
Verification of Hybrid Systems by Incremental Abstract Forward/Backward Computation

Dzetkulič, Tomáš
2010

Dostupný z http://www.nusl.cz/ntk/nusl-41749

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 10.04.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-41749
http://www.nusl.cz
http://www.nusl.cz


Tomáš Dzetkulič Verification of Hybrid Systems . . .

Verification of Hybrid Systems by Incremental Abstract
Forward/Backward Computation

Post-Graduate Student:

MGR. TOMÁŠ DZETKULIČ

Supervisor:

ING. STEFAN RATSCHAN, PH.D.
Institute of Computer Science of the ASCR, v. v. i.
Pod Vodárenskou věžı́ 2

182 07 Prague 8, CZ

Institute of Computer Science of the ASCR, v. v. i.
Pod Vodárenskou věžı́ 2

182 07 Prague 8, CZ

dzetkulic@cs.cas.cz ratschan@cs.cas.cz

Field of Study:

Verification of Hybrid Systems

This work has been supported by Czech Science Foundation grants 201/08/J020 and 201/09/H057, and by the

institutional research plan AV0Z100300504 of the Czech Republic.

This paper will be presented at the International Workshop on Reachability Problems 2010 and will be published in the

internal workshop proceedings.

Abstract

In this paper, we introduce a new approach to

unbounded safety verification of hybrid systems

with non-linear ordinary differential equations.

It incrementally refines an abstraction of the sys-

tem, but avoids increases in the size of the abs-

traction as much as possible, in order to avoid

the usual blow-up problem of applications of

counter-example guided abstraction refinement

in a hybrid systems context.

1. Introduction

In this paper, we study hybrid (dynamical) systems, that

is systems with both discrete and continuous state and

evolution. We address the problem of unbounded sa-

fety verification of hybrid systems, that is, the verifi-

cation that a given hybrid system does not have a tra-

jectory (of unbounded length) from an initial state to a

set that is considered unsafe. The traditional approach

to solving this problem computes the set of reachable

states of the system. If the intersection of this reach set

with the set of unsafe states is empty, the safety property

holds. This has several disadvantages: (1) When compu-

ting the reach set, information about the topology of the

set of unsafe states is ignored. (2) Even over bounded

time, exact reachability computation is possible only for

very special cases, and hence (unlike for discrete sys-

tems) one has to use over-approximation. It is a-priori

not clear, how much to over-approximate in order to

prove a given property.

Hence, it is necessary, to compute several, incremen-

tally tighter reach set over-approximations. However,

the current approaches do not exploit information from

one over-approximation to the next. Some approaches

do exploit dual (forward/backward) or incrementally ti-

ghter reachability analyses [6, 8]. But, reuse of analy-

ses only concerns dropping initial/unsafe states that have

been shown not to lie on any error trajectory—no reuse

is done concerning the analysis itself.

In order to avoid these problems, the hybrid systems

community has tried to employ counter-example guided

abstraction refinement techniques in the hybrid systems

context [4, 5]. However, unlike in the discrete case, this

has had only limited success in the hybrid case, since

here the removal of one single counter-example at a time

often already very early blows up the size of the abs-

traction.

Our previous approach [1] employs local reachability

checking techniques on the hybrid system abstraction.

This can be simulated in the method described in this

paper by an extremely aggressive widening strategies

which does not behave well for hybrid systems with cyc-

lic behavior.

Computational experiments show the efficiency of the

approach.

2. Hybrid Systems

In this section, we briefly recall our formalism for mo-

deling hybrid systems. It captures many relevant classes

of hybrid systems, and many other formalisms for hyb-

rid systems in the literature are special cases of it. We

use a set S to denote the discrete modes of a hybrid sys-

tem, where S is finite and nonempty. I1, . . . , Ik ⊆ R are

compact intervals over which the continuous variables

PhD Conference ’10 19 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0188806



Tomáš Dzetkulič Verification of Hybrid Systems . . .

of a hybrid system range. Φ denotes the state space of a

hybrid system, i.e., Φ = S × I1 × · · · × Ik.

