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Datum staženı́: 27.09.2024
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1 Introduction

Biotechnology with microalgae and photo-bioreactor (PBR) design is nowadays regaining atten-
tion thanks to emerging projects of CO2 sequestration and algae biofuels. Nevertheless, there do
not exist reliable methods as well as programming software neither for modeling, simulation and
control of microbial growth in photo-bioreactors, nor for PBR design [3]. Modeling in a predictive
way the photosynthetic response in the three-dimensional flow field seems today unrealistic, be-
cause the global response depends on numerous interacting intracellular reactions, with various
time-scales. The physiological state of any cellular system and its impact on growth and product
formation is the result of a complex interplay between the extracellular environment and the
cellular machinery. The design of PBR in which microalgae cells function as factories as well
as the prediction of suitable PBR operating conditions is further complicated because of the
dynamic variations of the extracellular environment.

Our main goal is to develop and implement the mathematical model of microalgae growth in
a general PBR as tool in the design of photo-bioreactors and the optimization of their per-
formance. In our previous works we studied an adequate multi-scale lumped parameter model
which well describes the principal physiological mechanisms in microalgae: photosynthetic light-
dark reactions and photoinhibition [5], as well as its model parameter estimation [8, 7]. In [6] we
presented how to construct a distributed parameter model consisting mainly in determination
of hydrodynamic dispersion coefficient as function of space coordinates.

This paper deals with the non-homogeneous steady-state one-dimensional reaction-diffusion sys-
tem (3) with a special boundary condition. However, equation (3) is rewritten in form of two
ordinary differential equations (ODE), which leads after re-scaling to the standard form of the
singularly perturbed system [4]. The purpose of such an operation is to infer the asymptotic
properties of the reaction-diffusion system (3).

2 Modelling photosynthetic microorganism growth

The photosynthetic microorganism growth description is usually based on the so-called microbial
kinetics, i.e. on the lumped parameter models (LPM) describing the photosynthetic response
in small cultivation systems with a homogeneous light distribution [9]. However, there is an
important phenomenon, the so-called flashing light enhancement, which demands some other
model than it residing in the artificial connection between the steady state kinetic model and
the empiric one describing the photosynthetic productivity under fluctuating light condition.
Nevertheless, even having an adequate dynamical LPM of microorganism growth, see e.g. phe-
nomenological model of so-called photosynthetic factory [5, 8], another serious difficulty resides
in the description of the microalgal growth in a PBR, i.e. in a distributed parameter system.
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In order to develop the distributed parameter model (DPM) of a microorganism growth, two
main approaches for transport and bioreaction processes modelling are usually chosen:
(i) Eulerian infinitesimal, and (ii) Eulerian multicompartmental. While the Eulerian infinitesimal
approach, leading to the partial differential equations (PDE), is an usual way to describe trans-
port and reaction systems, the multicompartmental modelling framework, resulting in an ODE
system, is mostly used in the process engineering area. This second approach, based on balance
equation among compartments with finite control volume, has been recently treated by Bezzo et
al. [2]. The authors presented there a rigorous mathematical framework for constructing hybrid
multicompartment/CFD models. Hybrid there means that the fluid flow description is resolved
by a CFD code, and does not make a part of the ODE system of governing equations.

In the sequel, we adopt the first approach aiming to clarify in an analytical manner the role of
hydrodynamic mixing, or more precisely, the mechanism of the photosynthetic microorganism
growth enhancement due to the microbial cell transport by radial dispersion. Nevertheless, in the
future work, our results should serve to develop a numerical scheme for setting up the optimal
compartment size in the multicompartment/CFD models.

