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1 Introduction

In our recent paper [24]we presented a survey of forty necessary and sufficient condi-
tions for regularity of interval matrices. It is now followed by a survey of properties of
the inverse interval matrix which is closely related to the previous topic because the
inverse interval matrix is defined for regular interval matrices only.

After some preliminaries in Sections 2 and 3, the inverse interval matrix is defined in
Section 4. Next we introduce matrices By defined for each±1-vector y and demonstrate
their use for inverse matrix representation (Theorem 5) and for establishing finite
formulae for the inverse interval matrix (Theorem 7). Then we present Coxson’s
result [5] showing that computing the inverse interval matrix is NP-hard. In the next
Section 10 we show that for an interval matrix with unit midpoint the inverse interval
matrix can be given explicitly by simple formulae (Theorem 12). Explicit formulae for
an enclosure of the inverse of a strongly regular interval matrix are given in Section 11.
In the next four sections we give explicit formulae for the interval inverse of interval
matrices that are either inverse sign stable (Section 12), or are of inverse sign pattern
(Section 13), or are nonnegative invertible (Section 14), or have uniform width (Section
15). In the last Section 16 we describe available software for computing the inverse
interval matrix or its enclosure. The Appendix contains a MATLAB-like description
of an algorithm for solving an absolute value equation which is used in Section 6 for
computation of the matrices By.

2 Notations

We use the following notations. Aij denotes the ijth entry, Ai• the ith row and A•j the
jth column of a matrix A. Matrix inequalities, as A ≤ B or A < B, are understood
componentwise. A ◦ B denotes the Hadamard (entrywise) product of A,B ∈ Rm×n,
i.e., (A ◦B)ij = AijBij for each i, j. Minimum (or maximum) matrix of a compact (in
particular, finite) set of matrices X is defined componentwise, i.e.,

(min{A | A ∈ X })ij = min{Aij | A ∈ X },

(max{A | A ∈ X })ij = max{Aij | A ∈ X }
for each i, j. The absolute value of a matrix A = (aij) is defined by |A| = (|aij|). For
each matrix A we define its sign matrix sgn(A) by

(sgn(A))ij =

{
1 if Aij ≥ 0,

−1 if Aij < 0

for each i, j. The same notations also apply to vectors that are considered one-column
matrices. I is the unit matrix, ej is the jth column of I, e = (1, . . . , 1)T is the vector
of all ones, and E = eeT is the matrix of all ones. Yn = {y | |y| = e} is the set of all
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±1-vectors in Rn, so that its cardinality is 2n. For each y ∈ Rn we denote

Ty = diag (y1, . . . , yn) =




y1 0 . . . 0
0 y2 . . . 0
...

...
. . .

...
0 0 . . . yn


 ,

and %(A) is the spectral radius of A.

3 Interval matrices

Given two n× n matrices Ac and ∆, ∆ ≥ 0, the set of matrices

A = {A | |A− Ac| ≤ ∆}

is called a (square) interval matrix with midpoint matrix Ac and radius matrix ∆.
Since the inequality |A−Ac| ≤ ∆ is equivalent to Ac −∆ ≤ A ≤ Ac + ∆, we can also
write

A = {A | A ≤ A ≤ A} = [A,A],

where A = Ac −∆ and A = Ac + ∆ are called the bounds of A.
Given an n× n interval matrix A, we define matrices

Ayz = Ac − Ty∆Tz (3.1)

for each y, z ∈ Yn. The definition implies that

(Ayz)ij = (Ac)ij − yi∆ijzj =

{
Aij if yizj = −1,
Aij if yizj = 1

(i, j = 1, . . . , n),

so that Ayz ∈ A for each y, z ∈ Yn. Since the cardinality of Yn is 2n, the cardinality of
the set of matrices {Ayz | y, z ∈ Yn} is at most 22n.

