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Abstract:

After a short and clear re-introduction of the recent concept of the scalar score, we introduce and study a

distribution-dependent correlation coefficient based on it. Properties of the new measure of association of

continuous random variables are compared with those of the Pearson, Kendall and Spearman correlation

coefficients.
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1 INTRODUCTION

The basic inference function of classical statistics is the score function, the generic form of the maxi-
mum likelihood score statistic. In cases of vector parameter it is a vector function, too complex to be
simply used as an inference function in statistical tasks other than the estimation of the parameters.
For instance, the Pearson correlation coefficient of random variables X and Y , constructed from ’pure’
data not adapted to marginal distributions of X and Y , is unable to make clear which part of the
dependence of X and Y stems from the real dependence, and which part stems from the properties
of marginals.

The scalar score function is not as a detailed description of the distribution as the score function,
but it is reflecting main features of the distribution and, being scalar even in cases of vector parameter
space, it is easily applicable in various inference problems. For particular classes of distributions with
parameter expressing the central tendency, the new function equals to the score function for this
parameter. In other cases it is a yet unknown function which has the sense of the ’score function for
the center of the distribution’.

The introduction of the scalar score function, its properties and examples of its use, including def-
initions of new measures of central tendency and variability of probability distributions and methods
of estimation of their sample counterparts, are described in three papers Fabián (2001)-Fabián (2009)
published in this journal. However, in these papers we successively used somewhat different notation
and terminology, reflecting author’s increasing understanding of the problem and suggestions of re-
viewers. To make clear the basic ideas of the present paper, as well as of the foregoing ones, we describe
shortly but completely the whole procedure of the construction of the scalar score function (Section
2) and add a short summary of the main results obtained up to now (Section 3). Section 4 contains an
illustrative example. A new parametric measure of association between two random variables based
on the scalar score, the score correlation coefficient suggested by Fabián (2009b), is introduced in
Section 5, together with comparisons of the new measure with the Pearson correlation coefficient and
with Kendall and Spearman rank correlation coefficients by means of simulation examples for various
distributions. At the end we discuss interesting results obtained in cases of heavy-tailed distributions.

2 INTRODUCING THE SCALAR SCORE

Let G be a location distribution with support X = R and density in the form g(x− µ) with location
parameter µ ∈ R. If g is unimodal, µ indicates the position of the mode of the density. The score
function for µ is

∂

∂µ
log g(x− µ) = SG(x− µ), (2.1)

where

SG(x) = −g′(x)
g(x)

(2.2)

is a function obtained by differentiating the density with respect to the variable. Given data x =
(x1, ..., xn),

∑n
i=1 SG(xi − µ) is the likelihood score for location.

While the score for location is the basic inference function, function SG is usually not studied; the
reason is that for distributions with support X 6= R it exhibits a not acceptable behavior. We call
function (2.2) the scalar score on X = R. Its general parametric version SG(x; θ) we suggest as an
inference function for distributions with support R. Since the solution x∗ of equation SG(x; θ) = 0 is
for unimodal distributions the mode, SG can be viewed as the score function for the mode.

Let Y be random variable with location distribution G. Set η(x) = log x. The ’log-location
distribution’ (Marshall and Olkin, 2007) F of random variable X = η−1(Y ) with support X = (0,∞)
has density

f(x; τ) = g(u)η′(x), (2.3)
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where g is the density of the ’prototype’ G and u = η(x)− η(τ), where

τ = η−1(µ) (2.4)

is called a ’log-location’ parameter. By (2.3) and the chain rule for differentiation,

∂

∂τ
log f(x; τ) =

1
g(u)η′(x)

∂

∂τ
(g(u)η′(x)) = SG(u)η′(τ). (2.5)

SG with transformed variable can be rewritten using (2.3) and (2.2) as

SG(u) = − η′(x)
f(x; τ)

d

dx

(
1

η′(x)
f(x; τ)

)(
du

dx

)−1

. (2.6)

The score function for τ is thus

∂

∂τ
log f(x; τ) = T (x; τ)η′(τ), (2.7)

where T (x; τ) is the ’log-location’ version of function

T (x) = − 1
f(x)

d

dx

(
1

η′(x)
f(x)

)
, (2.8)

called the transformation-based score or shortly the t-score. The score function for τ is thus decom-
posed into product of two terms obtained without need of differentiating with respect to the parameter.
The likelihood score for τ is η′(τ)

∑n
i=1 T (xi; τ).

Example 2.1 The standard exponential distribution with density f(x; τ) = 1
τ e−x/τ has t-score

T (x; τ) = x/τ − 1. By (2.7), the score function for τ is 1
τ (x/τ − 1).

