 →a2+b2 ψ).

Lemma 7 Given (4) and (5), and if

(i) a1 + a2 = 0,

(ii) b1 + b2 = 0,

then the condition (6) holds.

Proof: Case (i) gives χ → ψ = 1 hence χ ≤ ψ
and then (5) implies (6). Case (ii) is even easier, because

χ = 1 and then (4) implies (6).

Lemma 8 Given (4) and (5), and if

(i) a1 = 1, a2 = 0, b1 = 1, b2 = 0,

(ii) a1 = 1, a2 = 0, b1 = 0, b2 = 1,

(iii) a1 = 0, a2 = 1, b1 = 0, b2 = 1,

(iv) a1 = 2, a2 = 0, b1 = 1, b2 = 0,

(v) a1 = 2, a2 = 0, b1 = 0, b2 = 1,

(vi) a1 = 0, a2 = 2, b1 = 0, b2 = 1,

(vii) a1 = 1, a2 = 1, b1 = 0, b2 = 1,

then the condition (6) holds.

Proof: Let us show case (i). Other cases are more or

less similar. We have

ϕ1 → (χ → ψ) = 1, (7)

ϕ1 → χ = 1. (8)

Now we have ϕ1 ≤ χ from (8) and hence χ → ψ ≤
ϕ1 → ψ. From (7) we have ϕ1 ≤ χ → ψ. So we have

ϕ1 ≤ ϕ1 → ψ.

We can now on assume that ϕ1 �= 1 and ϕ2 �= 1, be-

cause 1→ ϕ = ϕ and consequentlyϕ1 = 1 andϕ2 = 1

is the same as a1 = b1 = 0 and a2 = b2 = 0, respecti-
vely. In such case all the following instances lead to the

cases solved already.

The remaining cases have to be checked separately and

in more details. We analyse all possible evaluations and

show that (4) and (5) imply (6).

Lemma 9 Given (4) and (5), and if a1 = 0, a2 = 1,
b1 = 1, b2 = 0, then the condition (6) holds.

Proof: We need to show that

ϕ2 → (χ → ψ) = 1, (9)

ϕ1 → χ = 1 (10)

imply

ϕ1 → (ϕ2 → ψ) = 1. (11)

We prove it by cases. First, if ψ = a, . . . ,d then it is

easy to show that ϕ1 → (ϕ2 → ψ) = 1 (we assume

ϕ1 �= 1 and ϕ2 �= 1). The only interesting cases are the

following:
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· ψ = e

· ϕ2 = a

· ϕ1 = a,b then ϕ1 ≤ χ from (10), hence χ ≥
b and therefore ϕ2 → (χ → ψ) < 1.

· ϕ1 = c, . . . then ϕ1 → (ϕ2 → ψ) = 1.

· ϕ2 = b

· ϕ1 = a then χ ≥ a and therefore ϕ2 → (χ →
ψ) < 1.

· ϕ1 = b, . . . then ϕ1 → (ϕ2 → ψ) = 1.

· ϕ2 = c, . . . then ϕ1 → (ϕ2 → ψ) = 1.

· ψ = f

· ϕ2 = a,b

· ϕ1 = a,b, c then χ ≥ c and therefore ϕ2 →
(χ → ψ) < 1.

· ϕ1 = d, . . . then ϕ1 → (ϕ2 → ψ) = 1.

· ϕ2 = c

· ϕ1 = a,b χ ≥ b then ϕ2 → (χ → ψ) < 1.

· ϕ1 = c, . . . then ϕ1 → (ϕ2 → ψ) = 1.

· ϕ2 = d, . . . then ϕ1 → (ϕ2 → ψ) = 1.

· ψ = g

· ϕ2 = a

· ϕ1 = a, . . . , e then χ ≥ e and therefore ϕ2 →
(χ → ψ) < 1.

· ϕ1 = f , . . . then ϕ1 → (ϕ2 → ψ) = 1.

· ϕ2 = b, c

· ϕ1 = a, . . . ,d then χ ≥ d and therefore

ϕ2 → (χ → ψ) < 1.

· ϕ1 = e, . . . then ϕ1 → (ϕ2 → ψ) = 1.

· ϕ2 = d

· ϕ1 = a,b, c then χ ≥ c and therefore ϕ2 →
(χ → ψ) < 1.

