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1 Introduction

Belief functions are one of the widely used formalisms for uncertainty representation and processing
that enable representation of incomplete and uncertain knowledge, belief updating and combination
of evidence. They were originally introduced as a principal notion of the Dempster-Shafer Theory or
the Mathematical Theory of Evidence [9].

When combining belief functions (BFs) by the conjunctive rules of combination, conflicts often
appear which are assigned to ∅ by non-normalized conjunctive rule ∩© or normalized by Dempster’s rule
of combination ⊕. Combination of conflicting BFs and interpretation of conflicts is often questionable
in real applications, thus a series of alternative combination rules was suggested and a series of papers
on conflicting belief functions was published, e.g. [2, 5, 8, 11].

This study introduces new ideas to interpretation, definition and measuring of conflicts of BFs.
Three new approaches to interpretation and computation of conflicts are presented here.

The first one, the combinational approach is a modification of commonly used interpretation of
conflict of BFs. An internal conflict within individual BFs is distinguished here from a conflict between
two BFs which are combined (Section 3).

The second one, the plausibility approach also distinguishes internal conflict and conflict between
BFs. This approach uses the normalized plausibility transformation and is based on support / op-
position of elements of Ω by the BFs in question. Differences of BFs are distinguished from conflicts
between them in this approach; as relatively highly different BFs are not necessarily mutually con-
flicting (Section 4).

The third approach, the comparative one, is based on a specification of bbms of focal elements to
smaller ones and on measuring difference between such more specified BFs (Section 5).

After the presentation of new ideas, the presented approaches are compared and a series of open
problems is suggested.

2 Preliminaries

Let us assume an exhaustive finite frame of discernment Ω = {ω1, ..., ωn}, whose elements are mutually
exclusive.

A basic belief assignment (bba) is a mapping m : P(Ω) −→ [0, 1], such that
∑

A⊆Ω m(A) = 1,
m(∅) = 0; the values of bba are called basic belief masses (bbm). 3 A belief function (BF) is a
mapping Bel : P(Ω) −→ [0, 1], Bel(A) =

∑
∅6=X⊆A m(X); let us further recall a plausibility function

Pl(A) =
∑
∅6=A∩X m(X); bba m, belief function Bel and plausibility Pl uniquely correspond each to

others. P(Ω) is often denoted by 2Ω.
A focal element is a subset X of the frame of discernment, such that m(X) > 0. If all the focal

elements are singletons (i.e. one-element subsets of Ω), then we speak about a Bayesian belief function
(BBF), it is a probability distribution on Ω in fact. Let us denote Un the uniform Bayesian belief
function4 on n-element frame Ωn = {ω1, ..., ωn}, i.e. the uniform probability distribution on Ωn. The
belief function with the only focal element m(Ω) = 1 is called the vacuous belief function (VBF), a
belief function with the only focal element m(A) = 1 is called categorical (or logical [1]) belief function,
a belief function with two focal elements m(A) = A and m(Ω) = 1 − A is called a simple support
function, a belief function which focal elements are nested is called a consonant belief function.

The normalized plausibility of Bel is the BBF (a probability distrib.) (Pl P (m))(ωi) = Pl({ωi})∑
ω∈Ω Pl({ω}) .

The pignistic probability of Bel is the following probability distribution BetP (ωi) =
∑

ωi∈X⊆Ω
m(X)
|X| .

Dempster’s (conjunctive) rule of combination⊕ is given as (m1⊕m2)(A) =
∑

X∩Y =A Km1(X)m2(Y )
for A 6= ∅, where K = 1

1−κ , κ =
∑

X∩Y =∅m1(X)m2(Y ), and (m1⊕m2)(∅) = 0, see [9]; putting K = 1
and (m1⊕m2)(∅) = κ we obtain the non-normalized conjunctive rule of combination ∩©, see e. g. [10].

3m(∅) = 0 is often assumed in accordance with Shafer’s definition [9]. A classical counter example is Smets’
Transferable Belief Model (TBM) which admits m(∅) ≥ 0.

4Un which is idempotent w.r.t. Dempster’s rule ⊕, and moreover neutral on the set of all BBFs, is denoted as nD0′
in [6]; specially U2 is denoted as 2D0′ there or simply as 0′ (see also [4]), 0′ comes from studies by Hájek & Valdes (e.g.
[7]).
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Any BF on Ω2 = {ω1, ω2} is uniquely specified by two bbms m({ω1}),m({ω2}) as m({ω1, ω2}) =
1−(m({ω1})+m({ω2})). Hence we can simply represent any m on Ω2 as a pair m = (m({ω1}),m({ω1})).
The normalized plausibility of m is also very simple in this case: Pl P (m) = (Pl P (m)(ω1), 1 −
Pl P (m)(ω1)) = ( 1−m({ω2})

2−(m({ω1})+m({ω2}) ,
1−m({ω1})

2−(m({ω1})+m({ω2}) ) = m ⊕ 0′, where 0′ = U2 = ( 1
2 , 1

2 ), VBF is
0 = (0, 0) on Ω2, for detail see [4, 6].

3 Combinational conflicts of belief functions

3.1 Internal conflict of belief functions

When combining two belief functions Bel1, Bel2 given by bbms m1 and m2 conflicting masses m1(X) >
0, m2(Y ) > 0 for X ∩ Y = ∅ often appear. The sum of all pair-wise products of such belief masses
corresponds to m(∅) when non-normalized conjunctive rule of combination is applied and m = m1 ∩©m2.
This sum is called weight of conflict between belief functions Bel1 and Bel2 in [9], and it is commonly
used when dealing with conflicting belief functions. Unfortunately, the name and interpretation of this
notion does not correctly correspond to reality in general. We often obtain positive sum of conflicting
belief masses even if two numerically same belief functions are combined, see e.g. Example 1 [1],
analogical example for n = 5 is discussed in [8]. As BBFs are used in Example 1, we present also
Example 2 with general BFs.

Example 1 Let us assume two BFs expressing that a six-sided die is fair. Ω6 = {ω1, ..., ω6} =
{1, 2, 3, 4, 5, 6}, mj({ωi}) = 1/6 for i = 1, ..., 6, j = 1, 2, mj(X) = 0 otherwise. Let m = m1 ∩©m2.
We obtain m({ωi}) = 1/36 for i = 1, ..., 6, m(∅) = 5/6, m(X) = 0 otherwise.

