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Dostupný z http://www.nusl.cz/ntk/nusl-41750
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Abstract

In brain imaging and neuroscience in ge-

neral, the scientific and application interest in

spontaneous brain activity has rapidly increased

in the recent years. The key role of formalised

models and effective data analysis methods for

further development of the field is becoming wi-

dely accepted. In this paper we describe two ap-

plications of mathematics in the field. The first

concerns modelling of the temporal properties of

spontaneous brain activity fluctuations while the

second assesses the potential of nonlinear analy-

sis methods in the study of the commonly obser-

ved synchronisation patterns.

1. Introduction

The last two decades have witnessed great progress in

mapping neural networks associated with task-induced

brain activation using neuroimaging techniques – with

functional magnetic resonance imaging (fMRI) playing

a crucial role. More recently, identification of resting

state networks (RSN) paved the way to investigation of

spontaneous task-unrelated brain activity [1]. The first

cardinal feature characterising RSN is low-frequency

fluctuation (LFF, 0.01 − 0.1Hz) of blood oxygenation

level dependent (BOLD) fMRI signals synchronised be-

tween spatially distinct, but functionally connected brain

areas. Specific patterns of this functional connectivity

(FC) in terms of temporal synchronisation between re-

mote neurophysiologic events are the second key feature

of spontaneous brain activity.

In the first part of this paper we focus on modelling of

LFF, following our study recently published in Physical

Review Letters [2]. The second part deals with the po-

tential of application of nonlinear analysis methods for

FC – this work has recently been accepted to Neuroi-

mage [3].

2. Candidate model for low-frequency fluctuation

The neuroscientific relevance of this fluctuation has been

repeatedly confirmed by reports of its relation to electro-

physiological measurements of brain activity [1]. Ne-

vertheless, the role of these fluctuations as well as the

underlying mechanism is still unclear. Current models

of spontaneous brain activity have not yet fully addres-

sed the question of the origin of low-frequency fluctuati-

ons. Typically, the recent modelling papers do mention

LFF property of some version of the signal [4, 5], but

the relation to and relevance for the neuroimaging sig-

nals is often vague. Further, all of the proposed mecha-

nisms rely on long-range inter-regional interactions or

advocate the necessary role of transmission delays and

noise. In contrary, below we propose a local model of

emergence of LFF not relying on particular delays and

noise. For slightly more detail and colored version of

the illustrations we refer the reader to our full paper [2],

available online under Open Access.

2.1. Introduction

The principle of the proposed model lies in postulating a

local feedback loop regulating the activity level based on

previous memory of the localised system. As an exam-

ple of such a regulatory process we have implemented a

simple phenomenological model of the action of endo-

genous cannabinoids on synaptic activity. Indeed, other

known regulatory mechanism could be also considered.

PhD Conference ’10 39 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0188808



Jaroslav Hlinka Modelling and Analysis of Spontaneous Brain Activity

We document that the local network activity can show

slow to ultra-slow fluctuations that do not have to match

the timescale of the memory mechanism. Rather, they

can exhibit arbitrarily slow frequencies dependent on

other parameters of the model.

Endogenous cannabinoids (CBs) represent a fundamen-

tally new class of retrograde messengers [6], which are

released postsynaptically and bind to presynaptic CB re-

ceptors. One function of endogenous CBs is to regu-

late neurotransmitter release via activation of presyna-

ptic CB receptors, allowing neurones to regulate, via

feedback, their upstream neuronal inputs [7]. This sup-

pression of upstream presynaptic release of GABA or

glutamate is termed depolarisation-induced suppression

of inhibition (DISI) or depolarisation-induced suppres-

sion of excitation (DISE) respectively [8, 9].

After introducing the full model, we first analyse the

fast-scale behaviour of a synaptically coupled network

of Morris-Lecar neurons and subsequently describe the

emergence of nested fast and ultra-slow oscillations in

the network when endowed with a phenomenological

form of retrograde second messenger signalling that can

support DISE. We hypothesise that when linked to other

modules in a larger network the latter would be reflec-

ted as an ultra-slow component of the macroscopic ne-

twork dynamics and could therefore underlie those seen

in spontaneous brain activity (SBA).

2.2. Model description

2.2.1 Synaptically coupled network of Morris-

Lecar neurons: For the single neuron we have cho-

sen the Morris-Lecar (ML) [10] neuron model. This is a

classical two dimensional conductance based model, of-

ten used as an idealized fast-spiking pyramidal neuron,

written in the form

v̇ = f(v, w) + I + s(t), ẇ = g(v, w). (1)

Here v plays the role of a voltage variable, w that of a

gating variable, I is a fixed input and s(t) represents a
time varying synaptic input. The details of the functi-

onal forms for f(v, w) and g(v, w) can be found e.g.

in [11] (with time measured in ms). The structure of the

phase-plane and nullclines is recapitulated in Figure 1

for s = 0.

