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Jǐŕı Rohn1

Technical report No. V-1072

20.04.2010

Abstract:

As the main result of this paper it is proved that an interval matrix [Ac − ∆, Ac + ∆] is
strongly regular if and only if the matrix inequality M(I − |I − RAc| − |R|∆) ≥ I has a
solution M ≥ 0 and R (I is the identity matrix). Several consequences of this result are
drawn.
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1 Introduction

An n× n interval matrix

A = [Ac −∆, Ac + ∆] = {A | |A− Ac| ≤ ∆ }

is called strongly regular [3] if Ac is nonsingular and

%(|A−1
c |∆) < 1 (1.1)

holds. In view of well-known properties of nonnegative matrices (see the equivalence
of (i) and (ii) in Theorem 1 below), the condition (1.1) can be equivalently written as

(I − |A−1
c |∆)−1 ≥ 0. (1.2)

Evaluation of the left-hand side of (1.2) requires computation of two exact inverses.
In this paper we show that the condition (1.2) can be equivalently replaced by the
condition of solvability of the matrix inequality

M(I − |I −RAc| − |R|∆) ≥ I, (1.3)

where M,R ∈ Rn×n and M is required to be nonnegative. In the preliminary an-
nouncement [6] from 1994, which was never followed by a full paper, this author
mentioned that “it can be shown that matrices R and M ≥ 0 satisfying (1.3) exist if
and only if (1.1) holds”. Now, almost exactly 16 years after writing [6], the author
has returned to the task of filling in this gap. This is done in Theorem 3 below whose
consequence (Theorem 4) also states that if the inequality (1.3) has a solution M ≥ 0
and R, then it also has a particular solution M0 = (I − |A−1

c |∆)−1 ≥ 0 and R0 = A−1
c .

Thus, M and R can be viewed as approximations of the exact inverses M0 and R0. In
the last Theorem 5 we sum up some consequences of solvability of (1.3). In particular,
we prove that if M ≥ 0, R solve (1.3), then

|A−1 −R| ≤ (M − I)|R|

holds for each A ∈ A. We do not give any applications of these results here, having
in mind writing another paper about these issues.

We use the following notations: I is the unit matrix, %(A) denotes the spectral
radius of A, for A = (aij) we denote its absolute value by |A| = (|aij|), and matrix
inequalities are understood componentwise.

2 Auxiliary results

In the proofs to follow, we shall essentially use spectral properties of nonnegative
matrices that are summed up in the following two theorems. The proofs can be found
in Horn and Johnson [4] or Meyer [5].

2



Theorem 1. For a nonnegative square matrix G, the following assertions are equiv-
alent:

(i) %(G) < 1,

(ii) I −G is nonsingular and (I −G)−1 ≥ 0,
(iii) Gj → 0 as j →∞,

(iv) Gx < x for some x > 0.

Moreover, if any of these conditions is met, then (I −G)−1 =
∑∞

j=0 Gj.

Theorem 2. If A,B ∈ Rn×n satisfy |A| ≤ B, then %(A) ≤ %(|A|) ≤ %(B).

3 Characterization

In this section we show that strong regularity of [Ac − ∆, Ac + ∆] is equivalent to
solvability of the matrix inequality

M(I − |I −RAc| − |R|∆) ≥ I, (3.1)

where M,R ∈ Rn×n, and M is required to be nonnegative. Alternatively, we can also
write (3.1) as

M(I −G) ≥ I, (3.2)

where
G = |I −RAc|+ |R|∆ (3.3)

is a nonnegative matrix. We have this result.

Theorem 3. An interval matrix A = [Ac − ∆, Ac + ∆] is strongly regular if and
only if the inequality (3.1) has a solution M , R, where M ≥ 0.

Proof. Let (3.1) have a solution M ≥ 0 and R. Then for G given by (3.3) we have
(3.2), which can be written as

I + MG ≤ M.