Relation (2.7) can be generalized for distributions with general interval support X ⊆ R and various
one-to-one mappings η : X → R. For comparison of t-scores of different distributions, it is necessary
to use consistently one concrete mapping for a given X . To be consistent with the class of log-location
distributions, we set

η(x) =





log(x− a) if X = (a,∞)

log (x− a)
(b− x) if X = (a, b). (2.9)

Under the term t-score we thus understand (2.8) with η given by (2.9).
The t-score of a general (and in obvious sense regular) distribution F (x; θ) is function

T (x; θ) = − 1
f(x; θ)

d

dx

(
1

η′(x)
f(x; θ)

)
. (2.10)

However, relation (2.7) holds true only if θ = (τ, θ2, ..., θm) where τ is the log-location parameter.
Referring to Example 1, τ is usually taken as the scale parameter, but, from our point of view, it
is the image of the location of the prototype distribution expresses the central tendency of F . Since
T (τ ; τ) = SG(0) = 0, we realized that the important quantity in (2.7) is not the value of a concrete
parameter, but the zero of the t-score. This is the reason for introducing new statistical concepts:

Definition 1. Let t-score of distribution Fθ with support X ⊆ R be given by (2.10) with η given

by (2.9). The solution x∗ = x∗(θ) of equation

T (x; θ) = 0 (2.11)
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is called the transformation-based mean or shortly the t-mean.

Actually, the t-mean is the transformed mode of the ’prototype’ distribution. Relation (2.7) was
consequently generalized in the following way.

Definition 2. Let T be the t-score and x∗ the t-mean of distribution Fθ with support X ⊆ R.

Function

S(x; θ) = η′(x∗)T (x; θ) (2.12)

is called the scalar score of distribution Fθ.

Scalar score is ’the score function for t-mean’, describing the relative influence of x for a construc-
tion of the t-mean.

Example 2.2. The gamma distribution with density f(x;α, γ) = γα

Γ(α)x
α−1e−γx has t-score

T (x; α, γ) = γx − α so that the t-mean is x∗ = α/γ. Its scalar score S(x;α, γ) = γ(x/x∗ − 1) is the
score function for the ratio α/γ.

Other examples of scalar scores of various continuous distributions are given in Fabián (2008).

3 BASIC PROPERTIES OF SCALAR SCORES

Function S2(x; θ) attains its minimum at x∗. By analogy to log-location distributions, ES2(τ) of
which is the Fisher information for τ , value ES2 can be interpreted as the scalar Fisher information
(or as the information of the distribution). Since x∗ is the least informative point of the distribution
(Fabián, 2010), S2(x) can be thought of as the information function, expressing relative information
contained in observation x.

The score moments

Mk(θ) = EθS
k(X) =

∫

X
Sk(x; θ)f(x; θ) dx, k = 1, 2, ... (3.1)

can be used as numeric characteristics of distributions. It follows from (2.2) that if g(x) = O(e−x)
for x → ±∞, then SG(x) ∼ O(1). Since mapping (2.9) retains the properties of SG on boundaries of
the support, the scalar scores of heavy-tailed distributions are bounded and the score moments exist.
Furthermore, ES = 0 (the scalar score is centered around the t-mean). The reciprocal value of the
scalar Fisher information,

ω2 =
1

EθS2
=

1
[η′(x∗)]2EθT 2

, (3.2)

appeared to be a good measure of the variability of distributions, particularly in cases in which the
usual variance does not exist (Fabián, 2009). We call it now the score variance. For distributions with
support (0,∞), (3.2) sounds

ω2 =
(x∗)2

EθT 2
. (3.3)

Let the observed data x, realizations of random variables X1, ..., Xn, be iid according to some F
from parametric family {Fθ, θ ∈ Θ} and let S(x; θ) be the corresponding scalar scores. The sample
characteristics, the sample t-mean x̂∗ = x∗(θ̂) and the sample score variance ω̂2 = ω2(θ̂) can be
obtained as functions of the estimated parameters. By using the new data characteristics it is easy to
compare results of the estimation in different models (Fabián, 2008).

The scalar score equations for estimation of θ, derived from (3.1) using the substitution principle,
are the generalized moment equations

θ̂M :
1
n

n∑

i=1

T k(xi; θ) = EθT
k, k = 1, ..., m, (3.4)
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where scalar scores are replaced by t-scores due to (2.12)). Since the score (t-score) moments are
often expressed by elementary functions of parameters, (Fabián, 2010b), and scalar scores (t-scores)
of heavy-tailed distributions are bounded and estimators (3.4) are in these cases robust (Fabián and
Stehĺık, 2009, Fabián, 2010b).