If we generalize Almond’s and Liu’s examples to uniform Bayesian belief functions on n-element
frame Ωn = {ω1, ..., ωn}, we have mj({ωi}) = 1/n for i = 1, ..., n, j = 3, 4, mj(X) = 0 otherwise, i.e.,
mj = Un. Let m = m3 ∩©m4. We obtain resulting m({ωi}) = 1/n2 for i = 1, ..., n, m(∅) = (n− 1)/n,
m(X) = 0 otherwise. We can notice that m(∅) increases with increasing n.

Example 2 Let us suppose for simplicity Ω2 = {ω1, ω2} now. Let mj({ω1}) = 0.5, mj({ω2}) = 0.4,
mj({ω1, ω2})=0.1 for j = 5, 6, mj(X) = 0 otherwise. Let m = m5 ∩©m6 now. We obtain m({ω1}) =
0.35, m({ω2}) = 0.24, m({ω1, ω2}) = 0.01, m({ω1}) = 0.4 m(∅) = 0.4, m(X) = 0 otherwise.

Almond mentions that m(∅) is hardly interpretable as conflict between BFs in such a case [1]. Liu
correctly says in [8], that m(∅) cannot be always interpreted as a degree of conflict between belief
functions. On the other hand many of particular couples of belief masses are really in conflict with
each other. From this we can see that the sum of all products of conflicting belief masses, what we call
total combinational conflict, somehow includes also a conflict which is included within the individual
belief functions, which are combined. We will call this internal conflict5. It is not known whether the
internal conflicts are included in total conflict partially or entirely. On the other hand, a source of
total combinational conflict TotC arises either from internal combinational conflicts of individual BFs
or from their mutual conflicting interrelations. Thus, we can describe this as

TotC(m1, m2) ≤ IntC(m1) + IntC(m2) + C(m1,m2).

In the special case when two identical belief functions are combined we obtain TotC(m,m) ≤ IntC(m)+
IntC(m), as we expect no conflict between two same pieces of evidence, because they fully agree with
each other thus they are not in any mutual conflict. We further suppose IntC(m) ≤ TotC(m,m),
thus we have

IntC(m) ≤ TotC(m,m) ≤ IntC(m) + IntC(m)

and 1
2TotC(m,m)) ≤ IntC(m) ≤ TotC(m,m).

Unfortunately, we have no precise formula how to precisely compute conflict C(m1,m2) between
BFs m1 and m2. Nevertheless we assume, that it is less than total conflict TotC(m1,m2), and the

5We have to note, that Smets uses the name ’internal conflict’ for m(∅) within individual non-normalized BFs [2];
nevertheless there are also other interpretations of m(∅) in non-normalized BFs. However, in our situation internal
conflicts appear in classic BFs each satisfying m(∅) = 0, see Examples 1, 2 and other examples in this report.
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above inequality. Note again that internal conflict of one of the combined BFs can be greater than
total conflict, when two different BFs are combined (e.g. TotC(m,V BF ) = 0 and IntC(V BF ) = 0,
IntC(m) ≥ 0, C(m,V BF ) = 0). We can summarize this as it follows:

TotC(m1,m2)− (IntC(m1)+IntC(m2)) ≤ C(m1, m2) ≤ TotC(m1,m2).

3.2 Belief functions without internal conflict

There are many BFs without any internal conflicts: all categorical and all simple support BFs have no
internal conflict as A∩A 6= ∅, A∩Ω = Ω∩A 6= ∅ and Ω∩Ω 6= ∅ for any A ⊆ Ω = {ω1, ..., ωn}, n ≥ 1;
further all consonant BFs have no internal conflict as the least focal element is a subset of or equal
to intersection of any pair of focal elements; finally all BFs, whose all focal elements have non-empty
intersection, have no internal conflict, i.e., all BFs such that there exist X ⊆ Ω, P l(X) = 1.

Example 3 Let us suppose Ω4 = {ω1, ..., ω4} and the following simple internally non-conflicting BFs:
m7({ω1, ω2}) = 0.7, m7(Ω4) = 0.3; m8({ω1}) = 0.1, m8({ω1, ω2}) = 0.3, m8({ω1, ω2, ω3}) = 0.2,
m8({ω1, ω3, ω4}) = 0.1, m8({ω1, ω2, ω3, ω4}) = 0.3.

3.3 Belief functions with internal conflict

As an example of BFs with internal conflict we can refer BFs from both Examples 1 and 2. Let us
introduce another interesting example now.

Example 4 Let us suppose Ω2 = {ω1, ω2} and bba mk = ( 1
k , k−1

k ) for k > 1.

mk⊕mk = ( 1
1+(k−1)2 , (k−1)2

1+(k−1)2 ), (mk ∩©mk)(∅) = 2k−1
k2 , (mk ∩©mk)(∅) −→ 0 for increasing k. Similarly

(ml ∩©ml)(∅) −→ 0 for ml = ( l−1
l , 1

l ) and increasing l.

The greatest internal conflict among the BFs from the previous example has 0′ = ( 1
2 , 1

2 ) = U2. Let
us further note, that the maximal internal conflict of all BBFs on Ω2 arises for 0′ = U2, (0′ ∩©0′)(∅) = 1

2 .
And for general BFs on Ω2 the following observation holds true.

Observation 1 0′ = ( 1
2 , 1

2 ) = U2 is the BF with the greatest internal conflict on Ω2.

Proof: Let us compute the total combinational conflict between BFs (a, b) and (a, b), which is an
upper bound for internal conflict of BF (a, b); ((a, b)∩©(a, b))(∅) = ab + ba = 2ab. 2ab such that
a, b ≥ 0, a + b ≤ 1 is maximized iff a = b is maximized iff a = b = 1

2 . ¤

3.4 Couples of totally non-conflicting belief functions

If there is neither any internal conflict of both members of a couple of BFs mi,mj nor a conflict
between them, we say that mi and mj form a pair of totally non-conflicting BFs. This happens
whenever all focal elements of both BFs have common non-empty intersection, i.e. whenever both
BFs have non-empty intersections I =

⋂
mi(X)>0 X 6= ∅, J =

⋂
mj(X)>0 X 6= ∅ and I ∩ J 6= ∅.