Indexing each neuron in the network with i = 1, . . . , N
the synaptic drive to the i-th neuron is given by

si(t) = gs(vs − v(t))

N∑

j=1

Wij

∑

m∈Z

η(t− Tmj ), (2)

where Tmj is the m-th firing time of the j-th neuron,

vs the synaptic reversal potential and Wij the con-

nection strength between neurons i and j with a global

conductance scaling gs. The function η(t) captures the
shape of a conductance change in response to the arrival

of an action potential. Here we choose an alpha function

and write η(t) = α2te−αtH(t), where H is a Heaviside

step function. The firing times are specified in terms of

a threshold h according to

Tmi = inf{t | vi(t) > h, v̇i > 0, t > Tm−1
i }. (3)

We focus on the case of an excitatory globally coupled

network with homogeneous connectivity and therefore

set Wij = 1/N and vs = 2 > 0 with respect to the

resting state.
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Figure 1: Phase-plane portrait for the Morris-Lecar model

with constant external drive I = 0.0761. The vol-
tage (gating) nullcline is in red (green). A large

amplitude stable limit cycle (blue, dashed) coexists

with a stable fixed point at v ∼ 0.04. A small am-

plitude unstable orbit also exists (light blue, dash-

dot). The separatrix (pink, stable manifold of sad-

dle at v ∼ −0.2) delimits the basin of attraction

for the stable fixed point at v ∼ −0.3. The associ-
ated bifurcation diagram illustrating bistability of

the large amplitude limit cycle and the fixed point

at v ∼ 0.04 is shown in the inset. Here unstable

orbits emerge in a Hopf bifurcation.

2.2.2 DISE mechanism: The endocannabi-

noid level is directly linked to the effective depolari-

sation, which we define by:

ve(t) =
1

N

N∑

j=1

∫ ∞

0

K(t− s)vj(s)ds, (4)

where K is a temporal kernel reflecting the cannabi-

noid dynamics, K(t) = 0 for t < 0. Here we choose

K(t) = λe−λtH(t), where λ−1 is an indirect measure

of the long time-scale for cannabinoid dynamics, which

is on the order of tens of seconds to minutes [9]. As a mi-

nimal model of DISE we assume that if the global CB

level is sufficiently high then all excitatory synapses are

blocked. In this case the network becomes uncoupled in

the sense that excitatory synaptic currents drop to zero.
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We implement this model of DISE by letting the firing

threshold adjust in response to ve(t) according to

h =

{
vth ve ≤ vthe
∞ ve > vthe

. (5)

The threshold vthe controls when the level of CB is suf-

ficient to trigger DISE. In essence the model (5) means

that synaptic interaction is curtailed if the effective level

of depolarisation becomes too large.

2.3. Results

2.3.1 Model properties: Before we focus on

the effects of DISE on the network dynamics, we ana-

lyse the fast-scale dynamics of the network. We first fo-

cus on the most symmetric oscillatory states expected

to exist in a globally coupled system – namely the fully

synchronous and asynchronous ‘splay’ (evenly distribu-

ted) solution. These are guaranteed by symmetry argu-

ments [12].

10
−3

10
−2

10
−1

10
0

0

2

4

6

8

10

g
s

P
er

io
d

Figure 2: The period of the synchronous (solid line)

and splay (dashed line) solutions as function of

the coupling strength gs. The numerically stable

section of the synchronous solution branch for

strong coupling is shown in thick line.

Synchronous solutions: In the synchronous state all

neurons have identical T -periodic trajectories with firing

times given by Tmi = mT for all i. In this case the syna-
ptic drive to every neuron takes the identical form s(t) =
gs(vs−v(t))P (t), where P (t) =

∑
m∈Z

η(t−mT ) can
be shown to equal to

P (t) =
α2e−αt

1− e−αT

[
t +

Te−αT

1− e−αT

]
, t ∈ [0, T ),

(6)

with P (t) periodically extended outside [0, T ). Equation
(1) may then be solved as a periodic boundary value

problem (PBVP) for the periodic orbit (v(t), w(t)) =
(v(t + T ), w(t + T )) with v(0) = vth. This describes
the synchronous orbit given that the corresponding mean

depolarisation does not trigger the DISE mechanism.

