
A recursive formulation of limited memory variable metric methods

Lukšan, Ladislav
2010

Dostupný z http://www.nusl.cz/ntk/nusl-41603

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 02.06.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-41603
http://www.nusl.cz
http://www.nusl.cz

A recursive formulation of limited memory

variable metric methods

L. Lukšan, J. Vlček

Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod Vodárenskou věž́ı 2, 182 07 Praha 8, and

Technical University of Liberec, Hálkova 6, 461 17 Liberec

Variable metric methods with limited memory can be efficiently used for large-scale uncon-
strained optimization in case the sparsity pattern of the Hessian matrix is not known. These
methods are usually realized in the line-search framework so that they generate a sequence of
points xi ∈ Rn, i ∈ N , by the simple process

xi+1 = xi + αidi, (1)

where di = −Higi is a direction vector, Hi is a positive definite approximation of the inverse
Hessian matrix and αi > 0 is a scalar step-size chosen in such a way that

Fi+1 − Fi ≤ ε1 αi d
T
i gi, dTi gi+1 ≥ ε2 d

T
i gi (2)

(the weak Wolfe conditions), where Fi = F (xi), gi = ∇F (xi) and 0 < ε1 < 1/2, ε1 < ε2 < 1.
Matrices Hi, i ∈ N , are computed either by using a limited number (m≪ n) of variable metric
updates applied to the scaled unit matrix or by updating low dimension matrices. The first
approach, used in [9], is based on the computation of the direction vector di using the Strang
recurrences [8]. The second approach, used in [1], is based on the matrix expression described
below. To simplifying notation, we omit index i and replace index i+ 1 by +.

Variable metric method from the Broyden class use the update

H+ = H + UMUT = H + [d,Hy]

[
m1, m2

m2, m3

] [
d
Hy

]
= H +

1

b
ddT − 1

a
Hy(Hy)T +

η

a

(a
b
d−Hy

)(a
b
d−Hy

)T
, (3)

where d = x+−x, y = g+−g, a = yTHy, b = yTd and η is a free parameter. We need to express
m consecutive steps of (3) (with the initial matrix γI) in the form H+ = γI + ŪM̄ŪT , where
Ū ∈ Rn×2m and M̄ ∈ R2m×2m. In [1], the authors propose explicit expressions of the matrix
M̄ for three classic variable metric updates: DFP (η = 0), BFGS (η = 1) and the rank one
(η = b/(b − a)). For other values of the parameter η, such explicit expressions are not known.
In this contribution we describe another way, based on recursive construction of the matrix M̄ ,
which allows us to realize any member of the Broyden class of the variable metric updates. The
following theorem is proved in [7].

Theorem 1 Let H+ be a matrix defined by (3) and H = γI + ŪM̄ŪT . Then

H+ = H1 + Ū+M̄+Ū
T
+ ,

where Ū+ = [Ū , d, H1y] and

M̄+ =

 M̄ +m3 zz
T , m2 z, m3 z

m2 z
T , m1, m2

m3 z
T , m2, m3

 . (4)

Here m1 = (1/b)(ηa/b + 1), m2 = −η/b, m3 = (η − 1)/a are elements of matrix M , z = M̄ r̄
and r̄ = ŪT y.

107

Lukšan, Ladislav ; Vlček, Jan. A recursive formulation of limited memory variable metric methods. In Seminar on Numerical Analysis.
Modelling and Simulation of Challenging Engineering Problems. Prague : Institute of Computer Science AS CR, 2010, S. 107-109.
ISBN 978-80-87136-07-2. [SNA ’10. Seminar on Numerical Analysis, Nové Hrady, 18.01.2010-22.01.2010, CZ].

If i ≤ m, the construction of matrix Hi+1 follows straightforwardly from Theorem 1. Thus
we describe the construction of matrix Hi+1 in case i > m. We will assume that Hi+1−m =
γiI. At the beginning of the i-th iteration, we have available the rectangular matrix Ūi−1 =
[di−m, yi−m, . . . , di−1, yi−1] and the block upper triangular matrix

R̄i−1 =


dTi−myi−m, . . . dTi−myi−1

yTi−myi−m, . . . yTi−myi−1

. .
0, . . . dTi−1yi−1

0, . . . yTi−1yi−1

 ,
whose every block contains two rows and one column. First we determine matrix
Ūi = [di−m+1, yi−m+1, . . . , di, yi] from matrix Ūi−1 by deleting the first two columns and adding
the last two columns. Similarly easily we obtain matrix R̄i from matrix R̄i−1. Only the last
column ŪT

i yi of this matrix has to be computed. Furthermore, we compute recursively matrix
M̄i = M̄ i

i in such a way that we set

M̄ i
i−m+1 =

[
m1

i−m+1, m2
i−m+1

m2
i−m+1, m3

i−m+1

]

(indices 1, 2, 3 are now placed up) and for i−m+1 ≤ j ≤ i−1, compute vector zj = M̄ i
j r̄j , where

r̄j is j − i +m-th column of matrix R̄i, whose every even element is multiplied by number γi
(since Hi+1−m = γiI), and set