4 Definition of the inverse interval matrix

A square interval matrix A is called regular if each A ∈ A is nonsingular, and it is
said to be singular otherwise (i.e., if it contains a singular matrix). In particular, an
interval matrix A = [Ac −∆, Ac + ∆] with

%(|A−1
c |∆) < 1 (4.1)

is regular (Beeck [3]); interval matrices satisfying (4.1) are called strongly regular.
Inverse interval matrix is defined for regular interval matrices only.
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Definition. For a regular interval matrix A we define its inverse interval matrix
A−1 = [B,B] by

B = min {A−1 | A ∈ A },
B = max{A−1 | A ∈ A }

(componentwise).
Comment. This means that

Bij = min { (A−1)ij | A ∈ A }, (4.2)

Bij = max{ (A−1)ij | A ∈ A } (i, j = 1, . . . , n). (4.3)

Since A is regular, the mapping A 7→ A−1 is continuous in A and all the minima
and maxima in (4.2), (4.3) are attained. Thus, A−1 is the narrowest interval matrix
enclosing the set of matrices {A−1 | A ∈ A }. Instead of “inverse interval matrix”, we
sometimes say simply “interval inverse”.

5 The matrices By

First we show that regularity of an n×n interval matrix implies existence of 2n uniquely
determined matrices.

Theorem 1. [19, Thm. 5.1, (A3)] For a square interval matrix A = [Ac−∆, Ac +
∆], the following assertions are equivalent:

(i) A is regular,
(ii) for each y ∈ Yn the matrix equation

AcB − Ty∆|B| = I (5.1)

has a unique matrix solution By,

(iii) for each y ∈ Yn the matrix equation (5.1) has a solution.

The main message here is the implication “(i)⇒(ii)”; (iii) is added for completeness.
It is useful to formulate the equation (5.1) columnwise.

Theorem 2. Let A be regular. Then for each y ∈ Yn and for each j ∈ {1, . . . , n}
we have

(By)•j = xyj,

where xyj is the unique solution of the equation

Acx− Ty∆|x| = ej. (5.2)
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This theorem forms the basis of an algorithm for computing the By’s presented in
the next section. We have still another expression for the jth column of By by means
of the matrices Ayz introduced in (3.1).

Theorem 3. Let A be regular. Then for each y ∈ Yn and for each j ∈ {1, . . . , n}
we have

(By)•j =
(
A−1

yz(j)

)
•j, (5.3)

where
z(j) = sgn((By)•j).

Since z(j) depends on j, we cannot generally state that By = A−1
yz for some z. It

may even be B−1
y /∈ A. As a consequence of (5.3) we obtain that

(By)ij =
(
A−1

yz(j)

)
ij

(5.4)

for each y, i, j. Of course, (5.3) and (5.4) cannot be directly used for computation of
(By)•j since they contain z(j), the sign vector of the result.

6 Computation of the By’s

Theorem 2 shows us a way how to compute the matrix By column-by-column provided
we are able to solve an equation of the type

Ax + B|x| = b, (6.1)

called an absolute value equation. This can be done by a finite algorithm signaccord
from [23] whose detailed MATLAB-like description is given in the Appendix. Its
syntax is

[x, S, flag] = signaccord(A,B, b),

where A,B, b is the data of (6.1), x is a solution of (6.1) (if found), S is a singular matrix
in the interval matrix [A − |B|, A + |B| ] (if found), and flag is a verbal description
of the output ( ′solution′ or ′singular′). The behavior of the algorithm is described in
Theorem 25. Its important feature is that for a regular interval matrix [A−|B|, A+|B| ]
it always finds a solution to (6.1) (in infinite precision arithmetic), which in this case
is unique [23]. As reported in [23], the algorithm takes an average number of steps
(passes through the while loop) about 0.11 · n, where n is the matrix size.

Solving the equations (5.2) for j = 1, . . . , n, we obtain an algorithm (Fig. 6.1) for
computing the matrix By for a given y.

The following theorem (unpublished) follows directly from Theorems 2 and 25.

Theorem 4. For each square interval matrix A and for each y ∈ Yn the algorithm
(Fig. 6.1) in a finite number of steps either finds a matrix By satisfying (5.1), or
issues an empty matrix By in which case A is singular.