Definition 1 A hybrid system H is a tuple

(Flow, Jump, Init, Unsafe), where Flow ⊆ Φ × Rk,
Jump ⊆ Φ× Φ, Init ⊆ Φ, and Unsafe ⊆ Φ.

Informally speaking, the predicate Init specifies the

initial states of a hybrid system and Unsafe the set of

unsafe states that should not be reachable from an initial

state. The relation Flow specifies the possible continu-

ous flow of the system by relating states with correspon-

ding derivatives, and Jump specifies the possible discon-

tinuous jumps by relating each state to a successor state.

Formally, the behavior of H is defined as follows:

Definition 2 A flow of length l ≥ 0 in a mode s ∈ S is

a function r : [0, l] → Φ such that the projection of r to
its continuous part is differentiable and for all t ∈ [0, l],
the mode of r(t) is s. A trajectory of H is a sequence

of flows r0, . . . , rp of lengths l0, . . . , lp such that for all
i ∈ {0, . . . , p},

1. if i > 0 then (ri−1(li−1), ri(0)) ∈ Jump, and

2. if li > 0 then (ri(t), ṙi(t)) ∈ Flow, for all

t ∈ [0, li], where ṙi is the derivative of the pro-
jection of ri to its continuous component.

A (concrete) error trajectory of a hybrid system H is a

trajectory r0, . . . , rp of H such that r0(0) ∈ Init and

rp(l) ∈ Unsafe, where l is the length of rp. H is safe if

it does not have an error trajectory.

In the rest of the paper we will assume an arbitrary, but

fixed hybrid systemH . We will denote the set of its error

trajectories by E .

In practice one would also have to define some concrete

syntax in which hybrid systems are described. However,

this paper will be independent of concrete syntax. In-

stead, we will later require some operations that will

provide information on the hybrid system at hand.

3. Incremental Abstract Forward/Backward Com-

putation

The main shortcoming of the usual hybrid systems rea-

chability algorithms is its lack of incrementality which

is an especially pressing problem for systems with

complex dynamics, because in that case even boun-

ded time reach set computation necessarily involves

over-approximation. In such cases we would like to

first compute approximate information using high over-

approximation, and incrementally refine this.

Our approach will be based on an incremental refine-

ment of a covering of the hybrid systems state space by

connected sets that we will call regions. In our case, the

regions will be formed by pairs consisting of a mode and

a Cartesian product of intervals (i.e., a box). Moreover,

we will form the regions in such a way that no pair of re-

gions with the same mode will have overlapping boxes.

In theory the approach is also applicable to regions that

have a different form.

The operations that we require on regions are the

following:

• ⊎ s.t. a1 ∪ a2 ⊆ a1 ⊎b a2

• ⊑ s.t. a1 ⊑ a2 implies a1 ⊆ a2

In our case of boxes, a1 ⊎ a2 is the smallest boxes

that includes both argument boxes a1 and a2 (i.e., box

union), and ⊑ is the subset operation on boxes.

Definition 3 An abstraction is a graph whose vertices

(which we call abstract states) may be labeled with la-

bels Init or Unsafe. Moreover, to each abstract state,

we assign a region. We call the edges of an abstraction

abstract transitions.

By abuse of notation, we will usually use the same no-

tation for an abstract state and the region assigned to it.

A given abstraction A represents the set of trajecto-

ries that start in abstract states marked as Init, end in

abstract states marked as Unsafe, never leave the abs-

traction, and move from one abstract state to the next

only if there is a corresponding abstract transition. We

denote this set by [[A]].

The intuition is that, the abstraction is an over-

approximation of the set of error trajectories E of a gi-

ven system during the computation. We say that an abs-

traction A∗ is tighter than an abstraction A iff

• the abstractionA∗ represents less trajectories than

A, that is, [[A∗]] ⊆ [[A]], and

• the abstraction A∗ does not lose error trajectories

from A, that is [[A∗]] ⊇ [[A]] ∩ E .