We solve this PBVP numerically, using XPPAUT [13].

The period of these solutions as a function of the

coupling gs is shown in Figure 2.

While these synchronous solutions must exist for small

enough gs, using a weakly coupled oscillator descrip-

tion with standard techniques reviewed in [14], we es-

tablished that such solutions are unstable.

Splay solutions: For an asynchronous splay state the

firing times are given by Tmj = mT + jT/N . In the li-

mit N →∞ network averages may be replaced by time

averages due to:

lim
N→∞

1

N

N∑

j=1

F (jT/N) =
1

T

∫ T

0

F (t)dt, (7)

for any T -periodic function F (t) = F (t + T ). Hence a
splay state in which all neurons fire is given by vi(t) =
v(t + iT/N), where v(t) is a T -periodic solution of (1)

with s(t) = gs(vs− v(t))P0 and P0 =
∫ T
0

P (t)dt/T =
1/T .

Solving the PBVP, we find that for small gs the splay

state has a similar period to that of the synchronous so-

lution (see Figure 2). Note that for the splay state ve(t)

takes on the constant value v0 =
∫ T
0

v(t)dt/T . This is

lower than the DISE threshold and therefore the DISE

mechanism is not triggered. A weak-coupling analysis

shows that the splay solution is also unstable.

Clustered solutions: While the instability of both

the synchronous and splay solution for weak coupling

can be determined semi-analytically, direct numerical

simulations of the network suggest that another speci-

fic stable oscillatory solution exists even for the weak

coupling. This has a hybrid form where the network

splits into several clusters of fully synchronised neurons.

These clusters then form a splay with evenly distributed

phases.

Interestingly this type of solution typically further com-

bines with a special type of clustered solution that can

also occur for a wide range of gs. This type of solution
can be predicted purely from the theory. Consider two

clusters of neurons; one in a (clustered) splay state, po-

pulating the orbit corresponding to the stable limit cycle

of a single neuron; the other cluster consistsing of neu-

rons sitting at rest at the central fixed point, which is

stable for a sufficient level of synaptic input from the os-

cillating cluster of neurons. This can be described using
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the differential-algebraic system

v̇ = f(v, w) + I + r
gs
T
(vs − v), ẇ = g(v, w),

0 = f(v, w) + I + r
gs
T
(vs − v), 0 = g(v, w), (8)

where r is the fraction of firing neurons and (v(t +
iT/M), w(t + iT/M)) with M = Nr, and (v, w) de-
scribe neurons in the splay and resting cluster respecti-

vely. In this case ve = rv0 + (1− r)v.

Figure 3: Fraction of firing neurons r as a function of the

synaptic coupling strength gs. See text for details.

For ve < vthe the parameter region of existence for such

a solution is illustrated in the inset of Figure 3, where a

pair of splay states (with r �= 1) only coexists with a rest
state for rgs ∈ [L,H]. Here the splay state is annihilated
in a saddle-node bifurcation at rgs = H , while below

rgs = L the central fixed point becomes unstable (assu-

ming the oscillating cluster sitting at the upper branch of

the limit cycle solution). For fixed rgs, as gs is increa-
sed, ve grows until it reaches vthe and activates the DISE

mechanism. The border in the (r, gs) parameter plane

where ve = vthe for a cluster state is shown in Figure 3

(magenta line), and we see that it defines a critical curve

marking the onset of DISE which we can write in the

form gs = gc(r). In the absence of DISE, cluster states

with limit cycle corresponding to the upper branch of the

limit cycle solution would exist for a greater area of pa-

rameter space defined by the right-infinite strip between

the lines L/gs and H/Gs.

For gs < gc(r) direct numerical simulations do indeed

show cluster states with properties in excellent agree-

ment with the solution of (8) (with v(0) = vth) up to

small fluctuations. An example is shown in Figure 4.

For a given value of gs the fraction of neurons r in the

firing state is a function of initial data, as expected. Im-

portantly, after transients, the mean depolarisation signal

is flat (no oscillations) and the period of oscillation of a

firing neuron is of the same order of magnitude as a sin-

gle isolated neuron.
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Figure 4: A cluster state forN = 100, g = 0.03, vthe = 0.02,
λ = 10−5. Top left: a plot of the average sig-

nal ve(t), showing that after transients the emer-

gent state lies below the threshold to activate DISE

(red line). Top right: A raster plot of spike times,

illustrating the drop-out of some neurons and the

emergence of a splay state with the fraction of

firing neurons r = 0.38. Bottom left: The ave-

rage network potential v̂ =
∑N

i=1
vi/N oscilla-

tes around the predicted value rv0 + (1 − r)v
(magenta line) for r = 0.38. Bottom right: Phase

plane dynamics for the network (dropping transi-

ents) showing that the network has split into two

clusters (one with a common periodic orbit shown

in blue with a period T ∼ 6 and a rest state in

purple). vth = 0.05 (green line), vthe = 0.02 (red

line).