In some cases, the first equation of system (3.4) can be written in the form

n∑

i=1

T (xi; x∗) = 0. (3.5)

Then, by (Fabián, 2009, the estimate of the t-mean is asymptotically normal, x̂∗ ∼ AN(x∗, σ2
∗), with

σ2
∗ =

EθT
2

(EθT ′∗)2
,

and where T ′∗ = d
dx∗T (x; x∗). According to (3.3), the square root of the measure of variability ω2 is

ω = x∗/
√

(EθT
2) so that the asymptotic variance of the ’sample score deviance’ ω̂ is

σ2(ω̂) =
1

(EθT ′∗)2
.

For testing H0 : x∗ = x∗0 versus H1 : x∗ 6= x∗0, it is natural to use the score test with scalar score
instead of the vector score function. A simpler alternative test and the corresponding confidence
intervals are described in Fabián (2009).

According to (3.2), the sample score variance is in these cases given by

ω̂2 =
(x̂∗)2

1
n

∑n
i=1 T 2(xi; x̂∗)

. (3.6)

In a general case, however, the sample characteristics are to be determined as x̂∗ = x∗(θ̂SM ) and
ω̂2 = ω2(θ̂SM ).

4 EXAMPLE: THE BETA-PRIME DISTRIBUTION

The beta-prime distribution (beta distribution of the second kind) with support (0,∞) and density

f(x; p, q) =
1

B(p, q)
xp−1

(x + 1)p+q
p, q > 0

is an example of a heavy-tailed distribution. Neither of parameters is the log-location, the mean and
variance exist only if q > 1 and q > 2, respectively. By (2.8), the t-score is

T (x; p, q) =
qx− p

x + 1
,

a simple bounded function different from both partial scores for p and q. The t-mean x∗ = p/q, so
that the scalar score function is given by

S(x; x∗, q) =
q2

p

x− x∗

x + 1
.

Since ET 2 = pq/(p+ q +1), the variability of the distribution is described by the score variance (3.3),

ω2 =
p(p + q + 1)

q3
. (4.1)
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The scalar score estimation equations (3.4) are
n∑

i=1

xi − x∗

xi + 1
= 0

1
n

n∑

i=1

(
xi − x∗

xi + 1

)2

=
x∗

q(x∗ + 1) + 1

from which one obtains the sample t-mean x̂∗ and q̂ in closed formulas. Further, p̂ = x̂∗q̂ and ω̂2 is
obtained from (4.1). Since ET ′∗ = q2/(p + q), the standard deviations of the estimates are

σ(x̂∗) =
p1/2(p + q)

q3/2(p + q + 1)
, σ(ω̂) =

p + q

q2
.

Fig. 1a shows the average estimates of the t-mean x̂∗ = x∗(p̂, q̂) and ω̂ = ω(p̂, q̂), where p̂ and q̂
are either the maximum likelihood or the score moment estimates of parameters of samples of length
n = 100, randomly generated from the beta-prime distribution with increasing variability ω. Average
values are computed after 2000 replications. The estimates of ω constructed from the maximum
likelihood estimates are increasingly biased with increasing ω, since they are influenced by ’outliers’,
the values far from the bulk of the data (and generated in accordance with the distribution). The
estimates based on the score moment estimates are robust. The average standard deviations of the
estimates are shown in Fig. 1b and 1c. Standard deviations of robust score moment estimates of ω
roughly follow the theoretical values whereas standard deviations of the maximum likelihood estimates
of ω (Fig. 1c) are biased to higher values due to ’outliers’.

0.5 1 1.5 2 2.5 3
ω

Estimates

a

x*

ω

0.5 1 1.5 2 2.5 3
ω

Standard deviation of the sample t−mean

b

0.5 1 1.5 2 2.5 3
ω

Standard deviation of the sample score deviation

c

Figure 1. (a) Average maximum likelihood (∗) and score moment (o) estimates of x∗ and ω of the
beta-prime distribution. (b) Average standard deviations of x̂∗, (c) average standard deviations of ω̂.
Theoretical values are marked by x.

5



5 SCORE CORRELATION COEFFICIENT

Let SX , SY , respectively, be the scalar scores of random variables X and Y with supports XX ,XY

and joint distribution f(x, y). The joint score moment of X and Y is

ESXSY =
∫

XX

∫

XY

SX(x)SY (y)f(x, y) dxdy. (5.1)

For normally distributed X and Y , (5.1) is the ordinary covariance coefficient.