Now we will come up with an algorithm that will in-

crementally improve an abstraction by making it tighter.

PhD Conference ’10 20 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0188806



Tomáš Dzetkulič Verification of Hybrid Systems . . .

Note that, in particular, A is tighter than A itself, but in

practice we will try to remove as many trajectories from

the abstraction as possible.

Given abstract states a and a′, we will assume

a procedure InitReach(a) that computes an over-

approximation of the set of points in a that are reachable

from an initial point in a, and a procedure Reach(a, a′)
that computes an over-approximation of the set of points

in a′ reachable from a according to the system dy-

namics. In our case, we implemented both procedures

based on interval constraint propagation [1, 7]. We as-

sume that smaller inputs improve the precision of these

operations, that is:

• a1 ⊆ a2 implies InitReach(a1) ⊆
InitReach(a2)

• a1 ⊆ a2 and a′
1 ⊆ a′

2 implies Reach(a1, a
′
1) ⊆

Reach(a2, a
′
2)

Furthermore, we assume that these procedures exploit

information about empty inputs, that is:

• a = ∅ implies InitReach(a) = ∅
• a = ∅ implies Reach(a, a′) = ∅
• a′ = ∅ implies Reach(a, a′) = ∅

Now, the following algorithm (which we will call

pruning algorithm) computes a tighter abstraction for a

given abstraction A.

A∗ ← copy of A
in A∗: set all regions to ∅, delete initial labels and edges

// from now on, for every abstract state a of A,

// we denote by a∗ the corresponding abstract state of A∗

for all a ∈ A, a is initial

a∗ ← InitReach(a)
if a∗ �= ∅ then

mark a∗ as initial

let update(a1, a2) = // defines a function update

if a∗
1 �→ a∗

2 and Reach(a∗
1, a2) �= ∅ then

introduce an edge a∗
1 → a∗

2

if Reach(a∗
1, a2) �⊆ a∗

2 then

a∗
2 ← a∗

2 ⊎Reach(a∗
1, a2)

return true

else

return false in

while ∃(a1, a2) such that a1 → a2, update(a1, a2)
return A∗

Unlike approaches based on counter-example guided

abstraction refinement, the pruning algorithm does not

increase the size (i.e., the number of nodes) of the abs-

traction. Still it deduces some some interesting infor-

mation:

Theorem 1 The result of the pruning algorithm is tigh-

ter than the input abstraction A.

Proof: We have to prove two items:

• [[A∗]] ⊆ [[A]]: This follows from the following:

– the set of initial/unsafe marks ofA∗ is a sub-

set of the set of marks of A
– the set of edges of A∗ is a subset of the set

of edges of A
– the abstract states of A∗ are subsets of

the corresponding abstract states of A since

InitReach(a) ⊆ a, and Reach(a∗, a) ⊆ a.

• [[A∗]] ⊇ [[A]] ∩ E : Let T be an error trajectory

in [[A]] ∩ E . We prove that T is an element of

[[A∗]]. Let a1 → a2 → · · · → an be the abs-

tract error trajectory corresponding to T in A. We

prove that the corresponding abstract trajectory

a∗
1 → a∗

2 → · · · → a∗
n in A∗ is an abstract error

trajectory containing T .

– a∗
1 is initial in A∗ and contains the initial

point of T

– We assume that a∗
1 → a∗

2 → · · · → a∗
i ,

with i < n forms an abstract trajectory con-

taining T in A∗, and prove that also a∗
1 →

a∗
2 → · · · → a∗

i → a∗
i+1 forms an abstract

trajectory containing T in A∗.