Postmultiplying this inequality by G and adding I to both sides we obtain

I + G + MG2 ≤ I + MG ≤ M

and by induction
k∑

j=0

Gj + MGk+1 ≤ M

for k = 0, 1, 2, . . .. In view of nonnegativity of M , this shows that the nonnegative
matrix series

∑∞
j=0 Gj satisfies

∞∑
j=0

Gj ≤ M, (3.4)
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hence it is convergent, so that Gj → 0 and consequently

%(G) < 1 (3.5)

(Theorem 1). Now we have

I −RAc ≤ |I −RAc| ≤ G,

hence by Theorem 2,

%(I −RAc) ≤ %(|I −RAc|) ≤ %(G) < 1. (3.6)

Since %(I −RAc) < 1, the matrix

RAc = I − (I −RAc) (3.7)

is nonsingular, which gives that both Ac and R are nonsingular. Moreover, (3.7)
implies that

A−1
c R−1 = (RAc)

−1 =
∞∑

j=0

(I −RAc)
j

(Theorem 1), hence

A−1
c =

∞∑
j=0

(I −RAc)
jR,

and thus also

|A−1
c | ≤

∞∑
j=0

|I −RAc|j|R| = (I − |I −RAc|)−1|R|

(because
∑∞

j=0 |I −RAc|j is again convergent by (3.6)), and

|A−1
c |∆ ≤ (I − |I −RAc|)−1|R|∆. (3.8)

Since %(G) < 1, Theorem 1 implies existence of an x > 0 satisfying Gx < x, i.e.,

|I −RAc|x + |R|∆x < x,

hence

|R|∆x < (I − |I −RAc|)x
and

(I − |I −RAc|)−1|R|∆x < x (3.9)

in view of (3.6). Now, from (3.8) and (3.9) we finally obtain

|A−1
c |∆x ≤ (I − |I −RAc|)−1|R|∆x < x,
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where x > 0, hence %(|A−1
c |∆) < 1 by Theorem 1, which proves that A is strongly

regular. Conversely, if A is strongly regular, then (I − |A−1
c |∆)−1 ≥ 0 again by

Theorem 1 and

M0 = (I − |A−1
c |∆)−1 ≥ 0, (3.10)

R0 = A−1
c (3.11)

satisfy (3.1) as an equation. 2

Thus we have also proved the following result.

Theorem 4. If the inequality (3.1) has a solution M ≥ 0 and R, then it also has a
particular solution M0 ≥ 0 and R0 given by (3.10), (3.11).

4 Consequences

Below, we list some consequences of solvability of the inequality (3.1).

Theorem 5. Let (3.1) have a solution M ≥ 0 and R. Then we have:

(a) %(|I −RAc|+ |R|∆) < 1,

(b) (I − |I −RAc| − |R|∆)−1 ≤ M ,
(c) %(I −RAc) < 1,

(d) R is nonsingular,

(e) [R−1 −∆, R−1 + ∆] is strongly regular,
(f) each A ∈ [Ac −∆, Ac + ∆] is nonsingular and A−1 =

∑∞
j=0(I −RA)jR,

(g) |A−1 −R| ≤ (M − I)|R| for each A ∈ A.

Proof. The assertions (a), (c) and (d) have been proved in the proof of Theorem 3,
and (b) is a consequence of (3.4). From (a) it follows that %(|R|∆) ≤ %(|I − RAc| +
|R|∆) < 1, which means that [R−1−∆, R−1 +∆] is strongly regular by definition, thus
proving (e). To prove the remaining two assertions, take an A ∈ A. Then it satisfies
the identity

RA = I − (I −RA) (4.1)

and since

|I −RA| = |I −RAc + R(Ac − A)| ≤ |I −RAc|+ |R|∆ = G, (4.2)

there holds
%(I −RA) ≤ %(G) < 1

by Theorem 2 and (3.5), so that (4.1) shows that RA is nonsingular, hence A is
nonsingular. Next, from (4.1) it follows

A−1R−1 =
∞∑

j=0

(I −RA)j,
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hence

A−1 =
∞∑

j=0

(I −RA)jR, (4.3)

which proves (f). Finally, from (4.3), (4.2) and (3.4) we have that

|A−1 −R| ≤
∞∑

j=1

(|I −RAc|+ |R|∆)j|R| = (
∞∑

j=0

Gj − I)|R| ≤ (M − I)|R|,

which concludes the proof. 2

A square interval matrix A is called regular if each A ∈ A is nonsingular; a strongly
regular interval matrix is regular (Beeck [1]). For a regular interval matrix A, its
inverse interval matrix A−1 is defined as the narrowest interval matrix containing the
set {A−1 | A ∈ A }. Computing the inverse interval matrix is NP-hard (Coxson [2]).
Therefore in practical computations we usually resort to enclosures of the inverse, i.e.,
to interval matrices containing A−1, but not necessarily the minimal ones with respect
to inclusion. The assertion (g) of Theorem 5 says that if M ≥ 0 and R solve (3.1),
then

[R− (M − I)|R|, R + (M − I)|R|]
is an enclosure of [Ac −∆, Ac + ∆]−1.
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