It should be noted that success in computation of a single matrix By does not
guarantee regularity; it is the existence of solutions of all the equations (5.1), y ∈ Yn

that implies regularity of A (Theorem 1, (iii)).
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function By = bymatrix (A, y)
for j = 1 : n

[x, S, flag] = signaccord (Ac,−Ty∆, ej);
if flag = ′singular′, By = [ ]; return
end
(By)•j = x;

end

Figure 6.1: An algorithm for computing By.

7 Inverse matrix representation theorem

The following theorem, which is of independent interest, brings us closer to the for-
mulae for the inverse interval matrix to be given in the next section.

Theorem 5. [19, Thm. 6.1] Let A be regular. Then for each A ∈ A there exist
nonnegative diagonal matrices Ly, y ∈ Yn, satisfying

∑
y∈Yn

Ly = I such that

A−1 =
∑
y∈Yn

ByLy (7.1)

holds.

The formula (7.1) implies that for each i, j we have

(A−1)ij =
∑
y∈Yn

(By)ij(Ly)jj (7.2)

where all the (Ly)jj’s are nonnegative and
∑

y∈Yn
(Ly)jj = Ijj = 1, hence (A−1)ij is a

convex combination of the values (By)ij over all y ∈ Yn.
Using the formula (5.3), we can reformulate the representation theorem in terms of

the matrices Ayz defined in (3.1).

Theorem 6. [21, Thm. 1.1] Let A be regular. Then for each A ∈ A there exist
nonnegative diagonal matrices Lyz, y, z ∈ Yn, satisfying

∑
y,z∈Yn

Lyz = I such that

A−1 =
∑

y,z∈Yn

A−1
yz Lyz (7.3)

holds.

Obviously, the convex combination property again holds accordingly here. The
expansion (7.3) is perhaps more clear than (7.1) because it employs explicitly expressed
matrices A−1

yz instead of rather obscure matrices By, but the number of matrices A−1
yz

is 22n compared to “only” 2n matrices By.
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8 Formulae for the inverse interval matrix

Finally, using (7.2) and (5.4), we obtain the following simply formulated, but important
result.

Theorem 7. [19, Thm. 6.2] Let A be regular. Then its inverse A−1 = [B, B] is
given by

B = min
y∈Yn

By,

B = max
y∈Yn

By.

Similarly, from Theorem 6 we can derive an analogous result.

Theorem 8. [21, (1.3), (1.4)] Let A be regular. Then its inverse A−1 = [B,B] is
given by

B = min
y,z∈Yn

A−1
yz ,

B = max
y,z∈Yn

A−1
yz .

The formulation of Theorem 8 is advantageous in that it leads us to some clues
about matrices at which bounds of the inverse interval matrix are attained.

Theorem 9. [21, Thm. 1.2] Let A be regular and let i, j ∈ {1, . . . , n}. Then we
have:

(i) Bij = (A−1
yz )ij for some y, z ∈ Yn satisfying

yT ◦ (A−1
yz )i• ≤ 0T , (8.1)

z ◦ (A−1
yz )•j ≥ 0, (8.2)

(ii) Bij = (A−1
yz )ij for some y, z ∈ Yn satisfying

yT ◦ (A−1
yz )i• ≥ 0T ,

z ◦ (A−1
yz )•j ≥ 0.

For instance, the Hadamard product inequalities (8.1), (8.2) are equivalent to

yk(A
−1
yz )ik ≤ 0 (k = 1, . . . , n), (8.3)

zh(A
−1
yz )hj ≥ 0 (h = 1, . . . , n).

Thus, if we know in advance that e.g. Bik > 0, then (A−1
yz )ik > 0 for each y, z ∈ Yn

and (8.3) implies that yk = −1; similarly, if Bik < 0, then (8.3) gives yk = 1. Hence,
preliminary knowledge of the signs of the bounds may lead us to reduction, sometimes
significant, of the number of matrices Ayz to be inverted. We shall explore these ideas
further in Section 12.
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9 NP-hardness

The formulae given for the inverse interval matrix in Theorems 7 and 8 are inherently
exponential. The question whether essentially simpler formulae may be found was
answered in the negative by Coxson [5] who proved that computation of the inverse
interval matrix is NP-hard.