To prove that a∗
i → a∗

i+1 in A∗ we ob-

serve that T leads from a∗i to ai+1. Hence

Reach(a∗
i , ai+1) is non-empty and the abs-

tract transition a∗
i → a∗

i+1 exists. Moreo-

ver, Reach(a∗
i , ai+1) contains all points of

T in ai+1, and since the while loop termi-

nated, Reach(a∗
i , ai+1) ⊆ a∗

i+1 and hence

a∗
i+1 also contains these points.

Note however, that it is a-priori not clear, that the

pruning algorithm terminates. In our case, we ensure

this by simply doing all computation on finite set of floa-

ting point numbers (cf. the notion of ”widening”). Hence

PhD Conference ’10 21 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0188806



Tomáš Dzetkulič Verification of Hybrid Systems . . .

there are only finitely many possibilities of changing bo-

xes with ⊎, until a fixpoint is reached.

Moreover, by using an implementation of Reach that is

idempotent we also can avoid stuttering (i.e., many small

improvements by close floating point numbers), in most

cases.

As already mentioned, the pruning algorithm tries to de-

duce information about a given system without increa-

sing the size of the abstraction. In cases, where it can de-

duce no more information, we have to fall back to some

increase of the size of the abstraction (cf. to a similar ap-

proach in constraint programming where one falls back

to exponential-time splitting, when polynomial-time de-

duction does not succeed any more).

We do this by the Split operation that chooses an abs-

tract state and splits it into two, copying all the involved

edges and introducing edges between the two new sta-

tes. All the labels and abstract transitions to other abs-

tract states are copied as well. Moreover, two new abs-

tract transitions that connect the original abstract state

with its copy are added. The region assigned to the abs-

tract state is equally split among two abstract states.

To do this we pick a splitting dimension of the box

assigned to the region and we split the box into hal-

ves using this dimension. For picking the splitting di-

mension, a round-robin strategy has proved to be the

useful heuristics [1]. Such an refinement decreases the

amount of over-approximation in subsequent calls to the

pruning algorithm due to the properties of theReach and

InitReach .

It is clear that the pruning algorithm can also be done

backward in time (i.e., removing parts of the abstraction

not leading to an unsafe state). We will denote the

resulting algorithm by Prune−(A). Now we have to

following overall algorithm for safety verification:

while A contains an abstract error path

A ← Prune(A)
A ← Prune−(A)
A ← Split(A)

return ”safe”

Since neither pruning nor splitting removes an error tra-

jectory, the absence of an abstract error path at the ter-

mination of the while loop implies the absence of an

error trajectory of the original system. This implies the

correctness of the algorithm.

4. Improvements

4.1. Avoided Redundant Edge Checks

One disadvantage of the pruning algorithm is that it may

do redundant tests for the condition Reach(a∗
1, a2) �⊆

a∗
2 in the update function. Whenever such a test has been

made, this can be remembered until the information is

not valid any more.

To this purpose we add additional edges to the abs-

traction that we label with ⊆ (and which we call con-

sistency edges). We keep the invariant (that we will call

consistency invariant) that whenever a∗
1 →⊆ a∗

2, then

Reach(a∗
1, a2) ⊆ a∗

2.

Moreover we use a procedure propChange(a) that,

for every a′ with a → a′ deletes every edge a →⊆ a′.

This allows us to change the while loop in the pruning

algorithm as follows:

A∗ ← copy of A
in A∗: set all regions to ∅, delete initial labels and edges
// from now on, for every abstract state a of A,

// we denote by a∗ the corresponding abstract state of A∗

for all a ∈ A, a is initial

a∗ ← InitReach(a)
if a∗ �= ∅ then

mark a∗ as initial

propChange(a∗)

let update(a1, a2) =
if a∗

1 →⊆ a∗
2 then return false

introduce an edge a∗
1 →⊆ a∗

2

if a∗
1 �→ a∗

2 and Reach(a∗
1, a2) �= ∅ then

introduce an edge a∗
1 → a∗

2

if Reach(a∗
1, a2) �⊆ a∗

2 then

a∗
2 ← a∗

2 ⊎Reach(a∗
1, a2)

propChange(a∗
2)

return true

else

return false in

while ∃(a1, a2) such that a1 → a2, update(a1, a2)
return A∗

Theorem 2 Independent of the consistency edges of the

input A, the improved pruning algorithm computes the

same result as the original one.