· ϕ1 = d, . . . then ϕ1 → (ϕ2 → ψ) = 1.

· ϕ2 = e

· ϕ1 = a then χ ≥ a and therefore ϕ2 → (χ →
ψ) < 1.

· ϕ1 = b, . . . then ϕ1 → (ϕ2 → ψ) = 1.

· ϕ2 = f , . . . then ϕ1 → (ϕ2 → ψ) = 1.

Let us point out that if f ≤ ψ and ϕ0, ϕ1 and ϕ2 are

different from 1, then

ϕ0 → (ϕ1 → (ϕ2 → ψ)) = 1.

So if a1 + a2 + b1 + b2 = 3 then we need to check only
ψ = g case.

Lemma 10 Given (4) and (5), and if a1 = 0, a2 = 2,
b1 = 1, b2 = 0, then the condition (6) holds.

Proof: We need to show that

ϕ2 → (ϕ2 → (χ → ψ)) = 1, (12)

ϕ1 → χ = 1 (13)

imply

ϕ1 → (ϕ2 → (ϕ2 → ψ)) = 1. (14)

We prove it by cases:

· ψ = g

· ϕ2 = a

· ϕ1 = a,b, c then ϕ1 ≤ χ from (13), hence

χ ≥ c and therefore (12) does not hold.

· ϕ2 = b

· ϕ1 = a then χ ≥ a and therefore (12) does not

hold.

In all other cases (14) holds.

Lemma 11 Given (4) and (5), and if a1 = 1, a2 = 0,
b1 = 2, b2 = 0, then the condition (6) holds.

Proof: We need to show that

ϕ1 → (χ → ψ) = 1, (15)

ϕ1 → (ϕ1 → χ) = 1 (16)

imply

ϕ1 → (ϕ1 → (ϕ1 → ψ)) = 1. (17)

The only case to show is:

· ψ = g

· ϕ1 = a then χ ≥ d from (16) and therefore (15)

does not hold.

In all other cases (17) holds.

Corollary 2 Given (4) and (5), and if a1 = 0, a2 = 1,
b1 = 0, b2 = 2, then the condition (6) holds.
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Lemma 12 Given (4) and (5), and if a1 = 0, a2 = 1,
b1 = 2, b2 = 0, then the condition (6) holds.

Proof: We need to show that

ϕ2 → (χ → ψ) = 1, (18)

ϕ1 → (ϕ1 → χ) = 1 (19)

imply

ϕ1 → (ϕ1 → (ϕ2 → ψ)) = 1. (20)

We prove it by cases:

· ψ = g

· ϕ2 = a

· ϕ1 = a,b by (19) χ ≥ e and so (18) fails.

· ϕ2 = b

· ϕ1 = a by (19) χ ≥ d and therefore (18) fails.

· ϕ2 = c

· ϕ1 = a by (19) χ ≥ d and therefore (18) fails.

In all other cases (20) holds.

Lemma 13 Given (4) and (5), and if a1 = 1, a2 = 0,
b1 = 0, b2 = 2, then the condition (6) holds.

Proof: We need to show that

ϕ1 → (χ → ψ) = 1, (21)

ϕ2 → (ϕ2 → χ) = 1 (22)

imply

ϕ1 → (ϕ2 → (ϕ2 → ψ)) = 1. (23)

We prove it by cases:

· ψ = g

· ϕ2 = a

· ϕ1 = a,b, c by (22) χ ≥ d and so (21) fails.

· ϕ2 = b

· ϕ1 = a by (22) χ ≥ e and therefore (21) fails.

In all other cases (23) holds.

Lemma 14 Given (4) and (5), and if a1 = 1, a2 = 1,
b1 = 1, b2 = 0, then the condition (6) holds.

Proof: We need to show that

ϕ1 → (ϕ2 → (χ → ψ)) = 1, (24)

ϕ1 → χ = 1 (25)

imply

ϕ1 → (ϕ1 → (ϕ2 → ψ)) = 1. (26)

We prove it by cases:

· ψ = g

· ϕ2 = a

· ϕ1 = a,b by (25) χ ≥ b and so (24) fails.

· ϕ2 = b

· ϕ1 = a by (25) χ ≥ a and therefore (24) fails.