Example 5 Totaly non-conflicting are e.g. m7 and m8 from the Example 3, or the following BFs on
Ω6: m9({ω1, ω2, ω3, ω4}) = 0.4, m9({ω2, ω3, ω4}) = 0.3, m9(Ω6) = 0.3;
m10({ω2, ω3, ω5}) = 0.6, m10({ω2, ω3, ω6}) = 0.1, m10({ω2, ω3, ω4, ω5, ω6}) = 0.2, m10(Ω6) = 0.1;
I =

⋂
m9(X)>0 X = {ω2, ω3, ω4}, J =

⋂
m10(X)>0 X = {ω2, ω3} and I ∩ J = {ω2, ω3} 6= ∅.

(m9 ∩©m10)(∅) = 0.

3.5 Combination of belief functions with the uniform Bayesian belief function Un

When combining Un with a simple support function (simple support (belief) function) m(A) =
a, m(Ω) = 1 − a we obtain m(∅) = n−|A|

n m(A), specially 1
2m(A) for Ω2 = {ω1, ω2}. When com-

bining Un with a Bayesian belief function we always obtain m(∅) = n−1
n , specially m(∅) = 1

2 for BBFs
on Ω2. Thus we have IntC(0′) + IntC(BBF ) + C(0′, BBF ) ≥ 1

2 and 1
4 ≤ IntC(0′) ≤ 1

2 on Ω2, hence
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0 ≤ C(0′, BBF ) ≤ 1
4 . It corresponds with the fact that 0′ should be mutually non-conflicting with

any BBF: 1) because 0′ is neutral for Dempster’s combination with BBFs, 2) Pl P commutes with ⊕,
thus all BFs with the same Pl P should be mutually non-conflicting, VBF is mutually non-conflicting
with any BF, what should hold true also for all BFs m′ with the same Pl P (m′) = Pl P (V BF ) = 0′

(including 0′ itself), more generally Un for Ωn. Let us look at the following simple example.

Example 6 Let us suppose Ω2 = {ω1, ω2} and bbas m1 = (k−1
k , 0), m2 = ( 1

k , 0), Pl P (m1) =
( k

k+1 , 1
k+1 ), Pl P (m2) = ( k

2k−1 , k−1
2k−1 ).

(Pl P (m1)∩©m1)(∅) = k−1
k(k+1) .... it is decreasing for increasing k,

(Pl P (m1)∩©Pl P (m1))(∅) = 2k
(k+1)2 .... it is decreasing for increasing k,

as both m1 and Pl P (m1) go to > = (1, 0) for increasing k;
(Pl P (m2)∩©m2)(∅) = k−1

k(2k−1) .... it is decreasing for increasing k,

(Pl P (m2)∩©Pl P (m2))(∅) = 2k(k−1)
(2k−1)2 .... it goes to 1

2 for increasing k,
as m2 goes to 0 = (0, 0) and Pl P (m2) to 0′ = ( 1

2 , 1
2 ) for increasing k.

Note that the following holds true: (a, b)⊕0′ = ( 1−b
2−a−b ,

1−a
2−a−b ) = Pl P ((a, b)) on Ω2 and m⊕Un =

Pl P (m) on general frame Ωn, see [6]. As the general case is not explicitly proved in [6], we can
formulate is as the following proposition.

Proposition 2 For normalized plausibility of singletons the following holds true:

Pl P (m) = m⊕ Un.

Proof: This simply follows results from [6], unfortunately not explicitly stated there. Pl P (m) =
Pl P (m)⊕Un (neutrality of Un for BBFs) = Pl P (m)⊕ Pl P (Un) = Pl P (m⊕Un) (commutativity
of Pl P with ⊕) = m⊕ Un (as m⊕ Un is BBF, thus it is a fix point of Pl P ).
Or alternatively: m ⊕ Un is normalization of m∩©Un, there is (m ⊕ Un)({ωi}) =

∑
ωi∈A

1
nm(A) =

1
nPl({ωi}), and after normalization we obtain (Pl P (m))({ωi}). ¤

4 Plausibility conflicts of belief functions

As in the previous section, we will further distinct internal conflicts of individual BFs from a mutual
conflict between them. Let us first discuss what should belief functions really mean.

There is an unknown element ω0 ∈ Ω and we have only a partial uncertain evidence about the
fact which one is it. This evidence is represented by a BF or by its corresponding bba. If all pieces
of our evidence are correct and fully compatible with the situation, all focal elements should contain
the unknown element ω0 and there is now conflict within the corresponding BF. The more precise our
evidence is the smaller should be the focal elements. In the extreme limit case of correct complete
certain evidence there is the only focal element {ω0}, such that m({ω0}) = 1. When obtaining new
correct fully compatible pieces of evidence represented by BFs, their focal elements should also contain
ω0 and new BFs should be both internally and mutually non-conflicting. When combining such BFs
their focal elements are decreasing keeping ω0 as their element. Unfortunately real pieces of evidence
often contain some conflicts or they are mutually conflicting or the situation itself may be (internally)
conflicting. Hence we obtain internally and/or mutually conflicting BFs.

How is it possible that m1,m2 = U6 from Example 1 have the high internal conflict? Let us notice
that BF U6, which was used in the example for description of behaviour of a fair die, does not express
any belief about the fact which side of the die is up. It express a meta-information about the die, the
information which is necessary within a decision making for redistribution of bbms of focal elements
among their singletons. It express nothing about an uncertain case of the die. It is rather related to
the betting/pignistic level than to the credal level of beliefs.

4.1 Internal plausibility conflict of belief functions

Element ω0 should be element of all focal elements in correct non-conflicting cases, thus Pl({ω0})
should be equal to 1. When Pl({ω0}) < 1 there is some focal element X which does not include ω0,
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thus m(X) cannot be simply transferred to any Y ⊆ X which includes ω0. Such a BF is conflicting and
it is often mutually conflicting with other BFs. On the other hand there can be more focal elements
with plausibility 1 in less informative cases.