M̄ i
j+1 =

 M̄ i
j +m3

j+1 zjz
T
j , m2

j+1 zj , m3
j+1 zj

m2
j+1 z

T
j , m1

j+1, m2
j+1

m3
j+1 z

T
j , m2

j+1, m3
j+1

 .
Vector Hi+1gi+1 is computed by the formula

Hi+1gi+1 = γigi+1 + [di−m+1, γiyi−m+1, . . . , di, γiyi] M̄i

[di−m+1, γiyi−m+1, . . . , di, γiyi]
T gi+1

(even columns of matrix Ūi are multiplied by number γi). As we can see, approximately
6mn operations (addition and multiplication) are consumed in i-th iteration. However, approxi-
mately 2(m − 1)n operations can be saved, if we compute and store inner products dTj gi+1,

yTj gi+1 instead of dTj yi, y
T
j yi, i−m+1 ≤ j ≤ i. Then the first m− 1 inner products dTj yi, y

T
j yi,

i −m + 1 ≤ j ≤ i − 1 can be determined from the previously computed inner products by the
formulas dTj yi = dTj gi+1−dTj gi, yTj yi = yTj gi+1− yTj gi, i−m+1 ≤ j ≤ i− 1. Thus it is necessary

to compute only two inner products dTi yi, y
T
i yi. Inner products d

T
j gi+1, y

T
j gi+1, i−m+1 ≤ j ≤ i

can be used for the computation of direction vector si+1, so we save 2mn operations.

The method described has been tested by using a set of 60 test problems with 1000 variables.
This set (Test25) was obtained by merging the sets Test14, Test15, Test18 described in [6], which
can be downloaded from http://www.cs.cas.cz/luksan/test.html (together with report [6]).
The results of the tests are listed in Table 1, where NIT is the total number of iterations, NFV
is the total number of function and gradient evaluations, NF is the number of failures and TIME

is the total CPU time. We have tested the original LBFGS subroutine, described in [2], and our
realizations of limited memory variable metric methods implemented in the UFO system [5]. In
Table 1, BFGSSTR denotes the limited memory BFGS method with the Strang recurrences [9] (an
analogy of LBFGS), BFGSBNS denotes the limited memory BFGS method with compact matrices
described in [1], BFGSNEW denotes the limited memory BFGS method with recursive construction

108

Lukšan, Ladislav ; Vlček, Jan. A recursive formulation of limited memory variable metric methods. In Seminar on Numerical Analysis.
Modelling and Simulation of Challenging Engineering Problems. Prague : Institute of Computer Science AS CR, 2010, S. 107-109.
ISBN 978-80-87136-07-2. [SNA ’10. Seminar on Numerical Analysis, Nové Hrady, 18.01.2010-22.01.2010, CZ].

of matrix M̄ described above, LMVMNEW denotes the limited memory variable metric method with
recursive construction of matrix M̄ that use parameter η proposed in [4], and CG denotes the
conjugate gradient method. Note that the first four rows in Table 1 correspond to different
implementations of the BFGS method and that our approach gives the best results.

Method NIT NFV F TIME

LBFGS 110406 117226 2 43.38
BFGSSTR 99125 104085 - 37.56
BFGSBNS 91650 96235 - 36.89
BFGSNEW 85430 89796 - 33.50
LMVMNEW 92877 99033 - 34.61

CG 144990 222460 1 60.77

Table 1: Test results.

Acknowledgement: This work has been supported by the Czech science foundation, project
No. 201/09/1957, and the institutional research plan No. AV0Z10300504.

References

[1] R.H.Byrd, J.Nocedal, R.B.Schnabel: Representation of quasi-Newton matrices and their use
in limited memory methods. Math. Programming 63, 129-156, 1994.

[2] D.C.Liu, J.Nocedal: On the limited memory BFGS method for large scale optimization.
Mathematical Programming 45, 503-528, 1989.

[3] L.Lukšan: Numerické optimalizačńı metody. Nepodmı́něná minimalizace. Výzkumná zpráva
V-1058, Ústav informatiky AV ČR, Praha 2009.

[4] L.Lukšan, E.Spedicato: Variable metric methods for unconstrained optimization and nonli-
near least squares. Journal of Computational and Applied Mathematics 124, 61-93, 2000.

[5] L.Lukšan, M.Tůma, J.Vlček, N.Ramešová, M.Šǐska, J.Hartman, C.Matonoha: Interactive
System for Universal Functional Optimization. Research Report V-1040, Institute of Com-
puter Science Czech Academy of Sciences, Prague 2008.

[6] L.Lukšan, J.Vlček: Sparse and partially separable test problems for unconstrained and equa-
lity constrained optimization. Research Report V-767, Institute of Computer Science, Czech
Academy of Sciences, Prague 1998.

[7] L.Lukšan, J.Vlček: Limited memory variable metric methods from the Broyden class. Re-
search Report V-1059, Institute of Computer Science Czech Academy of Sciences, Prague
2009.

[8] H.Matthies, G.Strang: The solution of nonlinear finite element equations. Int. J. for Nume-
rical Methods in Engineering 14, 1613-1623, 1979.

[9] J. Nocedal: Updating quasi-Newton matrices with limited storage. Math. Comp. 35, 773-782,
1980.

109

Lukšan, Ladislav ; Vlček, Jan. A recursive formulation of limited memory variable metric methods. In Seminar on Numerical Analysis.
Modelling and Simulation of Challenging Engineering Problems. Prague : Institute of Computer Science AS CR, 2010, S. 107-109.
ISBN 978-80-87136-07-2. [SNA ’10. Seminar on Numerical Analysis, Nové Hrady, 18.01.2010-22.01.2010, CZ].