· ϕ2 = c

· ϕ1 = a by (25) χ ≥ a and therefore (24) fails.

In all other cases (26) holds.

Lemma 15 Given (4) and (5), and if a1 = 1, a2 = 0,
b1 = 1, b2 = 1, then the condition (6) holds.

Proof: We need to show that

ϕ1 → (χ → ψ) = 1, (27)

ϕ1 → (ϕ2 → χ) = 1 (28)

imply

ϕ1 → (ϕ1 → (ϕ2 → ψ)) = 1. (29)

We prove it by cases:

· ψ = g

· ϕ2 = a

· ϕ1 = a by Lemma 11.

· ϕ1 = b by (28) χ ≥ d and therefore (27) fails.

· ϕ2 = b

· ϕ1 = a by (28) χ ≥ d and therefore (27) fails.

· ϕ1 = b by Lemma 11.

· ϕ2 = c

· ϕ1 = a by (28) χ ≥ e and therefore (27) fails.

In all other cases (29) holds.
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Lemma 16 Given (4) and (5), and if a1 = 0, a2 = 1,
b1 = 1, b2 = 1, then the condition (6) holds.

Proof: We need to show that

ϕ2 → (χ → ψ) = 1, (30)

ϕ1 → (ϕ2 → χ) = 1 (31)

imply

ϕ1 → (ϕ2 → (ϕ2 → ψ)) = 1. (32)

We prove it by cases:

· ψ = g

· ϕ2 = a

· ϕ1 = a,b, c by (31) χ ≥ e and so (30) fails.

· ϕ2 = b

· ϕ1 = a by (31) χ ≥ d and therefore (30) fails.

In all other cases (32) holds.

Theorem 2 There is a logic with IDT2 but without

IDT3.

In Tables 2 and 3 we spell all variants needed by Co-

rollary 1 to show that the logic L given byM has IDT2,

which together with Lemma 3 completes the proof of the

previous theorem. Consequently, we obtained the com-

plete picture of hierarchy of Implicational Deduction

Theorems

IDT0 � IDT1 � IDT2 � IDT3 = IDT4 = . . .

a1 a2 b1 b2 Solution

0 0 0 0 Lemma 7

1 0 0 0 Lemma 7

0 1 0 0 Lemma 7

0 0 1 0 Lemma 7

0 0 0 1 Lemma 7

2 0 0 0 Lemma 7

0 2 0 0 Lemma 7

0 0 2 0 Lemma 7

0 0 0 2 Lemma 7

1 1 0 0 Lemma 7

1 0 1 0 Lemma 8

1 0 0 1 Lemma 8

0 1 1 0 Lemma 9

0 1 0 1 Lemma 8

0 0 1 1 Lemma 7

Table 2: Proof variants for a1 + a2 + b1 + b2 < 3.

a1 a2 b1 b2 Solution

3 0 0 0 Lemma 7

0 3 0 0 Lemma 7

0 0 3 0 Lemma 7

0 0 0 3 Lemma 7

2 1 0 0 Lemma 7

2 0 1 0 Lemma 8

2 0 0 1 Lemma 8

1 2 0 0 Lemma 7

0 2 1 0 Lemma 10

0 2 0 1 Lemma 8

1 0 2 0 Lemma 11

0 1 2 0 Lemma 12

0 0 2 1 Lemma 7

1 0 0 2 Lemma 13

0 1 0 2 Corollary 2

0 0 1 2 Lemma 7

1 1 1 0 Lemma 14

1 1 0 1 Lemma 8

1 0 1 1 Lemma 15

0 1 1 1 Lemma 16

Table 3: Proof variants for a1 + a2 + b1 + b2 = 3.

5. Summary

We presented a hierarchy of logics satisfying some Im-

plicational Deduction Theorems. We know that any lo-

gic with IDTi has also IDTj for any j ≤ i and for any

0 ≤ i ≤ 1 there is a logic with IDTi but without IDTi+1.

Our paper showed that there is also a logic with IDT2

but without IDT3. Moreover, any logic with IDTi, for

i ≥ 3, has also IDTj for any j ≥ i and hence any j. This
completes the picture of our hierarchy.
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la Société et les Lettres de Varsovie, vol. 23, pp. 22–

29, 1930.
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