
národní
úložiště
šedé
literatury

Explicit Inverse of an Interval Matrix with Unit Midpoint

Rohn, Jiří
2010
Dostupný z http://www.nusl.cz/ntk/nusl-41389

Dílo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národního úložiště šedé literatury (NUŠL).
Datum stažení: 04.05.2024
Další dokumenty můžete najít prostřednictvím vyhledávacího rozhraní nusl.cz .

Institute of Computer Science Academy of Sciences of the Czech Republic

Explicit Inverse of an Interval Matrix with Unit Midpoint

Jiří Rohn
Technical report No. V-1071

20.04.2010

Institute of Computer Science

 Academy of Sciences of the Czech Republic
Explicit Inverse of an Interval Matrix with Unit Midpoint

Jirí Rohn ${ }^{11}$
Technical report No. V-1071

20.04.2010

Abstract

: Explicit formulae for the inverse of an interval matrix of the form $[I-\Delta, I+\Delta]$ (where I is the unit matrix) are proved via finding explicit solutions of certain nonlinear matrix equations.

Keywords:
Interval matrix, unit midpoint, inverse interval matrix, regularity.

[^0]
1 Introduction

In this paper we study the inverse of an interval matrix of a special form

$$
\begin{equation*}
\mathbf{A}=[I-\Delta, I+\Delta] \tag{1.1}
\end{equation*}
$$

(i.e., having the unit midpoint). Computing the inverse interval matrix (defined in Section (3) is NP-hard in general (Coxson [1]). Yet it was shown in [7], Theorem 2, that in the special case of an interval matrix of the form (1.1) the inverse interval matrix can be expressed by simple formulae in terms of the matrix

$$
M=(I-\Delta)^{-1}
$$

(Theorem 5 below). The result was proved there as an application of a very special assertion on interval linear equations. In this paper we give another proof of this theorem making use of a general result (Theorem 2) according to which the inverse of an $n \times n$ interval matrix can be computed from unique solutions of 2^{n} nonlinear matrix equations. As the main result of this paper we show in Theorem 44 that for interval matrices of the form (1.1) the unique solution of each of these 2^{n} nonlinear equations can be expressed explicitly; this, in turn, makes it possible to express the inverse of (1.1) explicitly, as showed in the proof of Theorem [5. Moreover, this approach also allows us to specify the matrices in \mathbf{A} at whose inverses the componentwise bounds on \mathbf{A}^{-1} are attained (Theorem (7).

The paper is organized as follows. In Section 2 we sum up the notations used. In Section 3 the inverse interval matrix is defined and a general (finite, but exponential) method for its computation is given. The explicit solutions of the respective nonlinear equations are described in Section 4 and are then used for deriving explicit formulae for the inverse of (1.1). Finally in Section 5 matrices are described at whose inverses the componentwise bounds on the interval inverse are attained.

2 Notations

We use the following notations. $A_{i j}$ denotes the $i j$ th entry and $A_{\bullet j}$ the j th column of A. Matrix inequalities, as $A \leq B$ or $A<B$, are understood componentwise. The absolute value of a matrix $A=\left(a_{i j}\right)$ is defined by $|A|=\left(\left|a_{i j}\right|\right)$. The same notations also apply to vectors that are considered one-column matrices. I is the unit matrix, e_{j} denotes its j th column, and $e=(1, \ldots, 1)^{T}$ is the vector of all ones. $Y_{n}=\{y| | y \mid=e\}$ is the set of all ± 1-vectors in \mathbb{R}^{n}, so that its cardinality is 2^{n}. For each $y \in \mathbb{R}^{n}$ we denote

$$
T_{y}=\operatorname{diag}\left(y_{1}, \ldots, y_{n}\right)=\left(\begin{array}{cccc}
y_{1} & 0 & \ldots & 0 \\
0 & y_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & y_{n}
\end{array}\right)
$$

Finally, we introduce the real spectral radius of a square matrix A by

$$
\begin{equation*}
\varrho_{0}(A)=\max \{|\lambda| \mid \lambda \text { is a real eigenvalue of } A\} \tag{2.1}
\end{equation*}
$$

and we set $\varrho_{0}(A)=0$ if no real eigenvalue exists; $\varrho(A)$ is the usual spectral radius of A.