2.3.2 Emergence of LFF: In the region where

gs > gc(r) and DISE precludes the existence of the

above discussed cluster state we expect more exotic non-

periodic network states to emerge. Notably, while stable

synchronous oscillations are possible with increasing gs,
the average depolarisation for these rhythms is relatively

high and also an increasing function of gs. Hence there is
also a critical value of gs at which the DISE mechanism

will also preclude the existence of this periodic synchro-

nous state.

The mechanism for LFF emergence for this stronger

coupling is as follows. A synchronous (or near synchro-

nous) solution can lead to a strong level of average de-

polarisation for which ve(t) > vthe . This activates the

DISE mechanism, precluding further synaptic input and

subsequently leading to a drop in network firing activity

and hence a drop in ve(t). Once ve(t) drops sufficiently
to cross vthe from above then excitatory synaptic currents

can once again drive the network leading to an increase

in ve(t) so that the process may repeat over. In this case

the emergent time scale of the network rhythm is set by

the duration of ve(t) above vthe . Even for a synchronous

solution this will depend on initial data, so that network

oscillations would not generically be periodic.

To quantify the value of possible inter-spike inter-

vals (ISIs) we focus on synchronous rhythms with
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(v(0), w(0)) = (vth, w0) for some given w0 and solve

the BVP ve(0) = vthe = ve(∆) with s(t) = gs(vs −
v(t))P (t).

The growth of the ISI,∆, as a function of gs is shown in
Figure 5, together with results from direct simulations.

The numerical spread of ISIs for low gs can be ascribed

to fast multi-spike bursts. With higher gs a single spike
response is more common and the period of the network

state is accurately predicted by the theory.
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Figure 5: The predicted synchronous population ISI (in ms)

as a function of gs, for w0 = 0.121 (green line),

fits the ISIs seen in direct numerical simulations

with N = 100 (red dots). Other parameters as in

Figure 4. The inset shows the increase in ISI with

decreasing vthe for gs = 1.

Note that the spike times considered here are only those

that contribute to synaptic currents, while the neurons

do in fact spike on a fast time scale during the syna-

ptically silent period. Hence, the network as a whole

shows nested oscillations with a slow variation of syna-

ptic currents superimposed on fast oscillations of the in-

stantaneous average network voltage (see Figure 6 bot-

tom left).

To understand how decreasing vthe can lead to a rapidly

increasing∆, as shown in the inset of Figure 5, it is use-

ful to develop the correspondence of the evolution of the

network (fixed parameters) with that of a single neuron

with varying background drive I . Referring to the inset

of Figure 1 the network can leave point A, correspon-

ding to a synchronous firing state with average voltage

v2, when ve(t) drops below vthe . The subsequent large in-
crease in synaptic drive causes a transition to the right of

the saddle-node of periodics, where firing is not possi-

ble, and so synaptic currents fall which causes the tran-

sition to point B. This unstable fixed point, with vol-

tage v1, generates orbits which spiral outward for a time

T1 = T1(gs) generating a signal with ve(t) > vthe (so

that synaptic currents are suppressed). These transition

to full blown nonlinear oscillations, with average vol-

tage v2 and v̇e(t) < 0, and complete the path to point A

so that the process may repeat over. Making the conveni-

ent (and obviously not accurate) assumption that v1,2 are
constant then the BVP may be solved by hand for λ = 0
to give∆ = T1(gs)(v1 − v2)/(v

th
e − v2), explaining the

dependence of∆ on vthe seen in Figure 5.
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Figure 6: A similar plot to Figure 4 showing the emergence

of slow synchronized firing patterns in the strong

coupling regime with gs = 0.5. Other parameters

as in Figure 4. Bottom right shows voltage traces

of 5 neurons (arbitrary offset for better display).

2.4. Discussion

Importantly, without any parameter fine-tuning, we see

the emergence of very large ISIs for large values of gs,
which are largely independent of the network size. Mo-

reover, in contrast to other network models of slow os-

cillations (< 1 Hz) [15] we do not require a mixture of

excitation and inhibition. As shown in the inset of Fi-

gure 5 with decreasing choices of vthe can easily achieve

ISIs on the order of tens of seconds. Thus DISE in the

strong coupling regime is a candidate mechanism for the

generation of ultra-slow rhythms.