Theorem 10. [5] The following problem is NP-hard:
Instance. A strongly regular interval matrix A = [Ac −∆, Ac + ∆] with symmetric

rational Ac and ∆.
Question. Is B11 ≥ 1, where [B,B] = A−1 ?

Hence, if the famous conjecture “P 6=NP” is true, then there does not exist a
polynomial-time algorithm for computing the interval inverse. In view of this fact,
in what follows we shall concentrate on special classes of interval matrices for which
the inverse can be computed by simpler means.

10 Inverse of an interval matrix with unit midpoint

The first such a class is formed by interval matrices with unit midpoint, i.e., of the
form A = [I −∆, I + ∆]. Such matrices are regular if and only if %(∆) < 1 holds [16,
Prop. 4.1], which is equivalent to

M := (I −∆)−1 ≥ 0. (10.1)

Hence, we assume that %(∆) < 1 throughout this section. The main point here consists
in the fact all the matrices By, y ∈ Yn can be described explicitly. The following
theorem gives a general matrix formula (10.2) as well as three different componentwise
formulae (10.3), (10.4), and (10.5). We use M = (mij) given by (10.1) and µ = (µj)
defined by

µj =
mjj

2mjj − 1
(j = 1, . . . , n).

Theorem 11. [16, Thm. 4.2] Let %(∆) < 1. Then for each y ∈ Yn the unique
solution of the matrix equation2

B − Ty∆|B| = I

is given by
By = TyMTy + Ty(M − I)Tµ(I − Ty), (10.2)

i.e. componentwise

(By)ij = yiyjmij + yi(1− yj)(mij − Iij)µj, (10.3)

2This is the equation (5.1) with Ac = I.
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or

(By)ij =





yimij if yj = 1,
yi(2µj − 1)mij if yj = −1 and i 6= j,
µj if yj = −1 and i = j,

(10.4)

or

(By)ij =
(yi + (1− yi)Iij)mij

yj + (1− yj)mjj

(10.5)

(i, j = 1, . . . , n).

Using Theorem 7, we obtain simple formulae for the interval inverse in this case.

Theorem 12. [16, Thm. 4.3] Let A = [I − ∆, I + ∆] with %(∆) < 1. Then the
inverse interval matrix A−1 = [B,B] is given by

B = −M + Tκ,

B = M, (10.6)

where

κj =
2m2

jj

2mjj − 1
(j = 1, . . . , n),

or componentwise

Bij =

{ −mij if i 6= j,
µj if i = j,

Bij = mij

(i, j = 1, . . . , n).

In particular, we have this consequence.

Theorem 13. [16, Cor. 4.4] If %(∆) < 1, then the inverse interval matrix [I −
∆, I + ∆]−1 = [B,B] satisfies

1
2
≤ Bjj ≤ 1 ≤ Bjj

for each j.

According to (10.6), B = (I − ∆)−1. The last theorem of this section reveals at
what matrices the entries of B are attained.

Theorem 14. [16, Thm. 5.1] For each i, j we have:

(i) if i 6= j, then
Bij = (I − Ty∆Ty)

−1
ij

for each y ∈ Y satisfying yiyj = −1,

(ii) if i = j, then
Bjj = (I − Ty∆Tz)

−1
jj

for each y ∈ Y satisfying yj = −1 and z = y + 2ej.
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11 Enclosure of the inverse interval matrix

An interval matrix C is called an enclosure of A−1 if A−1 ⊆ C holds. Computation of
an enclosure of the inverse of a strongly regular interval matrix can be performed in
polynomial time, as shown in the following theorem which is a follow-up of previous
results by Hansen [10], Bliek [4] and Rohn [20] on interval linear equations.

Theorem 15. [6, Thm. 2.40] Let A = [Ac −∆, Ac + ∆] be strongly regular. Then
we have

A−1 ⊆ [B,B],

where

M = (I − |A−1
c |∆)−1,

µ = (M11, . . . , Mnn)T ,

Tν = (2Tµ − I)−1,

B
˜

= −M |A−1
c |+ Tµ(A−1

c + |A−1
c |),

B̃ = M |A−1
c |+ Tµ(A−1

c − |A−1
c |),

B = min{B
˜

, TνB˜
},

B = max{B̃, TνB̃}.