3 Inverse interval matrix

Given two $n \times n$ matrices A_{c} and $\Delta, \Delta \geq 0$, the set of matrices

$$
\mathbf{A}=\left\{A| | A-A_{c} \mid \leq \Delta\right\}
$$

is called a (square) interval matrix with midpoint matrix A_{c} and radius matrix Δ. Since the inequality $\left|A-A_{c}\right| \leq \Delta$ is equivalent to $A_{c}-\Delta \leq A \leq A_{c}+\Delta$, we can also write

$$
\mathbf{A}=\{A \mid \underline{A} \leq A \leq \bar{A}\}=[\underline{A}, \bar{A}],
$$

where $\underline{A}=A_{c}-\Delta$ and $\bar{A}=A_{c}+\Delta$ are called the bounds of \mathbf{A}.
Definition. A square interval matrix \mathbf{A} is called regular if each $A \in \mathbf{A}$ is nonsingular, and it is said to be singular otherwise (i.e., if it contains a singular matrix).

Many necessary and sufficient regularity conditions are known (the paper [9] surveys forty of them). We shall use here the following one (condition (xxxiv) in [9]; see (2.1) for the definition of ϱ_{0}).

Proposition 1. A square interval matrix $\mathbf{A}=\left[A_{c}-\Delta, A_{c}+\Delta\right]$ is regular if and only if A_{c} is nonsingular and

$$
\max _{y, z \in Y_{n}} \varrho_{0}\left(A_{c}^{-1} T_{y} \Delta T_{z}\right)<1
$$

holds.
Definition. For a regular interval matrix \mathbf{A} we define its inverse interval matrix $\mathbf{A}^{-1}=[\underline{B}, \bar{B}]$ by

$$
\begin{aligned}
\underline{B} & =\min \left\{A^{-1} \mid A \in \mathbf{A}\right\}, \\
\bar{B} & =\max \left\{A^{-1} \mid A \in \mathbf{A}\right\}
\end{aligned}
$$

(componentwise).
Comment 3.1. This means that

$$
\begin{align*}
\underline{B}_{i j} & =\min \left\{\left(A^{-1}\right)_{i j} \mid A \in \mathbf{A}\right\} \tag{3.1}\\
\bar{B}_{i j} & =\max \left\{\left(A^{-1}\right)_{i j} \mid A \in \mathbf{A}\right\} \quad(i, j=1, \ldots, n) \tag{3.2}
\end{align*}
$$

Since \mathbf{A} is regular, the mapping $A \mapsto A^{-1}$ is continuous in \mathbf{A} and all the minima and maxima in (3.1), (3.2) are attained. Thus, \mathbf{A}^{-1} is the narrowest interval matrix
enclosing the set of matrices $\left\{A^{-1} \mid A \in \mathbf{A}\right\}$. For more results on the inverse interval matrix see Hansen [2], Hansen and Smith [3], Herzberger and Bethke [4], and Rohn [6], [8]. Computing the inverse interval matrix is NP-hard (Coxson [1]).

We have the following general result ([6], Theorem 5.1, assertion (A3), and Theorem 6.2).

Theorem 2. Let $\mathbf{A}=\left[A_{c}-\Delta, A_{c}+\Delta\right]$ be regular. Then for each $y \in Y$ the matrix equation

$$
A_{c} B-T_{y} \Delta|B|=I
$$

has a unique matrix solution B_{y} and for the inverse interval matrix $\mathbf{A}^{-1}=[\underline{B}, \bar{B}]$ we have

$$
\begin{aligned}
\underline{B} & =\min \left\{B_{y} \mid y \in Y\right\} \\
\bar{B} & =\max \left\{B_{y} \mid y \in Y\right\}
\end{aligned}
$$

(componentwise).
Thus, in contrast to the definition, only a finite number of matrices $B_{y}, y \in Y$ (albeit 2^{n} of them) are needed to compute the inverse interval matrix. In the next section we shall show that in case of $A_{c}=I$ all the matrices B_{y} can be expressed explicitly.

4 Inverse interval matrix with unit midpoint

From now on, we shall consider interval matrices of the form

$$
\begin{equation*}
\mathbf{A}=[I-\Delta, I+\Delta] \tag{4.1}
\end{equation*}
$$

i.e., with unit midpoint I. First, we shall resolve the question of regularity of (4.1).