Let us define internal plausibility conflict of belief function Bel as

Pl-IntC(Bel) = 1−maxω∈ΩPl({ω}),

where Pl is the plausibility equivalent to Bel. This definition is in accordance with the assumption
from Section 3 that a BF is internally non-conflicting (BF has no internal conflict) whenever there exist
X ⊆ Ω, P l(X) = 1. Maximal internal (plausibility) conflict has Un: Pl-IntC(Un) = 1 − 1

n = n−1
n

as all elements ωi have the same plausibility 1
n in the case of Un and any change of belief masses

increases plausibility of some ω ∈ Ω, hence internal plausibility conflict is decreased.

4.2 Plausibility conflict between belief functions on two-element frame of discernment Ω2

For simplicity, let us suppose two-element frame of discernment Ω2 = {ω1, ω2} in this subsection.
VBF is 0 = (0, 0) on Ω2. VBF is usually assumed to be neutral with respect to belief combination.

This really holds for 0 = (0, 0) and Dempter’s rule of combination ⊕, i.e., (0, 0) ⊕ (a, b) = (a, b) for
any BF (a, b) on Ω2, see [4]. Pl P ((0, 0)) = ( 1

2 , 1
2 ) = 0′ which is neutral when BBFs are combined

with Demspter’s rule: (a, 1− a)⊕ ( 1
2 , 1

2 ) = (a, 1− a).
0, 0′ and all BFs (a, a) do not support any of elements of Ω2 because both of them have the same
bbms and also the same Pl P masses 1

2 . On the other hand all other BFs support one of ω1, ω2; ω1 is
supported by all BFs (a, b) for a > b (where Pl P ((a, b))(ω1) > 1

2 [6]), thus ω2 is opposed by these BFs.
ω1 is fully (categorically) supported and ω2 is fully opposed by the categorical BF > = (1, 0), where
Pl P ((1, 0)) = (1, 0). In the other words, ω1 is confirmed and ω2 is excluded or rejected by > = (1, 0).
Analogically ω1 is opposed and ω2 supported by any BF (a, b) where a < b.

VBF 0 = (0, 0) should be neutral thus it must be non-conflicting with any other BFs. Similarly
for 0′ = ( 1

2 , 1
2 ) and all BFs (a, a) which do not support or reject any other BF.

Let us assume two BBFs m1 = (0.6, 0.4) and m2 = (0.8, 0.2). There is a relatively high difference
between them and (m1 ∩©m2)(∅) = 0.44, but both of them support ω1 thus m1 and m2 should not be
in mutual conflict. m1 and m2 are different but non-conflicting. Let us suppose m1 = (0.6, 0.4) and
m3 = (0.45, 0.55) now. There is a less difference between them, and (m1 ∩©m3)(∅) = 0.51 is higher. m1

and m3 support different ωi thus they should be in a mutual conflict. Let us suppose m1 = (0.6, 0.4)
and m4 = (0.40, 0.45) now. There is less difference between m1 and m4, than between m1 and m2,
and (m1 ∩©m4)(∅) = 0.43 is also smaller; but m1 and m4 support different ωi thus they should be in
mutual conflict, despite of mutually non-conflicting m1 and m2 which have both greater difference
and greater mutual m(∅).

Similarly, all BFs which support ω1 (i.e., (a, b) such that a > b, Pl P ((a, b)) > 1
2 , i.e. (a, b) > 0′)

should not be in mutual conflict. On the other hand, there is a conflict between any two BFs which
support different ωi (i.e., (a, b), (c, d) such that a > b, c < d or a < b, c > d).

Let us define: two BFs Bel1, Bel2 on Ω2 are mutually conflicting whenever (Pl P (Bel1)(ω1) −
1
2 )(Pl P (Bel2)(ω1)− 1

2 ) < 0; they are mutually non-conflicting otherwise.
We would like to define the plausibility conflict between two mutually conflicting BFs (a, b), (c, d)

on Ω2 as
Pl-C0((a, b), (c, d)) = |Pl P ((a, b))(ω1)− Pl P ((c, d))(ω1)|.

Plausibility conflict should be 0 between any two mutually non-conflicting bbas.
Let us define difference between two BFs Bel1, Bel2 on Ω represented by m1,m2 as Diff(m1, m2) =∑

X⊂Ω
1
2 |m1(X)−m2(X)|, i.e., Diff((a, b), (c, d)) = 1

2 (|a− c|+ |b− d|).
Let us further define Pl-difference between two BFs Bel1, Bel2:

Pl-Diff(m1,m2) = Diff(Pl P (m1), P l P (m2)) which is more related to a support/opposition of
elements ωi by mi and to their plausibility conflictness.

Example 7 m1 = (0.4, 0.4), Pl-IntC(m1) = 0.4, m2 = (0.9, 0.1), Pl-IntC(m1) = 0.1, Diff(m1,m2) =
Pl-Diff(m1,m2) = 0.4, Pl-C(m1,m2) = 0.
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Observation 3 The following holds true for Pl-C0 on Ω2:
Pl-C0((a, b), (c, d)) = Pl-Diff((a, b), (c, d)) iff (a− b)(c− d) ≤ 0,
Pl-C0((a, b), (c, d)) = 0 iff (a− b)(c− d) ≥ 0.

4.3 Plausibility conflict between belief functions on general Ωn

Plausibility conflict between belief functions is based on normalized plausibility of elements of Ω. It
is computed separately for all elements of the frame of discernment Ω. VBF is usually assumed to
be neutral when belief functions are combined. Normalized plausibility masses (see e.g. [3, 6]) of
all ω ∈ Ω are Pl P (V BF )(ω) = 1

n in the case of VBF. Entire normalized plausibility of VBF is
Pl P (V BF ) = Un (which is idempotent and neutral w.r.t. combination ⊕ of BBFs).