Other types of enclosures were studied by Hansen [8], Hansen and Smith [9], Herzber-
ger and Bethke [13], and Herzberger [11], [12].

Preliminary knowledge of an enclosure may make computation of the interval inverse
easier, see Theorem 17 below.

12 Inverse sign stability

Let Z be a matrix satisfying |Z| = E, i.e., a ±1-matrix. We say that a regular interval
matrix A is inverse Z-stable if

Z ◦ A−1 > 0

holds for each A ∈ A. This means that for each i, j, either (A−1)ij < 0 for each A ∈ A
(if Zij = −1), or (A−1)ij > 0 for each A ∈ A (if Zij = 1). We say simply that A is
inverse sign stable if it is inverse Z-stable for some Z.

We have the following finite characterization.

Theorem 16. [21, Thm. 2.1] A is inverse Z-stable if and only if each Ayz is
nonsingular and

Z ◦ A−1
yz > 0 (12.1)

holds for each y, z ∈ Yn.
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Notice that regularity of A is not assumed; it follows from (12.1). The next theorem
gives a sufficient inverse Z-stability condition verifiable in polynomial time.

Theorem 17. [improved version of [21], Thm. 2.2] If A is strongly regular and if

B ◦B > 0

holds, where B,B are as in Theorem 15, then A is inverse Z-stable, where Z = sgn(B).

The main reason for introducing inverse Z-stable matrices is the following theorem
which gives explicit componentwise formulae for entries of the bounds of the inverse
interval matrix. It is an easy consequence of Theorem 9.

Theorem 18. [21, Thm. 2.3] Let A be inverse Z-stable. Then the bounds of its
inverse A−1 = [B,B] are given by the explicit formulae

Bij = (A−1
−y(i),z(j))ij

Bij = (A−1
y(i)z(j))ij (i, j = 1, . . . , n),

where y(i) = sgn((Zi•)T ) and z(j) = sgn(Z•j) for each i, j.

13 Inverse sign pattern

Let A be regular. If there exist (fixed) z, y ∈ Yn such that

(zyT ) ◦ A−1 ≥ 0 (13.1)

holds for each A ∈ A, then A is said to be of the inverse sign pattern (z, y). In other
words, for each i, j we have ziyj(A

−1)ij ≥ 0 for each A ∈ A, so that ziyj prescribes the
sign of (A−1)ij. If strict inequality holds in (13.1), then A is inverse zyT -stable. The
property (13.1) can be succinctly reformulated as

TzA
−1Ty ≥ 0

for each A ∈ A. It is a rather surprising fact that for both the characterization and
the explicit form of interval inverse we need only two matrices in this case, namely
A−1

yz and A−1
−y,z.

Theorem 19. [19, Thm. 4.6] A is of the inverse sign pattern (z, y) if and only if
Ayz and A−y,z are nonsingular and

TzA
−1
yz Ty ≥ 0, (13.2)

TzA
−1
−y,zTy ≥ 0 (13.3)

hold3.
3Which implicitly asserts that the two conditions (13.2) and (13.3) imply regularity of A.
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The following theorem has not been published so far.

Theorem 20. If A is of the inverse sign pattern (z, y), then its inverse interval
matrix is given by

A−1 = [min{A−1
yz , A−1

−y,z}, max{A−1
yz , A−1

−y,z}]. (13.4)

See Garloff [7] for the special case of y = z = (1,−1, 1,−1, . . . , (−1)n−1)T .

14 Nonnegative invertibility

An interval matrix A is said to be nonnegative invertible if it is of the inverse sign
pattern (e, e), i.e., if

A−1 ≥ 0

holds for each A ∈ A. As immediate consequences of Theorems 19 and 20 we obtain
the following two results.

Theorem 21. [14] A is nonnegative invertible if and only if A−1 ≥ 0 and A
−1 ≥ 0.

Theorem 22. [15] If A = [A,A] is nonnegative invertible, then

A−1 = [A
−1

, A−1]. (14.1)

The last formula follows from the fact that A−1−A
−1

= A−1(A−A)A
−1 ≥ 0 which

gives A−1 ≥ A
−1

, hence (13.4) implies (14.1). Finally, we have the following inverse
expansion theorem.