3. Functional connectivity - analysing dependence

patterns

3.1. Introduction

In functional neuroimaging, the most widely spread me-

thod of measuring functional connectivity between a

pair of regions is computing a linear correlation of acti-

vity time series derived from these regions by e.g. simple

spatial averaging across all the voxels in the regions. Li-

near correlation is also widely used to obtain so-called

correlation maps by correlating the seed voxel or seed

region signal with signal from all the other voxels in

the brain, or constrained to gray matter area. From all

possible bivariate measures of association, linear corre-

lation is clearly a method of first choice, reflecting the

assumption that the relationship between the fMRI time

series can be suitably approximated by a multivariate

Gaussian white noise process. Additionally, linear corre-

lation is a well-known statistical concept, sufficiently

simple to allow wide use and easy communication of

results between researchers of diverse backgrounds.
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On the other hand, from the mid-1980’s, nonlinear ap-

proaches to analysis of brain signals are getting increa-

sed interest of researches who consider nonlinearity as

an intrinsic property of brain dynamics, see e.g. [16]

for a review. Hemodynamic nonlinearities are known to

affect the blood oxygenation level-dependent (BOLD)

fMRI signal [17]. More specifically, non-linearity of de-

pendence between fMRI time series during resting state

has been reported [18]. Use of non-linear measures of

functional connectivity for the analysis of resting state

data has been proposed [19], particularly including me-

asures based on analysis of chaotic non-linear dynamical

systems to analyze resting state data.

The question arises, to what extent and in what context

is it justified and beneficial to use non-linear measures of

functional connectivity. When linear correlation is used

as a measure of functional connectivity, there are some

implicit assumptions made. The first is that the infor-

mation in the temporal order of the samples can be ig-

nored (both within each timeseries and the mutual in-

teraction). While the extent of justifiability of this as-

sumption deserves exploration of its own, we keep this

interim assumption for the purposes of this paper, not le-

ast in order to keep the comparison of linear correlation

to nonlinear measures fair. Nonetheless, we ask if the in-

stantaneous (zero-lag) dependence between the time se-

ries, expressed in the probability distribution p(X, Y), is

fully captured by the linear correlation r(X,Y). We an-

swer that this is true under the assumption of bivariate

Gaussianity of the distribution. Bivariate normal distri-

bution is fully characterised by its mean µ = (µx, µy)
and its 2×2 covariance matrix Cov(X,Y ) – if we allow
for linear shifting and scaling, the remaining invariant

parameter characterizing fully the distribution is indeed

the correlation r(X,Y ). For a bivariate Gaussian dis-

tribution, the correlation also uniquely defines the mu-

tual information shared between the two variables X ,

Y which can be computed as I(X,Y ) = IGauss(r) ≡
− 1

2 log(1− r2).

On the other side, when the Gaussianity assumption

does not hold, the distribution cannot be fully de-

scribed by the mean and covariance. Interestingly, we

can use the prominent properties of normal distribu-

tion to derive a useful lower bound on mutual infor-

mation valid for a broad class of probability distributi-

ons. In particular, for a bivariate distribution p(X,Y )
with standard normal marginals p(X), p(Y ), it holds
that I(X,Y ) ≥ IGauss(r) = − 1

2 log(1 − r2), where
the equality holds exactly for bivariate Gaussian distri-

butions. This allows us to quantify the deviation from

Gaussianity as the difference between the total mutual

information of the two variables I(X,Y ) and the mu-

tual information IGauss(r) = − 1
2 log(1−r2) that corre-

spond to bivariate Gaussian distribution with the obser-

ved correlation r.

While there are many potential nonlinear FC measure

candidates, mutual information holds a specific position

among these for its generality. In theory, it is general

enough to capture an arbitrary form of dependence re-

lation between the variables without any apriori model

restrictions on its form. The properties of mutual infor-

mation allow us not only to test the suitability of linear

correlation through probing the Gaussianity of the fMRI

time series, but also to construct a quantitative estimate

of connectivity information neglected by the use of li-

near correlation. This gives the amount of additional in-

formation available and bounds the potential contribu-

tion of non-linear alternatives over the Pearson corre-

lation coefficient.

