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Dostupný z http://www.nusl.cz/ntk/nusl-41389
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Abstract:
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1 Introduction

In this paper we study the inverse of an interval matrix of a special form

A = [I −∆, I + ∆] (1.1)

(i.e., having the unit midpoint). Computing the inverse interval matrix (defined in
Section 3) is NP-hard in general (Coxson [1]). Yet it was shown in [7], Theorem 2,
that in the special case of an interval matrix of the form (1.1) the inverse interval
matrix can be expressed by simple formulae in terms of the matrix

M = (I −∆)−1

(Theorem 5 below). The result was proved there as an application of a very special
assertion on interval linear equations. In this paper we give another proof of this
theorem making use of a general result (Theorem 2) according to which the inverse of
an n×n interval matrix can be computed from unique solutions of 2n nonlinear matrix
equations. As the main result of this paper we show in Theorem 4 that for interval
matrices of the form (1.1) the unique solution of each of these 2n nonlinear equations
can be expressed explicitly; this, in turn, makes it possible to express the inverse of
(1.1) explicitly, as showed in the proof of Theorem 5. Moreover, this approach also
allows us to specify the matrices in A at whose inverses the componentwise bounds
on A−1 are attained (Theorem 7).

The paper is organized as follows. In Section 2 we sum up the notations used. In
Section 3 the inverse interval matrix is defined and a general (finite, but exponential)
method for its computation is given. The explicit solutions of the respective nonlinear
equations are described in Section 4 and are then used for deriving explicit formulae
for the inverse of (1.1). Finally in Section 5 matrices are described at whose inverses
the componentwise bounds on the interval inverse are attained.

2 Notations

We use the following notations. Aij denotes the ijth entry and A•j the jth column
of A. Matrix inequalities, as A ≤ B or A < B, are understood componentwise. The
absolute value of a matrix A = (aij) is defined by |A| = (|aij|). The same notations
also apply to vectors that are considered one-column matrices. I is the unit matrix, ej

denotes its jth column, and e = (1, . . . , 1)T is the vector of all ones. Yn = {y | |y| = e}
is the set of all ±1-vectors in Rn, so that its cardinality is 2n. For each y ∈ Rn we
denote

Ty = diag (y1, . . . , yn) =




y1 0 . . . 0
0 y2 . . . 0
...

...
. . .

...
0 0 . . . yn


 .
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Finally, we introduce the real spectral radius of a square matrix A by

%0(A) = max{|λ| | λ is a real eigenvalue of A}, (2.1)

and we set %0(A) = 0 if no real eigenvalue exists; %(A) is the usual spectral radius
of A.

3 Inverse interval matrix

Given two n× n matrices Ac and ∆, ∆ ≥ 0, the set of matrices

A = {A | |A− Ac| ≤ ∆}
is called a (square) interval matrix with midpoint matrix Ac and radius matrix ∆.
Since the inequality |A−Ac| ≤ ∆ is equivalent to Ac −∆ ≤ A ≤ Ac + ∆, we can also
write

A = {A | A ≤ A ≤ A} = [A,A],

where A = Ac −∆ and A = Ac + ∆ are called the bounds of A.
Definition. A square interval matrix A is called regular if each A ∈ A is nonsin-

gular, and it is said to be singular otherwise (i.e., if it contains a singular matrix).
Many necessary and sufficient regularity conditions are known (the paper [9] surveys

forty of them). We shall use here the following one (condition (xxxiv) in [9]; see (2.1)
for the definition of %0).

Proposition 1. A square interval matrix A = [Ac − ∆, Ac + ∆] is regular if and
only if Ac is nonsingular and

max
y,z∈Yn

%0(A
−1
c Ty∆Tz) < 1

holds.

Definition. For a regular interval matrix A we define its inverse interval matrix
A−1 = [B,B] by

B = min {A−1 | A ∈ A },
B = max{A−1 | A ∈ A }

(componentwise).
Comment 3.1. This means that

Bij = min { (A−1)ij | A ∈ A }, (3.1)

Bij = max{ (A−1)ij | A ∈ A } (i, j = 1, . . . , n). (3.2)

Since A is regular, the mapping A 7→ A−1 is continuous in A and all the minima
and maxima in (3.1), (3.2) are attained. Thus, A−1 is the narrowest interval matrix
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enclosing the set of matrices {A−1 | A ∈ A }. For more results on the inverse interval
matrix see Hansen [2], Hansen and Smith [3], Herzberger and Bethke [4], and Rohn [6],
[8]. Computing the inverse interval matrix is NP-hard (Coxson [1]).