Proposition 3. An interval matrix (4.1) is regular if and only if

$$
\begin{equation*}
\varrho(\Delta)<1 \tag{4.2}
\end{equation*}
$$

holds.
Proof. For each $y, z \in Y$ we have

$$
\varrho_{0}\left(T_{y} \Delta T_{z}\right) \leq \varrho\left(T_{y} \Delta T_{z}\right) \leq \varrho\left(\left|T_{y} \Delta T_{z}\right|\right)=\varrho(\Delta)=\varrho_{0}(\Delta)=\varrho_{0}\left(T_{e} \Delta T_{e}\right)
$$

(the equation $\varrho(\Delta)=\varrho_{0}(\Delta)$ being a consequence of the Perron-Frobenius theorem [5]), hence

$$
\max _{y, z \in Y_{n}} \varrho_{0}\left(T_{y} \Delta T_{z}\right)=\varrho(\Delta)
$$

and the assertion follows from Proposition 1.
As is well known, the condition $\varrho(\Delta)<1$ implies

$$
(I-\Delta)^{-1}=\sum_{j=0}^{\infty} \Delta^{j} \geq I \geq 0
$$

(because Δ is nonnegative). Put

$$
M=(I-\Delta)^{-1}=\left(m_{i j}\right)
$$

and

$$
\mu=\left(\mu_{j}\right)
$$

where

$$
\begin{equation*}
\mu_{j}=\frac{m_{j j}}{2 m_{j j}-1} \quad(j=1, \ldots, n) . \tag{4.3}
\end{equation*}
$$

Then we obviously have

$$
\begin{align*}
m_{i j} & \geq 0, \tag{4.4}\\
m_{j j} & \geq 1, \tag{4.5}\\
2 m_{j j}-1 & \geq 1, \tag{4.6}\\
2 \mu_{j}-1 & \in(0,1], \tag{4.7}\\
\mu_{j} & \in\left(\frac{1}{2}, 1\right], \tag{4.8}\\
\mu_{j} & \leq m_{j j}, \tag{4.9}\\
\left(2 \mu_{j}-1\right) m_{j j} & =\mu_{j} \tag{4.10}
\end{align*}
$$

$(i, j=1, \ldots, n)$, and also

$$
\begin{equation*}
M \Delta=\Delta M=\sum_{j=1}^{\infty} \Delta^{j}=M-I \tag{4.11}
\end{equation*}
$$

These simple facts will be utilized in the proofs to follow.
Under the assumption (4.2), the interval matrix (4.1) is regular, hence by Theorem 2 the equation

$$
B-T_{y} \Delta|B|=I
$$

has a unique solution B_{y} for each $y \in Y_{n}$. We shall now show that this B_{y} can be expressed explicitly.

Theorem 4. Let $\varrho(\Delta)<1$. Then for each $y \in Y$ the unique solution of the matrix equation

$$
\begin{equation*}
B-T_{y} \Delta|B|=I \tag{4.12}
\end{equation*}
$$

is given by

$$
\begin{equation*}
B_{y}=T_{y} M T_{y}+T_{y}(M-I) T_{\mu}\left(I-T_{y}\right), \tag{4.13}
\end{equation*}
$$

i.e. componentwise

$$
\begin{equation*}
\left(B_{y}\right)_{i j}=y_{i} y_{j} m_{i j}+y_{i}\left(1-y_{j}\right)\left(m_{i j}-I_{i j}\right) \mu_{j}, \tag{4.14}
\end{equation*}
$$

or

$$
\left(B_{y}\right)_{i j}= \begin{cases}y_{i} m_{i j} & \text { if } y_{j}=1, \tag{4.15}\\ y_{i}\left(2 \mu_{j}-1\right) m_{i j} & \text { if } y_{j}=-1 \text { and } i \neq j, \\ \mu_{j} & \text { if } y_{j}=-1 \text { and } i=j,\end{cases}
$$

or

$$
\begin{equation*}
\left(B_{y}\right)_{i j}=\frac{\left(y_{i}+\left(1-y_{i}\right) I_{i j}\right) m_{i j}}{y_{j}+\left(1-y_{j}\right) m_{j j}} \tag{4.16}
\end{equation*}
$$

$(i, j=1, \ldots, n)$.
Comment 4.1. We give two proofs of this theorem. The first one shows how the formulae (4.13)-(4.16) can be derived. The second one demonstrates that once they are known, it is relatively simple to prove that B_{y} given by them is indeed a solution to (4.12). As it can be expected, the first proof is essentially longer, but more informative.