Let us suppose a decision with respect to a given BF Bel: Whenever normalized plausibility
Pl P (Bel)(ω) is greater than 1

n , ω is supported by the BF in question. ω ∈ Ω is confirmed when
Pl P (Bel)(ω) = 1, i.e., when Bel({ω}) = 1 (when Pl(Ω \ {ω}) = 0). On the other hand, ω is opposed
when Pl P (Bel)(ω) < 1

n . ω is fully opposed (excluded or rejected) when Pl P (Bel)(ω) = 0 as bbms
of all X (ω ∈ X) are zeros (Pl({ω}) = 0) and all positive bbms are assigned only to focal elements Y
such that ω 6∈ Y (Bel(Ω \ {ω}) = 1).

If normalized plausibility masses Pl P (Bel1)(ω), Pl P (Bel2)(ω) are both ≥ 1
n or both ≤ 1

n we
will say that they are non-conflicting (Bel1 and Bel2 are non-conflicting w.r.t. ω). We will say that
Bel1 and Bel2 are non-conflicting when they are non-conflicting w.r.t. all ω ∈ Ω. It seems that these
normalized plausibility masses are conflicting whenever one of them is > 1

n and the other < 1
n . Let

us denote the set of all elements which have not non-conflicting normalized plausibility masses by
ΩPlC(Bel1, Bel2) = {ω ∈ Ω | (Pl P (Bel1)(ω)− 1/n)(Pl P (Bel2)(ω)− 1/n) < 0}.

We want to define plausibility conflict between belief functions Bel1, Bel2 (represented by bbas
m1 and m2) as the sum of differences of conflicting normalized plausibility masses by the following
formula

Pl-C0(Bel1, Bel2) =
∑

ω∈ΩP lC(Bel1,Bel2)

1
2
| Pl P (Bel1)(ω)− Pl P (Bel2)(ω) |

Unfortunately this expression produces/classifies conflicts even in some cases of simple inter-
nally non-conflicting BFs, see Example 8. It is caused because ω ∈ ΩPlC(Bel1, Bel2) has fre-
quently really conflicting normalized plausibility masses Pl P (Bel1)(ω) and Pl P (Bel2)(ω), but these
Pl P (Bel1)(ω) and Pl P (Bel2)(ω) are only potentially conflicting in general. Pl-C0(Bel1, Bel2) is
usually less than m(∅) in general examples, nevertheless in the case similar to those from Example 8
we have to use the following modified definition:

Pl-C(Bel1, Bel2) = min(Pl-C0(Bel1, Bel2), (m1 ∩©m2)(∅)).

We will say that Bel1 and Bel2 are non-conflicting whenever they are non-conflicting w.r.t. all ω ∈ Ω
or if (m1 ∩©m2)(∅) = 0, i.e., whenever Pl-C(Bel1, Bel2) = 0.

Example 8 Let us suppose Ω6 now. Let m1({ω1}) = 1, m2({ω1, ω2, ω3, ω4}) = 1. We obtain
Pl P (m1)(ω1) = 1 > 1

6 , Pl P (m1)(ωi) = 0 < 1
6 for i > 1; Pl P (m2)(ωi) = 1

4 > 1
6 for i = 1, 2, 3, 4,

Pl P (m2)(ωi) = 0 < 1
6 for i = 5, 6; normalized plausibility masses are conflicting for ω2, ω3, ω4, thus

Pl-C0(m1,m2) = 1
2 (1

4 + 1
4 + 1

4 ) = 3
8 . Nevertheless m1 and m2 seem to be intuitively non-conflicting.

Example 8 (cont.) (m1 ∩©m2)({ω1}) = 1, (m1 ∩©m2)(X) = 0 otherwise, specially also (m1 ∩©m2)(∅) =
0, thus m1 and m2 are combinationaly non-conflicting. When computing Pl-C(m1,m2) we obtain
Pl-C(m1,m2) = min( 3

8 , 0) = 0, hence there is neither any plausibility conflict between m1 and m2.
Hence m1 and m2 are really non-conflicting.

5 Comparative conflict between belief functions

Thirdly, let us suggest another idea of conflictness / non-conflictness between belief functions which
is motivated by interpretation of BFs and their corresponding bbas. We know that our belief on a
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specific situation can be usually specified by obtaining of a new evidence tending to decreasing size
of focal elements. The idea of comparative conflictness / non-conflictness is a specification of bbms
to smaller focal elements such that fit to focal elements of the other BF as much as possible. The
comparative conflict between BFs Bel1 and Bel2 is defined as the least difference of such more specified
bbms derived from the input m1 and m2.

Example 9 Let us start with a simple example on Ω2. Let m1 = (0.4, 0), m2 = (0, 0.4), m3 = (0.6, 0),
m4 = (0, 0.6).

All considered BFs are simple support functions, thus they have no internal conflicts either com-
binational or plausibility one. On the other hand BFs m1 and m2 are mutually conflicting in the
previous sense, there are both combinational and plausibility conflicts between them, similarly for BFs
m3 and m4. (m1 ∩©m2)(∅) = 0.16, (m3 ∩©m4)(∅) = 0.36, Pl P (m1) = ( 10

16 , 6
16 ), Pl P (m2) = ( 6

16 , 10
16 ),

Pl P (m3) = ( 10
14 , 4

14 ), Pl P (m4) = ( 4
14 , 10

14 ), and Pl-C0(m1, m2) = 6
16 = 0.375, Pl-C0(m3,m4) = 6

14 =
0.42857, thus Pl-C(m1,m2) = (m1 ∩©m2)(∅) = 0.16, Pl-C(m3,m4) = (m3 ∩©m4)(∅) = 0.36.