Proof: Clearly, at the beginnning of the while loop, in

both algorithms, A∗ is the same. We prove that every

time the termination condition of the while loop is tes-

PhD Conference ’10 22 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0188806



Tomáš Dzetkulič Verification of Hybrid Systems . . .

ted, the consistency invariant holds, and hence the algo-

rithm produce the same result.

The first time, the termination condition of the while

loop is tested, the consistency invariant holds due

to the following reasoning: Let a∗
1, a

∗
2 be such that

a∗
1 →⊆ a∗

2, then a∗
1 = ∅, since otherwise the ope-

ration update(a∗
1) would have deleted the consistency

edge. Hence Reach(a∗
1, a2) = Reach(∅, a2) ⊆ a∗

2.

4.2. Incremental Refinement of Abstraction

Now observe that splitting, or dual pruning, only chan-

ges a part of the abstraction. Still, the pruning algorithms

do a complete re-computation. This is not necessary, and

in order to avoid it:

• We mark all abstract states for which we know,

that a re-computation will not improve, with the

mark Cons (the consistency mark).

• Whenever splitting or dual pruning changes an

abstract state, we delete this consistency mark,

and all consistency marks of states reachable from

it.

• At the beginning of the pruning algorithm for all

abstract states we reset the abstract state with the

result of InitReach only if the consistency mark is

not set. Abstract states with he consistency mark,

retain the value from the input abstraction A.

Since we do separate forward and backward pruning,

we also need separate consistency marks for both cases.

Splitting removes both consistency marks at the same

time.

5. Conclusion

In this paper, we have introduced a new approach to

unbounded safety verification of hybrid systems with

non-linear ordinary differential equations. Currently we

are doing detailed computational experiments compa-

ring the algorithm with alternatives and studying various

heuristics and implementation choices.

References

[1] S. Ratschan and Z. She, “Safety Verification of

Hybrid Systems by Constraint Propagation Based

Abstraction Refinement”, ACM TECS 2007.

[2] T. Dzetkulič and S. Ratschan, “How to Capture

Hybrid Systems Evolution Into Slices of Parallel

Hyperplanes”, 3rd IFAC Conference on Analysis

and Design of Hybrid Systems 2009.

[3] S. Ratschan and T. Dzetkulič, “Verification of

Hybrid Systems by Incremental Abstract For-

ward/Backward Computation” to appear on In-

ternational Workshop on Reachability Problems

2010.

[4] E. Clarke, A. Fehnker, Z. Han, B. Krogh, J.

Ouaknine,O. Stursberg, and M. Theobald, “Abs-

traction and Counterexample-Guided Refinement”

in Model Checking of Hybrid Systems Int. Journal

of Foundations of Comp. Science, 2003.

[5] R. Alur, T. Dang, and F. Ivančić, “Predicate abs-

traction for reachability analysis of hybrid sys-

tems”, ACM TECS 2006.

[6] G. Frehse, B.H. Krogh, and R.A. Rutenbar, “Ve-

rifying Analog Oscillator Circuits Using For-

ward/Backward Abstraction Refinement” DATE

2006: Design, Automation and Test in Europe

2006.

[7] S. Ratschan and Z. She, “Constraints for Conti-

nuous Reachability in the Verification of Hybrid

Systems”, Proc. 8th Int. Conf. on Artif. Intell. and

Symb. Comp., 2006.

[8] T.A. Henzinger, “Hybrid Automata with Finite Bi-

simulations”, Proceedings of the 22nd Internatio-

nal Colloquium on Automata, Languages, and Pro-

gramming (ICALP) 1995.

PhD Conference ’10 23 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0188806