Proof. Under the assumption (4.2) it follows from Theorem 2 that the equation (4.12) has a unique solution B_{y}. Fix a $j \in\{1, \ldots, n\}$ and put

$$
\begin{equation*}
x=T_{y}\left(B_{y}\right)_{\bullet j} \tag{4.17}
\end{equation*}
$$

(where $\left(B_{y}\right)_{\bullet j}$ is the j th column of B_{y}), then from (4.12), if written in the form

$$
T_{y} B-\Delta\left|T_{y} B\right|=T_{y}
$$

(because $\left|T_{y} B\right|=|B|$), it follows that x satisfies the equation

$$
\begin{equation*}
x-\Delta|x|=y_{j} e_{j} . \tag{4.18}
\end{equation*}
$$

If $y_{j}=1$, then $x=\Delta|x|+e_{j} \geq 0$, hence $|x|=x$ and from (4.18) we have simply $x=(I-\Delta)^{-1} e_{j}=M e_{j}$, hence

$$
\begin{equation*}
x_{i}=m_{i j} \tag{4.19}
\end{equation*}
$$

for each i. Now, let $y_{j}=-1$. Then from (4.18) it follows that $x_{i} \geq 0$ for each $i \neq j$, so that we can write

$$
|x|=\left(x_{1}, \ldots, x_{j-1},\left|x_{j}\right|, x_{j+1}, \ldots, x_{n}\right)^{T}=x+\left(\left|x_{j}\right|-x_{j}\right) e_{j},
$$

and from (4.18) we obtain

$$
(I-\Delta) x=-e_{j}+\left(\left|x_{j}\right|-x_{j}\right) \Delta e_{j}
$$

hence premultiplying this equation by the nonnegative matrix $M=(I-\Delta)^{-1}$ gives

$$
\begin{equation*}
x=-M e_{j}+\left(\left|x_{j}\right|-x_{j}\right) M \Delta e_{j}=-M e_{j}+\left(\left|x_{j}\right|-x_{j}\right)(M-I) e_{j} \tag{4.20}
\end{equation*}
$$

(using (4.11)) and consequently

$$
\begin{equation*}
x_{j}=-m_{j j}+\left(\left|x_{j}\right|-x_{j}\right)\left(m_{j j}-1\right) . \tag{4.21}
\end{equation*}
$$

Assuming $x_{j} \geq 0$, we would have $x_{j}=-m_{j j} \leq-1<0$ by (4.5), a contradiction. This shows that $x_{j}<0$, hence $\left|x_{j}\right|=-x_{j}$, and (4.21) yields

$$
\begin{equation*}
x_{j}=-\frac{m_{j j}}{2 m_{j j}-1}=-\mu_{j} \tag{4.22}
\end{equation*}
$$

(see (4.3)). Hence

$$
\left|x_{j}\right|-x_{j}=-2 x_{j}=2 \mu_{j},
$$

and substituting into (4.20) gives

$$
x=-M e_{j}+2 \mu_{j}(M-I) e_{j},
$$

so that

$$
\begin{equation*}
x_{i}=-m_{i j}+2 \mu_{j} m_{i j}=\left(2 \mu_{j}-1\right) m_{i j} \tag{4.23}
\end{equation*}
$$

for each $i \neq j$. Hence from (4.19), (4.23) and (4.22) we obtain that

$$
x_{i}= \begin{cases}m_{i j} & \text { if } y_{j}=1, \\ \left(2 \mu_{j}-1\right) m_{i j} & \text { if } y_{j}=-1 \text { and } i \neq j, \\ -\mu_{j} & \text { if } y_{j}=-1 \text { and } i=j\end{cases}
$$

for each i. Since $\left(B_{y}\right)_{\bullet j}=T_{y} x$ by (4.17), this means that

$$
\left(B_{y}\right)_{i j}=y_{i} x_{i}= \begin{cases}y_{i} m_{i j} & \text { if } y_{j}=1, \\ y_{i}\left(2 \mu_{j}-1\right) m_{i j} & \text { if } y_{j}=-1 \text { and } i \neq j, \\ \mu_{j} & \text { if } y_{j}=-1 \text { and } i=j,\end{cases}
$$

which is (4.15). Hence we can see that $\left(B_{y}\right)_{i j}$, aside from $m_{i j}$ and μ_{j}, depends on y_{i} and y_{j} only. The values of $\left(B_{y}\right)_{i j}$ for all possible combinations of y_{i} and y_{j} are summed up in Fig. 4.1. Validity of (4.14), (4.16) can be checked simply by assigning $y_{i}= \pm 1$, $y_{j}= \pm 1$ into their right-hand sides and verifying that the results obtained correspond to those in Fig. 4.1. Finally, rewriting (4.14) in the equivalent form

$$
\left(B_{y}\right)_{i j}=y_{i} m_{i j} y_{j}+y_{i}\left(m_{i j}-I_{i j}\right) \mu_{j}\left(1-y_{j}\right),
$$

we can see that this is the componentwise version of (4.13) (taking into account that all three matrices T_{y}, T_{μ}, I are diagonal).