We implement the outlined ideas by comparing the to-

tal mutual information between the signals with the mu-

tual information between the signals in surrogate data-

sets. These surrogates are generated in a way that pre-

serves the linear correlation, but cancels any nonlinear

information by enforcing bivariate Gaussian distribution

on the surrogate signal-pair. This approach allows us to

both test and quantify the deviation from Gaussianity,

providing a principled guide in judging the suitability

of linear correlation as a measure of FC. The focus on

bivariate Gaussianity as the crucial condition of suitabi-

lity of use of linear correlation as FC index, along with

the illustrative quantitative estimation of the deviation

from Gaussianity by means of the mutual information

neglected by linear correlation, are the two main contri-

butions of this study to the discussion of fMRI functi-

onal connectivity methods. We apply the presented me-

thod to parcel-average time series obtained from resting

state fMRI BOLD signal of healthy subjects, testing and

quantifying the deviation from bivariate Gaussianity.

3.2. Material and Methods

3.2.1 Data: Twelve right-handed healthy

young volunteers (5 males and 7 females, age range 20

– 31 years) participated in the study. Each volunteer un-

derwent two scanning runs of 10 minutes in a resting-

state condition.

Scanning was performed with a 3T MR scanner

(Achieva; Philips Medical Systems). Three hundred 3D-

volumes with repetition time of 2 seconds, whole brain

coverage and spatial resolution of 3 × 3 × 3 mm3 were

used for the analysis. Standard preprocessing steps were

applied, see our full paper [3] for details.
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Ninety parcels from the Automated Anatomical Labe-

ling (AAL) atlas were used to extract mean BOLD time

series after masking out non-gray matter voxels. The

anatomical positions of the parcels are described in [20].

Every parcel time series was orthogonalized with re-

spect to motion parameters and global mean signal and

high-pass filtered at 1/120Hz.

3.2.2 Analysis: As already mentioned in the

Introduction, for a bivariate distribution p(X,Y ) with

standard normal marginals p(X), p(Y ), it holds that

I(X,Y ) ≥ IGauss = −1

2
log(1− r2), (9)

where the equality holds exactly for bivariate Gaussian

distributions. The inequality (9) stems from the fact,

that normal distribution is the maximum entropy dis-

tribution for a given covariance matrix (or for a given

correlation, as we assume without loss of generality that

σ(X) = σ(Y ) = 1). From the relation between mutual

information and entropy (I(X,Y ) = H(X) + H(Y )−
H(X,Y )) it follows that mutual information of Gaus-

sian distribution IGauss(r) is then minimal from all dis-

tributions of given correlation r, under the assumption

of fixed marginal entropies, which is true when the mar-

ginals have standard normal distribution. Note that the

assumption of normality of the marginals is far less re-

strictive than it might seem. First, approximate data nor-

mality is commonly assumed in areas not restricted to

fMRI FC analysis. More importantly, even if we find

particular data deviating strongly from normality, any

sample distribution can be monotonously transformed to

match normal distribution.

To assure precise non-Gaussianity estimates, we have

indeed carried out this ’normalization’ step. It consists

in assigning the appropriate percentile to each value of a

given variable and then replacing the original values of

the variable by values corresponding to these percentiles

in a standard normal distribution. Note that this norma-

lization step does not affect mutual information between

the time series.

For two discrete random variables X1, X2 with sets of

values Ξ1 and Ξ2, the mutual information is defined as

I(X1, X2) =
∑

x1∈Ξ1

∑

x2∈Ξ2

p(x1, x2) log
p(x1, x2)

p(x1)p(x2)
,

where the probability distribution function is defined by

p(xi) = Pr{Xi = xi}, xi ∈ Ξi and the joint proba-

bility distribution function is p(x1, x2) is defined ana-

logously. When the discrete variables X1, X2 are obta-

ined from continuous variables on a continuous proba-

bility space, then the mutual information depends on a

partition ξ chosen to discretize the space. Here a simple

box-counting algorithm based on marginal equiquanti-

zation method [21] was used, i.e., a partition was gene-

rated adaptively in one dimension (for each variable) so

that the marginal bins become equiprobable. This me-

ans that there is approximately the same number of data

points in each marginal bin. In this paper we used a sim-

ple pragmatic choice of Q = 8 bins for each marginal

variable.

For each session, we have computed the mutual infor-

mation (MI) for each pair of parcels, yielding a sy-

mmetric 90-by-90 matrix of MI values. To minimize

bias of the MI estimates due to inevitable discretization

and finite sample estimation, the MI values were further

monotonously transformed to correct for these effects.