In the first case (of m1 and m2) we can specify part of bbms mi(Ω) to singletons to obtain numeri-
cally same, thus mutually non-conflicting BFs: m′

1 = (0.4, 0.4), m′
2 = (0.4, 0.4), thus Diff(m′

1,m
′
2) =

0 and cp-C(m1,m2) = 0, i.e. m1 and m2 are comparatively non-conflicting. Note that, m′
1(Ω2) > 0,

thus there are many other possibilities of non-conflicting bbm specifications of m1 and m2 in this
case: e.g. m′′

1 = (0.6, 0.4), m′′
2 = (0.6, 0.4), m′′′

1 = (0.5, 0.4), m′′′
2 = (0.5, 0.4), m′′′′

1 = (0.45, 0.50),
m′′′′

2 = (0.45, 0.50), etc.
In the second case (of m3 and m4) either specification of entire mi(Ω) does not produce non-

conflicting BFs: m′
3 = (0.6, 0.4), m′

4 = (0.4, 0.6), thus Diff(m′
3, m

′
4) = cp-C(m3, m4) = 0.2, because

there is no possibility to assign bbm 0.6 both to ω1 and ω2 (and reverse relocation of some bbm from
ω1 and/or ω2 to entire Ω2 is not a specifiation of bbms). Note that other specifications of bbms have
greater difference than m′

3 and m′
4 have; e.g. m′′

3 = (0.7, 0.3), m′′
4 = (0.3, 0.7), m′′′

3 = (0.6, 0.3),
m′′′

4 = (0.3, 0.6), m′′′′
3 = (0.8, 0.2), m′′′′

4 = (0.4, 0.6), where Diff(m′′
3 ,m′′

4) = 0.4, Diff(m′′′
3 , m′′

4) =
0.3, Diff(m′′′′

3 ,m′′′′
4 ) = 0.4, etc.

The comparative result is qualitatively different from combinational and plausibility approaches in
the case of comparatively non-conflicting m1 and m2 which are both plausibility and combinationally
mutually conflicting: Pl-C(m1,m2) = min(0.25, 0.16) = 0.16 (Pl-IntC(m1) = Pl-IntC(m2) = 0)
and C(m1,m2) = 0.16 (IntC(m1) = IntC(m2) = 0). There is no qualitative difference in the case of
comparatively conflicting m3 and m4, but in accordance with the first case the comparative conflict 0.2
is less than mutual plausibility and combinational conflicts are: Pl-C(m3,m4) = min(0.2857, 0.36) =
0.2857 (Pl-IntC(m3) = Pl-IntC(m4) = 0) and C(m3,m4) = 0.36 (IntC(m1) = IntC(m2) = 0).
The comparative result for the couple of BFs m3,m4 is not qualitatively different from combinational
and plausibility approaches, however also both combinational and plausibility mutual conflicts between
these BFs are greater than those between comparatively non-conflicting m1 and m2: C(m3,m4) =
0.36 > 0.16 = C(m1,m2) and Pl-C(m3,m4) = 0.2857 > 0.16 = Pl-C(m1,m2).

Example 10 Let us assume more general example on Ω3 now. Let m5({ω1}) = 0.3, m5({ω1, ω2}) =
0.6, m5({ω1, ω2, ω3}) = 0.1, m6({ω2}) = 0.3, m6({ω3}) = 0.1, m6({ω1, ω3}) = 0.5, m6({ω2, ω3}) =
0.1. There is neither combinational nor plausibility internal conflict in m5, there is 0.18 ≤ IntC(m6) ≤
0.36, Pl-IntC(m6) = 0.3, (m5 ∩©m6)(∅) = 0.21, there are the following normalized plausibilities
Pl P (m5) = ( 10

18 > 1
3 , 7

18 > 1
3 , 1

18 < 1
3 ), Pl P (m6) = ( 5

16 < 1
3 , 4

16 < 1
3 , 7

16 > 1
3 ), all the elements

ωi supported by m5 are opposed by m6 and vice versa, thus there is both combinational and plausibility
conflict between m5 and m6.

We can specify bbms of focal element to smaller ones (uniquely to singletons in this case) as it
follows: m′

5({ω1}) = 0.5, m′
5({ω2}) = 0.4, m′

5({ω3}) = 0.1, m′
6({ω1}) = 0.5, m′

6({ω2}) = 0.4,
m′

6({ω3}) = 0.1. We have obtained the numerically same BFs m′
5, m′

6, thus Diff(m′
5,m

′
6) = 0 and

m5 and m6 are comparatively non-conflicting.

The comparative approach to conflicts classifies less conflicting BFs than the previous two ap-
proaches do. Unfortunately no algorithm for specification of bbms to smaller focal elements has been
yet created. Thus this new approach can be applied only to simple illuminative examples now. An
elaboration of this approach remains as an open problem for future.
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6 Comparison of the presented approaches

Let us compare the presented approaches and Liu’s two-dimensional measure of conflict cf on three
examples. cf is defined as cf(mi, mj) = (m⊕(∅), difBetP

mj
mi ) in [8], where m⊕(∅) should be rather

m∩©(∅) (more precisely (mi ∩©mj)(∅)) in fact, and the second component difBetP
mj
mi is defined as

difBetP
mj
mi = maxA⊆Ω(|BetPmi(A)−BetPmj (A)|), we can simplify this using Diff(BetPmi , BetPmj )

according the following observation.

Observation 4 For difBetP , any bbms mi,mj and the corresponding pignistic probabilities BetPi,
BetPj the following holds true:

difBetPmj
mi

= Diff(BetPi, BetPj).

Proof: difBetP
mj
mi = |BetPmi(Am)−BetPmj (Am)| for some Am ⊂ Ω such that,

|BetPmi
(Am)−BetPmj

(Am)| ≥ |BetPmi
(A)−BetPmj

(A)| for all A ⊆ Ω.
i) Let us suppose difBetP

mj
mi = BetPmi

(Am) − BetPmj
(Am), i.e., BetPmi

(Am) ≥ BetPmj
(Am)

now. Thus there is BetPmi
({ω}) ≥ BetPmj

({ω}) for all ω ∈ Am and BetPmi
({ω}) ≤ BetPmj

({ω})
for all ω /∈ Am.

If it does not hold true and there is ωx ∈ Am such that BetPmi
({ωx}) < BetPmj

({ωx}) or
there is ωy ∈ Ω \ Am such that BetPmi({ωy}) > BetPmj ({ωy}). For ωx we obtain BetPmi(Am \
{ωx}) − BetPmj (Am \ {ωx}) = BetPmi(Am) − BetPmi({ωx}) − BetPmj (Am) + BetPmj ({ωx}) =
BetPmi(Am)− BetPmj (Am) + BetPmj ({ωx} − BetPmi({ωx}) > BetPmi(Am)− BetPmj (Am). Thus
existence of ωx is in contradiction with maximality of difference of BetP for Am.