y_{i}	y_{j}	$\left(B_{y}\right)_{i j}$
1	1	$m_{i j}$
-1	1	$-m_{i j}$
1	-1	$\left(2 \mu_{j}-1\right) m_{i j}$
-1	-1	$-\left(2 \mu_{j}-1\right) m_{i j}+2 \mu_{j} I_{i j}$

Figure 4.1: Dependence of $\left(B_{y}\right)_{i j}$ on y_{i}, y_{j}.
Proof. Equivalence of (4.13), (4.14), (4.15) and (4.16) has been established in the previous proof. From (4.15), (4.7) and (4.10) we have

$$
\left|B_{y}\right|_{i j}= \begin{cases}m_{i j} & \text { if } y_{j}=1, \\ \left(2 \mu_{j}-1\right) m_{i j} & \text { if } y_{j}=-1\end{cases}
$$

for each i, j, but also

$$
\left(M\left(T_{y}+T_{\mu}\left(I-T_{y}\right)\right)\right)_{i j}=m_{i j}\left(y_{j}+\mu_{j}\left(1-y_{j}\right)\right)= \begin{cases}m_{i j} & \text { if } y_{j}=1 \\ \left(2 \mu_{j}-1\right) m_{i j} & \text { if } y_{j}=-1\end{cases}
$$

for each i, j, which shows that

$$
\left|B_{y}\right|=M\left(T_{y}+T_{\mu}\left(I-T_{y}\right)\right) .
$$

Then

$$
\begin{aligned}
B_{y}-I & =T_{y}(M-I) T_{y}+T_{y}(M-I) T_{\mu}\left(I-T_{y}\right)=T_{y}(M-I)\left(T_{y}+T_{\mu}\left(I-T_{y}\right)\right) \\
& =T_{y} \Delta M\left(T_{y}+T_{\mu}\left(I-T_{y}\right)\right)=T_{y} \Delta\left|B_{y}\right|
\end{aligned}
$$

(because of (4.11) and of the fact that $T_{y}^{2}=I$), hence

$$
B_{y}-T_{y} \Delta\left|B_{y}\right|=I,
$$

which means that B_{y} is a solution to (4.12) which, according to Theorem 2, is unique.

Now we shall apply this result to the inverse interval matrix.
Theorem 5. Let $\mathbf{A}=[I-\Delta, I+\Delta]$ with $\varrho(\Delta)<1$. Then the inverse interval matrix $\mathbf{A}^{-1}=[\underline{B}, \bar{B}]$ is given by

$$
\begin{align*}
\underline{B} & =-M+T_{\kappa}, \tag{4.24}\\
\bar{B} & =M,
\end{align*}
$$

where

$$
\begin{equation*}
\kappa_{j}=\frac{2 m_{j j}^{2}}{2 m_{j j}-1} \quad(j=1, \ldots, n), \tag{4.26}
\end{equation*}
$$

or componentwise

$$
\begin{align*}
& \underline{B}_{i j}= \begin{cases}-m_{i j} & \text { if } i \neq j, \\
\mu_{j} & \text { if } i=j,\end{cases} \tag{4.27}\\
& \bar{B}_{i j}=m_{i j} \tag{4.28}
\end{align*}
$$

$$
(i, j=1, \ldots, n)
$$

Proof. For each $i \neq j$, Theorem 4 in view of Fig. 4.1, (4.4) and (4.7) gives

$$
\begin{aligned}
\underline{B}_{i j} & =\min _{y \in Y}\left(B_{y}\right)_{i j}=\min \left\{m_{i j},-m_{i j},\left(2 \mu_{j}-1\right) m_{i j},-\left(2 \mu_{j}-1\right) m_{i j}\right\} \\
& =\min \left\{-m_{i j},-\left(2 \mu_{j}-1\right) m_{i j}\right\}=-m_{i j}
\end{aligned}
$$

and similarly

$$
\bar{B}_{i j}=\max \left\{m_{i j},\left(2 \mu_{j}-1\right) m_{i j}\right\}=m_{i j} .
$$