This transformation map was generated using random

samples from normal distributions with correlation ran-

ging from 0 to 1 in 200 steps of 0.005. For each corre-

lation value, 50000 such random bivariate samples with

N=300 independent observations each were generated

and the mean of their MI as computed by the equiquan-

tization method was tabulated. As for bivariate Gaus-

sian random distribution with correlation r the true MI is

IGauss = − 1
2 log(1− r2), this tabulation allows appro-

ximate transformation of estimated MI to true bivariate

MI.

To compare the (total) mutual information to the por-

tion of information conveyed in the linear correlation,

for each dataset, 99 random realizations of multivariate

time series preserving the linear structure but canceling

the nonlinear structure were constructed, and MI was

computed for these surrogates. If the original time se-

ries dependence structure was Gaussian (and therefore

fully captured by the linear correlation), the MI in the

surrogates should not differ from the original MI, up to

some random error.

The surrogates were constructed as multivariate Fourier

transform (FT) surrogates [22]: realizations of multiva-

riate linear stochastic process which mimic individual

spectra of the original time series as well as their cross-

spectrum. The multivariate FT surrogates are obtained

by computing the Fourier transform of the series, kee-

ping unchanged the magnitudes of the Fourier coeffici-

ents (the amplitude spectrum), but adding the same ran-

dom number to the phases of coefficients of the same

frequency bin; the inverse FT into the time domain is

then performed.

The idea of comparing the MI of data to MI of ’linear’

surrogates rather than directly to linear correlation of

data has two aspects. First, it allows a direct quantita-

tive comparison of the nonlinear and linear connecti-
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vity, while correlation and mutual information estima-

tors have generally different properties. Second, gene-

ration of the surrogates allows direct statistical testing

of the difference. However, this procedure generates 99

estimates of the linear MI for each parcel pair; one for

each surrogate. While these are useful for hypothesis

testing, for general presentation of the difference we

use the mean value of these 99 values. In the following

we refer to this as ‘Gaussian’ MI, and it actually clo-

sely estimates the MI of a bivariate Gaussian distribu-

tion IGauss(r) = − 1
2 log(1 − r2), where r stands for

the correlation of the two variables. The ‘neglected’ MI

is estimated by the difference between data MI and the

Gaussian MI: Ineglected(X,Y ) = I(X,Y )−IGauss(r).

3.2.3 Statistical tests: For each session and

each parcel pair, non-Gaussianity was tested at p = 0.05
by comparing data MI against MI distribution of mul-

tivariate FT surrogates. To correct for mutual compa-

risons, the number of significant pairs in given session

was than tested against the null hypothesis that the num-

ber of individual significant entries has a binomial dis-

tribution B(n = 4005, p = 0.05), where n = 4005 =
90(90−1)

2 is the number of all parcel pairs and p = 0.05
is the single entry false positive rate under condition of

pure Gaussianity of the bivariate distributions.

As it may be argued that the assumption of pair indepen-

dence is too lenient, but the exact level of dependence

is difficult to establish, we also carried out group level

tests. The percentages of significant pairs were compa-

red by means of a paired t-test to the percentages of

significant pairs obtained from ’shadow’ datasets. Each

shadow dataset was created as a multivariate FT surro-

gate of normalized data of a given session, preserving

only the linear structure of the dataset after normali-

sation of univariate marginals. Subsequently, each sha-

dow dataset has undergone the same procedure as origi-

nal data, including the initial normalization, generation

of multivariate surrogates, computation of MI and sta-

tistical testing of pair-wise MI against surrogates. In this

way, we have mimicked the full procedure using the sha-

dow dataset, accounting for any potential bias in the de-

tection rate introduced by numerical properties of the al-

gorithm. Apart from the percentages, we have also tested

the mean neglected information from data versus sha-

dow datasets by mean of a paired t-test.

3.3. Results

3.3.1 Descriptive assessment: In descriptive

terms, the data MI has proved very similar to the Gaus-

sian MI (see Figure 7). In particular, averaging across all

parcel pairs, the data MI ranged between 0.04-0.10 bits

for different sessions, while the neglected MI was more

than an order of magnitude smaller (0.0005-0.0068 bits).

Nevertheless, the neglected MI was consistently posi-

tive, which was not the case for shadow datasets (ran-

ging from -0.0007 to 0.0016 bits).
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Figure 7: Comparison of the average Gaussian and neglec-

ted information. Each stackbar represents values

for one session, averaged across all parcel pairs.

Independently of the strength of coupling, the data MI

was moreover typically within the range of surrogate

MI, as illustrated on Figure 8 top. Although the session
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Figure 8: Mutual information as function of correlation in an

example dataset (top) and the corresponding linea-

rized ‘shadow’ dataset. Each dot corresponds toMI

of one parcel pair; full lines show the 1st and 99th

percentile of the surrogate distribution; dashed line

shows the theoretical prediction for Gaussian data.