Analogically for ωy we obtain BetPmi(Am ∪ {ωy}) − BetPmj (Am ∪ {ωy}) = BetPmi(Am) +
BetPmi({ωy}) − BetPmj (Am) − BetPmj ({ωy}) = BetPmi(Am) − BetPmj (Am) + BetPmi({ωy} −
BetPmj ({ωy}) > BetPmi(Am) − BetPmj (Am). Thus existence of ωy is in contradiction with maxi-
mality for Am again.

Hence difBetP
mj
mi =

∑
BetPmi

({ω})>BetPmj
({ω}) BetPmi({ω})−BetPmj ({ω}).

ii) Analogically, in the case of difBetP
mj
mi = − (BetPmi(Am) − BetPmj (Am)), there is

BetPmi({ω}) ≤ BetPmj ({ω}) for all ω ∈ Am and BetPmi({ω}) ≥ BetPmj ({ω}) for all ω /∈ Am.
Thus there is difBetP

mj
mi = −∑

BetPmi
({ω})<BetPmj

({ω}) BetPmi({ω})−BetPmj ({ω}) =∑
BetPmi

({ω})>BetPmj
({ω}) BetPmi({ω}) − BetPmj ({ω}), because

∑
ω∈Ω BetPmi({ω}) = 1 =∑

ω∈Ω BetPmj ({ω}), and
∑

ω∈Ω BetPmi({ω})−BetPmj ({ω}) = 0.

Thus we have difBetP
mj
mi =

∑
BetPmi

({ω})>BetPmj
({ω}) BetPmi({ω})−BetPmj ({ω}) =∑

BetPmi
({ω})<BetPmj

({ω}) BetPmi({ω})−BetPmj ({ω}) =
1
2 [

∑
BetPmi

({ω})>BetPmj
({ω}) BetPmi({ω})−BetPmj ({ω})

+
∑

BetPmi
({ω})<BetPmj

({ω}) BetPmi({ω})−BetPmj ({ω})] =

= 1
2 [

∑
BetPmi

({ω})>BetPmj
({ω}) BetPmi({ω})−BetPmj ({ω})+

∑
BetPmi

({ω})<BetPmj
({ω})(BetPmi({ω})−

BetPmj ({ω})) +
∑

BetPmi
({ω})=BetPmj

({ω}) BetPmi({ω})−BetPmj ({ω})] =
1
2

∑
ω∈Ω BetPmi({ω}) − BetPmj ({ω}) = Diff(BetPmi , BetPmj ) = Diff(BetPi, BetPj), because

BetPi, BetPj , are pignistic probabilities corresponding to mi, mj . ¤

Example 11 Let us suppose Ω3 = {ω1, ω2, ω3} now.
m1({ω1}) = 0.2, m1({ω2}) = 0.1, m1({ω1, ω2}) = 0.3, m1({ω1, ω3}) = 0.1, m1(Ω3) = 0.3,
m2({ω1}) = 0.3, m2({ω2}) = 0.1, m2({ω1, ω2}) = 0.1, m2({ω2, ω3}) = 0.1, m2(Ω3) = 0.4,
Pl P (m1)(ω1) = 0.45, Pl P (m1)(ω2) = 0.35, Pl P (m1)(ω3) = 0.20,
Pl P (m2)(ω1) = 0.40, Pl P (m1)(ω2) = 0.35, Pl P (m1)(ω3) = 0.25,
BetP1(ω1) = 0.50, BetP1(ω2) = 0.35, BetP1(ω3) = 0.15,
Diff(m1,m2) = 0.25, Pl-Diff(m1,m2) = 0.05, difBetP (m1,m2) = 0.033,
Diff(m1,m2) = 0.25, Pl-Diff(m1,m2) = 0.05, Diff(BetP1, BetP2) = 0.033,
(m1 ∩©m1)(∅) = 0.06, (m2 ∩©m2)(∅) = 0.12, (m1 ∩©m2)(∅) = 0.08,
0.03 ≤ IntC(m1) ≤ 0.06, 0.06 ≤ IntC(m2) ≤ 0.12, 0 ≤ C(m1,m2) ≤ 0.08, TotC(m1,m2) = 0.08,
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Pl-IntC(m1) = 0.1, Pl-IntC(m2) = 0.2, Pl-C(m1,m2) = 0,
m′

1({ω1}) = 0.3, m′
1({ω2}) = 0.1, m′

1({ω1, ω2}) = 0.2, m′
1({ω1, ω3}) = 0.1, m′

1({ω2, ω3}) = 0.1,
m′

1(Ω3) = 0.2,
m′

2({ω1}) = 0.3, m′
2({ω2}) = 0.1, m′

2({ω1, ω2}) = 0.2, m′
2({ω1, ω3}) = 0.1, m′

2({ω2, ω3}) = 0.1,
m′

2(Ω3) = 0.2,
(m′

1(Ω3) = m′
2(Ω3) > 0, thus there are many of such more specified bbms, similarly to Example 9)

Diff(m′
1,m

′
2) = 0, cp-C(m1,m2) = 0,

cf(m1, m2) = (m⊕(∅), difBetPm2
m1

) = (0.08, 0.033).

Example 12 Let us suppose Ω3 = {ω1, ω2, ω3} again and compare m1 to m3.
m3({ω2}) = 0.1, m3({ω3}) = 0.3, m3({ω1, ω2}) = 0.1, m3({ω2, ω3}) = 0.1, m3(Ω3) = 0.4,
Pl P (m3)(ω1) = 0.25, Pl P (m3)(ω2) = 0.35, Pl P (m3)(ω3) = 0.40,
BetP3(ω1) = 0.183, BetP3(ω2) = 0.333, BetP3(ω3) = 0.483,
Diff(m1,m3) = 0.45, Pl-Diff(m1,m3) = 0.2, Diff(BetP1, BetP3) = 0.333,
(m1 ∩©m1)(∅) = 0.06, (m3 ∩©m3)(∅) = 0.12, (m1 ∩©m3)(∅) = 0.23,
0.03 ≤ IntC(m1) ≤ 0.06, 0.06 ≤ IntC(m3) ≤ 0.12, 0.14 ≤ C(m1, m3) ≤ 0.23, TotC(m1,m3) = 0.23,
Pl-IntC(m1)=0.1, Pl-IntC(m3)=0.2, Pl-C(m1,m3)=0.2,
m′′