If $i=j$, then it must be $y_{i}=y_{j}$, hence only the first and the last row of Fig. 4.1 apply, giving

$$
\underline{B}_{j j}=\min _{y \in Y}\left(B_{y}\right)_{j j}=\min \left\{m_{j j},-\left(2 \mu_{j}-1\right) m_{j j}+2 \mu_{j}\right\}=\min \left\{m_{j j}, \mu_{j}\right\}=\mu_{j}
$$

due to (4.10) and (4.9), and similarly

$$
\bar{B}_{j j}=\max \left\{m_{j j}, \mu_{j}\right\}=m_{j j} .
$$

This proves (4.27), (4.28) and thus also (4.24), (4.25) in view of the fact that κ_{j} defined by (4.26) satisfies

$$
-m_{j j}+\kappa_{j}=\mu_{j}
$$

for each j.
In particular, we have the following result.

Corollary 6 If $\varrho(\Delta)<1$, then the inverse interval matrix $[I-\Delta, I+\Delta]^{-1}=[\underline{B}, \bar{B}]$ satisfies

$$
\frac{1}{2} \leq \underline{B}_{j j} \leq 1 \leq \bar{B}_{j j}
$$

for each j.

Proof. This is a consequence of Theorem 5 and of (4.5), (4.8).

5 Attainment

According to the definition of the inverse interval matrix

$$
[I-\Delta, I+\Delta]^{-1}=[\underline{B}, \bar{B}]
$$

for each i, j there exists a matrix, say $A^{i j}$, such that $\left|A^{i j}\right| \leq \Delta$ and

$$
\underline{B}_{i j}=\left(I-A^{i j}\right)_{i j}^{-1}
$$

holds (we write $\left(I-A^{i j}\right)_{i j}^{-1}$ instead of $\left.\left(\left(I-A^{i j}\right)^{-1}\right)_{i j}\right)$, and an analogue holds for $\bar{B}_{i j}$.
In the last section we give an explicit expression of such an $A^{i j}$ for each i, j.
First of all, the situation is quite evident for \bar{B} because from (4.25) we have

$$
\bar{B}=M=(I-\Delta)^{-1},
$$

so that all the componentwise upper bounds are attained at the inverse of $I-\Delta$. But the case of \underline{B} is more involved.

Theorem 7. For each i, j we have:
(i) if $i \neq j$, then

$$
\underline{B}_{i j}=\left(I-T_{y} \Delta T_{y}\right)_{i j}^{-1}
$$

for each $y \in Y$ satisfying $y_{i} y_{j}=-1$,
(ii) if $i=j$, then

$$
\underline{B}_{j j}=\left(I-T_{y} \Delta T_{z}\right)_{j j}^{-1}
$$

for each $y \in Y$ satisfying $y_{j}=-1$ and $z=y+2 e_{j}$.
Comment 5.1. Notice that $I-T_{y} \Delta T_{z} \in[I-\Delta, I+\Delta]$ for each $y, z \in Y$.
Proof. Let $i, j \in\{1, \ldots, n\}$.
(i) For each $y \in Y_{n}$ there holds

$$
\left(I-T_{y} \Delta T_{y}\right)^{-1}=\left(T_{y}(I-\Delta) T_{y}\right)^{-1}=T_{y} M T_{y}
$$

hence if $y_{i} y_{j}=-1$, then

$$
\left(I-T_{y} \Delta T_{y}\right)_{i j}^{-1}=y_{i} y_{j} m_{i j}=-m_{i j}=\underline{B}_{i j} .
$$