3 Model development

Transport equation for microbial cells (concentration c) as the function of spatial coordinates
and time gets the next form [1]:

∂c

∂t
+∇ · (vc)−∇ · (De∇c) = R(c) , (1)

where R(c) is the source term (representing microbial growth, unit: cell m−3s−1), v represents
the velocity field, and De is the dispersion coefficient, which corresponds to diffusion coefficient
in microstructure description and becomes mere empirical parameter suitably describing mixing
in the system. De is influenced by the molecular diffusion and velocity profile. When mixing is
mainly caused by the turbulent micro-eddies, the phenomenon is called the turbulent diffusion
and a turbulent diffusion coefficient is introduced e.g. in [1]. The reaction obviously depends
on some variables, usually called as substrates. For our special case of photosynthetic growth
in a PBR, the role of only one limiting substrate (the nutrients are supposed to be present in
a sufficient amount, i.e. they do not limit the growth) fulfills the irradiance, in other words,
an external forcing input u. Moreover we suppose the rectangular PBR geometry illuminated
from one side, i.e. the irradiance level is decreasing from the PBR wall to PBR core. Thus, the
PBR volume (our computational domain) can be divided into layers with the same irradiance
level, transforming the 3D problem into the one-dimensional. Consequently, the description of
cell motion in direction of light gradient, i.e. perpendicular to PBR wall and at the same time
perpendicular to the direction of convective flow, is of most interest. This motion is caused by
the just mentioned turbulent diffusion. Furthermore, we can introduce the dimensionless spatial
coordinate x, and the dimensionless dispersion coefficient p(x) by

r := xL , De := p(x) D0 ,

where L and D0 (unit: m2s−1) are the PBR length in direction of light gradient, and a constant
with some characteristic value, respectively.

Furthermore we introduce the dimensionless concentrations c and css as

y :=
c

cm
, yss :=

css
cm

,

where cm is a characteristic (e.g. maximal) concentration of c.
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Based on the photosynthetic factory model [5, 8] we have for the reaction term R the relation

R(c) = −k (c− css) , (2)

where k is the rate (unit: s−1) associated with the dynamic process by which is the concentration c
approaching to some value css depending only on the external input u(x).

As we are interested on the steady state solution of (1), i.e. ∂c
∂t = 0, we finally obtain

−
[
p(x)y′

]′
+ q(x) y = q(x) yss, y′(0) = 0, y′(1) = 0 , (3)

where q(x) := k(u(x)) L2

D0
.

4 Asymptotic properties of the reaction-diffusion system (3)

In the process engineering literature, there exists a concept of well mixed unit. This construct
is further used e.g. in the multicompartmental or multizonal models [2, 6]. The crucial question
is: When a compartment with finite volume is well mixed? For a reaction-diffusion system, it
has to depend on the so-called Damköhler number.

In our previous work, in sake of the benchmark problem, we were looking for an analytical so-
lution of the equation (3). Realizing that it was impossible, we did not search the solution in
the usual form of y = y(x), but we wanted to find the mean value of y in the interval x ∈ [0.1],
i.e. to compute the expression

∫ 1
0 y(x) dx. Based on [10], the boundary value problem (3) was

transformed into the related initial value problem. It consisted in finding solutions of two homo-
geneous equations, two differential equations with the right-hand side and computing a solution
of a system of two algebraic equations. By this procedure, we could have obtained a function
value and its derivative in an arbitrary point. The original differential equation with boundary
conditions was thus transformed into a differential equation with an initial condition. As we
have needed only a solution in several points, we could apply the above procedure repeatedly.
Finally, the value

∫ 1
0 y(x) dx would be obtained by a suitable numerical method.

Now, we are developing an asymptotic method. Let first define d
dxy := z, then the resulting first

order ODE system is

d

dx
y = z ,

d

dx
[p(x)z] = q(x) (y − yss) , z(0) = 0, z(1) = 0 . (4)

Consequently, if we define k0 as follows: k := kA(u(x)) k0, then the Damköhler number of

second type could be defined as DaII := k0L2

D0
, and the dependence of the solution of (4) on

DaII := ε→ 0 could be studied.

The following ODE (5)

d

dx
[p(x)z] = εkA(u(x)) (y − yss) , z(0) = 0, z(1) = 0 , (5)

thanks to the properties of its right hand side clearly satisfies the sufficient condition for applying
the averaging method [4]. One can therefore approximate (4) as follows (always when ε→ 0):

d

dx
y = z ,

d

dx
[p(x)z] = ε

∫ 1

0
[kA(u(x)) (y − yss)] dx , z(0) = 0, z(1) = 0 . (6)
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