Definition 1. Define the score covariance coefficient of random variables X, Y with distributions
FX , FY and scalar scores SX , SY , respectively, by

Covscore(X, Y ) = ESXSY . (5.2)

Definition 2. Define the score correlation coefficient of random variables X, Y from Definition 1
by

ρscore(X, Y ) = ρ(SX(X), SY (Y )) =
ESXSY√
ES2

XES2
Y

, (5.3)

where ρ is the Pearson correlation coefficient.

It is apparent that −1 ≤ ρscore ≤ 1 and that if X and Y are independent, ρscore(X, Y ) = 0.
Moreover, by (2.12), the score correlation coefficient is expressed by means of t-scores, ρscore(X, Y ) =

ETXTY√
ET 2

XET 2
Y

.

The formula for the sample score correlation coefficient is straightforward. In simulation experi-
ments we generated couples (X, Z) using independently generated random samples of X and Z from
distributions from Table 1, and set

Y = αX + (1− α)Z. (5.4)

The theoretical value of r ≡ ρ(X, Y ; α) is r = α/
√

2α2 − 2α + 1. The correlation coefficients were
estimated from samples of length 75 with 2000 replications.

Figure 2 shows average values of estimates of the Pearson ρ, Kendall’s τ(x, y), Spearman ρS(x, y)
and the score ρscore(x, y) correlation coefficients as functions of increasing variability of distributions,
described by the square root ω of the score variance (3.2). Relations between ω and parameters of
distributions used for simulation experiments are given in Table I.

Table I. Scalar score and score variances of some distributions.

Distribution F (x) f(x) S(x) ω2

exponential 1− e−x/τ 1
τ e−x/τ 1

τ (x
τ − 1) τ2

Weibull 1− e−xc

cxc−1e−xc

c(xc − 1) 1/c2

Pareto (1,∞) 1− x−c c
xc+1 c− c+1

x
c+2
c3

Fréchet 1− e−x−c

cx−(c+1)e−x−c

c(1− x−c) 1/c2

log-logistic 1− 1
(1+x)q

1
(1+x)1+q

qx−1
x+1 (q + 2)/q3

For each sample, the parameters of marginal densities were estimated by procedure described in the
Section 4 before estimating ρscore. The Kendall and Spearman correlation coefficients were computed
by means of code corr from the MATLAB library. We expected an increase of correlation coefficients
with increasing ω due to increasing number of values far from the bulk of the data in the generated
samples.

In case of the exponential distribution with linear scalar score, ρscore = ρ and all average values
of the sample correlation coefficients are roughly constant with increasing ω. In case of the Weibull
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distribution (a light-tailed distribution with a non-linear scalar score), ρ seems to be the best choice
for small ω < 1.5. However, for ω ≥ 1.5 are standard deviations of ρ too high. For r = 0.2, ρscore

behaves similarly as Kendall’s τ , for r = 0.4 has ρ high standard deviations and ρscore seems to be
the best choice.

In cases of heavy-tailed distributions (Pareto, Fréchet, log-logistic), on the other hand, the Pearson
correlation coefficient loses any meaning, as documented by the plot of standard deviations of the
formal estimates of ρ for Pareto distribution with r = 0.2. ρscore of Pareto and log-logistic distributions
are closed to the Spearman estimate, in case of the Fréchet distribution, ρscore is obviously the best
one.

6. SUMMARY
Scalar score is a new inference function, constructed in accordance with the well-known statistical

concepts and reflecting the properties of the assumed parametric model. The function made it to
introduce new measures of central tendency and variability of probability distributions, which exist in
cases of heavy-tailed distributions. Their sample counterparts, the sample t-mean and sample score
variance, can be constructed from the estimates of parameters and enables comparison of results of
estimation in differently parametrized models.

We used the scalar score for definition of a distribution-dependent score covariance and score
correlation coefficient. Our conclusion based on simulation experiments is that although increasingly
biased with increasing variability (score variance) of the distribution, the score correlation coefficient
can detect an association of random variables having heavy-tailed distributions, taking into account
the properties of marginal distributions.
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ω

Weibull   r = 0.2
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ω

Pareto   r = 0.2

0.5 1 1.5 2 2.5 3

std  Weibull   r = 0.2

ω
0.5 1 1.5 2 2.5 3

std Pareto   r = 0.2

ω

0.5 1 1.5 2 2.5 3
ω

Weibull   r = 0.4

0.5 1 1.5 2 2.5 3

Pareto   r = 0.4

ω

0.5 1 1.5 2 2.5 3
ω

Fréchet   r = 0.2

0.5 1 1.5 2 2.5 3

log−logistic   r = 0.2

ω

Figure 2. Average values of the sample correlation coefficients as functions of increasing variability
ω of some distributions.
o Pearson . Kendall ∇ Spearman ∗ scalar score
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