(ii) We have

$$
\begin{aligned}
I-T_{y} \Delta T_{z} & =I-T_{y} \Delta\left(T_{y}+2 e_{j} e_{j}^{T}\right) \\
& =\left(I-T_{y} \Delta T_{y}\right)\left(I-\left(I-T_{y} \Delta T_{y}\right)^{-1} 2 T_{y} \Delta e_{j} e_{j}^{T}\right) \\
& =\left(I-T_{y} \Delta T_{y}\right)\left(I-2 T_{y} M T_{y} T_{y} \Delta e_{j} e_{j}^{T}\right) \\
& =\left(I-T_{y} \Delta T_{y}\right)\left(I-2 T_{y} M \Delta e_{j} e_{j}^{T}\right),
\end{aligned}
$$

so that by the Sherman-Morrison formula [10] applied to the matrix in the last parentheses,

$$
\begin{aligned}
\left(I-T_{y} \Delta T_{z}\right)^{-1} & =\left(I-2 T_{y} M \Delta e_{j} e_{j}^{T}\right)^{-1}\left(I-T_{y} \Delta T_{y}\right)^{-1} \\
& =\left(I+\frac{2 T_{y} M \Delta e_{j} e_{j}^{T}}{1-2 e_{j}^{T} T_{y} M \Delta e_{j}}\right) T_{y} M T_{y} \\
& =T_{y} M T_{y}+\frac{2 T_{y} M \Delta e_{j} e_{j}^{T} T_{y} M T_{y}}{1+2(M \Delta)_{j j}}
\end{aligned}
$$

(because $y_{j}=-1$) and consequently

$$
\begin{aligned}
\left(I-T_{y} \Delta T_{z}\right)_{j j}^{-1} & =m_{j j}+\frac{2\left(T_{y} M \Delta\right)_{j j}\left(T_{y} M T_{y}\right)_{j j}}{1+2(M-I)_{j j}} \\
& =m_{j j}-\frac{2(M-I)_{j j} m_{j j}}{1+2(M-I)_{j j}} \\
& =m_{j j}-\frac{2\left(m_{j j}-1\right) m_{j j}}{2 m_{j j}-1} \\
& =\frac{m_{j j}}{2 m_{j j}-1}=\mu_{j}=\underline{B}_{j j} .
\end{aligned}
$$

Hence, the $\underline{B}_{i j}$'s are attained at inverses of many matrices in $[I-\Delta, I+\Delta]$. But the results can be essentially simplified if we use the particular set of vectors

$$
y(j)=e-2 e_{j}=(1, \ldots, 1,-1,1, \ldots, 1)^{T} \quad(j=1, \ldots, n) .
$$

Corollary 8 For each i, j we have:
(i) $\underline{B}_{i j}=\left(I-T_{y(j)} \Delta T_{y(j)}\right)_{i j}^{-1}$ if $i \neq j$,
(ii) $\underline{B}_{j j}=\left(I-T_{y(j)} \Delta\right)_{j j}^{-1}$.

Proof. The results are immediate consequences of Theorem 7 since $y(j)_{j}=-1$, $y(j)_{i} y(j)_{j}=-1$ for each $i \neq j$ and $z=y(j)+2 e_{j}=e$.

Bibliography

[1] G. E. Coxson. Computing exact bounds on elements of an inverse interval matrix is NP-hard. Reliable Computing, 5:137-142, 1999. doi:10.1023/A:1009901405160. 2, 4]
[2] E. Hansen. Interval arithmetic in matrix computations, Part I. SIAM Journal on Numerical Analysis, 2:308-320, 1965. doi:10.1137/0702025.
[3] E. Hansen and R. Smith. Interval arithmetic in matrix computations, Part II. SIAM Journal on Numerical Analysis, 4:1-9, 1967. doi:10.1137/0704001. 4
[4] J. Herzberger and D. Bethke. On two algorithms for bounding the inverse of an interval matrix. Interval Computations, 1:44-53, 1991. 4
[5] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, 1985. 4
[6] J. Rohn. Systems of linear interval equations. Linear Algebra and Its Applications, 126:39-78, 1989. doi:10.1016/0024-3795(89)90004-9. 4
[7] J. Rohn. Cheap and tight bounds: The recent result by E. Hansen can be made more efficient. Interval Computations, 4:13-21, 1993. 2
[8] J. Rohn. Inverse interval matrix. SIAM Journal on Numerical Analysis, 30:864870, 1993. doi:10.1137/0730044. 4
[9] J. Rohn. Forty necessary and sufficient conditions for regularity of interval matrices: A survey. Electronic Journal of Linear Algebra, 18:500-512, 2009. http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol18_pp500512.pdf. 3
[10] J. Sherman and W. J. Morrison. Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann. Math. Statist., 21:124, 1950. 11

[^0]: ${ }^{1}$ Supported by the Czech Republic Grant Agency under grants 201/09/1957 and 201/08/J020, and by the Institutional Research Plan AV0Z10300504.