Theorem 23. [18, Thm. 2] If A is inverse nonnegative, then for each A ∈ A there
holds

A−1 =
( ∞∑

j=0

(A
−1

(A− A))j
)
A
−1

.

15 Uniform width

An interval matrix A is said to be of uniform width if it is of the form

A = [Ac − αE,Ac + αE] (15.1)

for some α ≥ 0. For sufficiently small α, its inverse can be again expressed explicitly.
Let us denote

c = |A−1
c |e,

d = |A−1
c |T e.
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Theorem 24. [17, Thm. 2] Let Ac be nonsingular and let α ≥ 0 satisfy

α(cdT + ‖c‖1|A−1
c |) < |A−1

c |. (15.2)

Then for the interval inverse [B,B] of (15.1) we have

Bij = (A−1
c )ij − αcidj

1 + αz(j)T A−1
c y(i)

,

Bij = (A−1
c )ij +

αcidj

1− αz(j)T A−1
c y(i)

(i, j = 1, . . . , n),

where

y(i) = sgn(((A−1
c )i•)T ),

z(j) = sgn((A−1
c )•j).

The condition (15.2) provides for both strong regularity and inverse sign stability
of A.

16 Software

The freely available verification software package VERSOFT [2] written in INTLAB
[25], [26], a toolbox of MATLAB, contains a file VERINVERSE.M [1] for computing
a verified inverse of a square interval matrix. Its syntax is

[B,S]=verinverse(A)

where A is an interval matrix, B is its verified interval inverse (if found), and S is a
very tight interval matrix which is a part of A and is verified to contain a singular
matrix in A (if found). B and S are never assigned numerical values simultaneously; at
least one of them is a matrix of NaN’s as the two options - regularity and singularity -
exclude each other. The interval matrix B, if computed, is verified to contain the
interval inverse of A and the overestimation is solely due to the outward rounding
committed; in infinite precision arithmetic it would compute the exact interval inverse.
It is based on a not-a-priori-exponential algorithm hull for solving interval linear
equations described in [22]; its theoretical basis and implementation details have not
been published. Nevertheless, the computation may occasionally last long as the
problem is NP-hard (Theorem 10). In such cases we recommend computation of a
polynomial-time enclosure described in Theorem 15. This enclosure has not been
included into VERSOFT. INTLAB users may employ the function INV.M adapted
for an interval argument by S. M. Rump [26].
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17 Appendix: An algorithm for solving the abso-

lute value equation

This appendix contains a MATLAB-like description of an algorithm for solving the
absolute value equation accompanied by a finite termination theorem. Both these
results were referred to in Section 6.

Theorem 25. [23, Thm. 3.1] For each A,B ∈ Rn×n and each b ∈ Rn, the sign
accord algorithm (Fig. 17.1) in a finite number of steps either finds a solution of the
equation

Ax + B|x| = b,

or states singularity of the interval matrix [A− |B|, A + |B| ] (and, in most cases, also
finds a singular matrix S ∈ [A− |B|, A + |B| ]).
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function [x, S, flag] = signaccord (A,B, b)
% Finds a solution to Ax + B|x| = b or states
% singularity of [A− |B|, A + |B| ].
x = [ ]; S = [ ]; flag = ′singular′;
if A is singular, S = A; return, end
p = 0 ∈ Rn;
z = sgn(A−1b);
if A + BTz is singular, S = A + BTz; return, end
x = (A + BTz)

−1b;
C = −(A + BTz)

−1B;
while zjxj < 0 for some j

k = min{j | zjxj < 0};
if 1 + 2zkCkk ≤ 0

S = A + B(Tz + (1/Ckk)eke
T
k );

x = [ ];
return

end
pk = pk + 1;
if log2 pk > n− k, x = [ ]; return, end
zk = −zk;
α = 2zk/(1− 2zkCkk);
x = x + αxkC•k;
C = C + αC•kCk•;

end
flag = ′solution′;

Figure 17.1: The sign accord algorithm [23].
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