1({ω1}) = 0.2, m′′
1({ω2}) = 0.1, m′′

1({ω2}) = 0.3, m′′
1({ω1, ω2}) = 0.3, m′′

1({ω1, ω3}) = 0.0,
m′′

1({ω2, ω3}) = 0.1, m′′
1(Ω3) = 0.0,

m′′
3({ω1}) = 0.2, m′′

3({ω2}) = 0.1, m′′
3({ω2}) = 0.3, m′′

3({ω1, ω2}) = 0.3, m′′
3({ω1, ω3}) = 0.0,

m′′
3({ω2, ω3}) = 0.1, m′′

3(Ω3) = 0.0,
(m′′

1(Ω3) = m′′
3(Ω3) = 0 this time, but m′′

1 ,m′′
3 are not BBFs as m′′

i ({ω1, ω2}),m′′
i ({ω3, ω2}) > 0, thus

there are again many of such more specified bbms)
Diff(m′′

1 ,m′′
3) = 0, cp-C(m1, m3)=0,

cf(m1, m3) = (m⊕(∅), difBetPm3
m1

) = (0.23, 0.333).

Example 13 Let us suppose very conflicting Zadeh’s example on Ω3 = {ω1, ω2, ω3} now.
m1({ω1}) = 0.9, m1({ω2}) = 0.0, m1({ω3}) = 0.1, m1(Ω3) = 0.0,
m2({ω1}) = 0.0, m2({ω2}) = 0.9, m2({ω3}) = 0.1, m2(Ω3) = 0.0,
Pl P (m1)(ω1) = 0.9, Pl P (m1)(ω2) = 0.0, Pl P (m1)(ω3) = 0.1,
Pl P (m2)(ω1) = 0.0, Pl P (m1)(ω2) = 0.9, Pl P (m1)(ω3) = 0.1,
BetP1(ω1) = 0.9, BetP1(ω2) = 0.0, BetP1(ω3) = 0.1,
BetP2(ω1) = 0.0, BetP2(ω2) = 0.9, BetP2(ω3) = 0.1,
Diff(m1,m2) = 0.9, Pl-Diff(m1,m2) = 0.9, Diff(BetP1, BetP2) = 0.9,
(m1 ∩©m1)(∅) = 0.18, (m2 ∩©m2)(∅) = 0.18, (m1 ∩©m2)(∅) = 0.99,
0.09 ≤ IntC(m1) ≤ 0.18, 0.09 ≤ IntC(m2) ≤ 0.18, 0.81 ≤ C(m1, m2) ≤ 0.99, TotC(m1,m2) = 0.99,
Pl-IntC(m1) = 0.1, Pl-IntC(m2) = 0.1, Pl-C(m1,m2) = 0.9,
m′

1 = m1, m′
2 = m2 because everything is already focused to singletons,

cp-C(m1,m2) = 0.9, cf(m1, m2) = (m⊕(∅), difBetPm2
m1

) = (0.99, 0.9).

We can easily notice that all the approaches agree with the high conflictness of the Zadeh’s example,
the common feature of their results is, that the commonly used m(∅) = TotC is the most conflicting
and that the combinational conflict between mis is not precise (as its precise definition is still missing).

All the approaches have similar results in the first least conflicting Example 11. The most important
difference in this example is the fact, that there is no plausibility nor comparative conflict between
m1 and m2.

The greatest differences among the results are in the most general Example 12. There is again no
comparative conflict between m1 and m3 (as there exist non-conflicting common specification of both
bbms), but there is the plausibility conflict between them. If we assume that combinational conflict
is somewhere close to the middle of its interval, the highest conflict is classified by the common m(∅)
and Liu’s approaches. It reflects that there is no internal conflicts considered in these approaches.
There is neither any internal conflict in comparative approach, but this approach more reflects the
individual input bbms and usually produces the least conflict.

Both Liu’s and plausibility approaches use a probabilistic transformation for computing of conflict,
pignistic and normalized plausibility. Thus Liu’s conflict is more related to decisional pignistic level,
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while the plausibility more to credal combinational level (especially when Dempster’s rule or the non-
normalized conjunctive rule is used), because normalized plausibility transformation commutes with
Dempster’s rule [3, 6]. Nevertheless the main difference between these two approaches is not in different
pignistic transformations but in the fact that Liu does not distinguish differences from conflicts. Hence
any two different BFs supporting and opposing the same element(s) of Ω are conflicting in Liu’s
interpretation whenever there is any internal conflict there (whenever does not exist X ⊆ Ω such that
Pl(X) = 1). But such BFs are never mutually conflicting in the plausibility approach.

7 Open problems

The ideas presented in this report are brand new, thus they open a lot of questions and open problems.
The principal ones are the following:

• to find more precise specification of combinational conflict C(Bel1, Bel2) between BFs Bel1 and
Bel2;

• elaboration of plausibility approach to conflicts;

• to create an algorithm for common belief mass specification needed for exclusion of comparative
conflict;

• to create an algorithm for belief mass specifications of Bel1 and Bel2 with the least difference,
which is necessary for comparative conflict computation;

• to study mathematical properties of defined measures of conflicts;

• make a detail comparison of the presented combinational, plausibility and comparative ap-
proaches;

• make a more detail comparison of the new approaches to the classic m(∅) and to Liu’s approach
[8].

8 Conclusion

This theoretical study introduces three new approaches to conflicts of belief functions: new approach
to combinational conflicts, plausibility approach and comparative approach. It distinguishes internal
conflict of individual belief functions from their mutual conflict between them. Important distinctness
of differences of belief functions from their mutual conflicts is introduced and underlined. On the
other hand, the important role of m(∅) for conflict measurement was strenghtened, see combinational
and plausibility conflicts.

The presented ideas enable new deeper understanding of conflicts of belief functions. They can
be applied to studies of belief combination and fusion of beliefs. The series of open problems may be
challenging for a future research. The ideas presented in this report are here to open new scientific
discussions about this interesting and complex topic.
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