The session with the most non-Gaussianity is de-

picted.

with the most non-Gaussianity is depicted here, the dis-

tribution of computed MI for data and the corresponding

shadow dataset (Figure 9 bottom) are almost indiscerni-

ble. Also, apart from the random error due to MI esti-

mation from short time series, which is shared by data

and shadow data, both scatters follow well the theoreti-

cal prediction of dependence of MI on linear correlation

(IGauss = − 1
2 log(1 − r2), valid exactly under Gaussi-

anity).
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3.3.2 Statistical tests: The percentage of par-

cel pairs with significant non-Gaussianity was slightly

elevated in all sessions above the 5% expected under the

null hypothesis (ranging from 5.3 to 10.0% of signifi-

cant pairs in different sessions). If all the parcel pairs

were considered independent this would constitute sig-

nificant percentage for all but 5 of the sessions con-

sidered. Group level tests confirmed the statistical de-

viation from Gaussianity – when compared on group

level by means of a paired t-test, the counts of pairs

with significant nonlinearity were significantly higher

than similar counts obtained from shadow datasets (t =
6.26, df = 23, p < 0.00001). Also, the neglected in-

formation in data averaged over parcel pairs was posi-

tive for all sessions and on average had value 0.0029

bits. On the other side, the neglected information in the

shadow datasets fluctuated around zero with mean of

0.0006 bits. This difference was also clearly statistically

significant (t = 6.51, df = 23, p < 0.00001).
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Figure 9: Mutual information as function of correlation in an

example dataset (top) and the corresponding linea-

rized ‘shadow’ dataset. Each dot corresponds toMI

of one parcel pair; full lines show the 1st and 99th

percentile of the surrogate distribution; dashed line

shows the theoretical prediction for Gaussian data.

The session with the most non-Gaussianity is de-

picted.

3.4. Discussion

The presented study confirms the suitability of linear

correlation as functional connectivity measure for fMRI

time series by testing and quantifying the deviation

from bivariate Gaussianity using mutual information.

The quantitative assessment revealed that the portion of

mutual information neglected by using linear correlation

instead of considering an arbitrary non-linear form of in-

stantaneous dependence is minor. Nevertheless, formal

group-level test revealed that the percentage of parcel-

pairs with significant non-Gaussian dependence contri-

bution is indeed above random. Overall we conclude that

practical relevance of nonlinear methods trying to im-

prove over linear correlation might be limited by the fact

that the data are indeed almost Gaussian.

It is important to keep in mind that the observed deviati-

ons from Gaussianity might not reflect only a stationary

non-Gaussianity in neuronal connectivity. In the presen-

ted framework, deviation from the null hypothesis could

be caused also by nonstationarity of the signal.

For completeness, we note that linearity is also often dis-

cussed as an alternative to nonlinear, potentially chaotic

deterministic dynamical systems. In this context caution

is warranted with the interpretation of many ‘chaotic’

characteristics such as fractional correlation dimension

or Lyapunov exponents when the underlying system mi-

ght be of stochastic (non)linear nature rather than deter-

ministic (non)linear dynamical system, and particularly

when short time series such as those acquired from fMRI

are being analyzed.

4. Summary

In this paper, we have described two exemplar contri-

butions of mathematical modelling and analysis to the

study of large-scale spatiotemporal patterns of sponta-

neous brain activity. This investigation inevitably led to

new questions.

Challenges in spontaneous brain activity modelling

Further investigation is needed to reveal the role of re-

gulatory feedbacks in the slow brain activity dynamics.

The search should not be limited to the action of endo-

cannabinoids that served as an example carrier of this

mechanism in this paper - the role of other neuromodu-

lators or metabolic fatigue should be investigated.

Nongaussianity in fMRI functional connectivity

The confirmation of suitability of linear correlation as a

functional connectivity measure for resting state fMRI

provides important support to the common practice in

neuroimaging. Nevertheless, the scope of possible ge-

neralisation of the results remains an open question.

Particularly interesting is the generalisation to time-

lagged dependence structures and other preprocessing

and time series extraction methods. Explicit modelling

might have something to say regarding the emergence

of largely ‘linear’ or ‘gaussian’ dependencies on the ma-

croscopic level of regional fMRI signals from the highly

nonlinear nature of the local neuronal dynamics.
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Most of the questions discussed above are not only inte-

resting intellectual challenges – the answers are crucial

for further development and applications of the study of

spontaneous brain activity.
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