We have the following general result ([6], Theorem 5.1, assertion (A3), and Theorem
6.2).

Theorem 2. Let A = [Ac−∆, Ac + ∆] be regular. Then for each y ∈ Y the matrix
equation

AcB − Ty∆|B| = I

has a unique matrix solution By and for the inverse interval matrix A−1 = [B,B] we
have

B = min {By | y ∈ Y },
B = max{By | y ∈ Y }

(componentwise).

Thus, in contrast to the definition, only a finite number of matrices By, y ∈ Y
(albeit 2n of them) are needed to compute the inverse interval matrix. In the next
section we shall show that in case of Ac = I all the matrices By can be expressed
explicitly.

4 Inverse interval matrix with unit midpoint

From now on, we shall consider interval matrices of the form

A = [I −∆, I + ∆], (4.1)

i.e., with unit midpoint I. First, we shall resolve the question of regularity of (4.1).

Proposition 3. An interval matrix (4.1) is regular if and only if

%(∆) < 1 (4.2)

holds.

Proof. For each y, z ∈ Y we have

%0(Ty∆Tz) ≤ %(Ty∆Tz) ≤ %(|Ty∆Tz|) = %(∆) = %0(∆) = %0(Te∆Te)

(the equation %(∆) = %0(∆) being a consequence of the Perron-Frobenius theorem [5]),
hence

max
y,z∈Yn

%0(Ty∆Tz) = %(∆)
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and the assertion follows from Proposition 1. 2

As is well known, the condition %(∆) < 1 implies

(I −∆)−1 =
∞∑

j=0

∆j ≥ I ≥ 0

(because ∆ is nonnegative). Put

M = (I −∆)−1 = (mij)

and
µ = (µj),

where
µj =

mjj

2mjj − 1
(j = 1, . . . , n). (4.3)

Then we obviously have

mij ≥ 0, (4.4)

mjj ≥ 1, (4.5)

2mjj − 1 ≥ 1, (4.6)

2µj − 1 ∈ (0, 1], (4.7)

µj ∈ (1
2
, 1], (4.8)

µj ≤ mjj, (4.9)

(2µj − 1)mjj = µj (4.10)

(i, j = 1, . . . , n), and also

M∆ = ∆M =
∞∑

j=1

∆j = M − I. (4.11)

These simple facts will be utilized in the proofs to follow.
Under the assumption (4.2), the interval matrix (4.1) is regular, hence by Theorem 2

the equation
B − Ty∆|B| = I

has a unique solution By for each y ∈ Yn. We shall now show that this By can be
expressed explicitly.
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Theorem 4. Let %(∆) < 1. Then for each y ∈ Y the unique solution of the matrix
equation

B − Ty∆|B| = I (4.12)

is given by
By = TyMTy + Ty(M − I)Tµ(I − Ty), (4.13)

i.e. componentwise

(By)ij = yiyjmij + yi(1− yj)(mij − Iij)µj, (4.14)

or

(By)ij =





yimij if yj = 1,
yi(2µj − 1)mij if yj = −1 and i 6= j,
µj if yj = −1 and i = j,

(4.15)

or

(By)ij =
(yi + (1− yi)Iij)mij

yj + (1− yj)mjj

(4.16)

(i, j = 1, . . . , n).

Comment 4.1. We give two proofs of this theorem. The first one shows how the
formulae (4.13)-(4.16) can be derived. The second one demonstrates that once they
are known, it is relatively simple to prove that By given by them is indeed a solution to
(4.12). As it can be expected, the first proof is essentially longer, but more informative.

Proof. Under the assumption (4.2) it follows from Theorem 2 that the equation
(4.12) has a unique solution By. Fix a j ∈ {1, . . . , n} and put

x = Ty(By)•j (4.17)

(where (By)•j is the jth column of By), then from (4.12), if written in the form

TyB −∆|TyB| = Ty

(because |TyB| = |B|), it follows that x satisfies the equation

x−∆|x| = yjej. (4.18)

If yj = 1, then x = ∆|x| + ej ≥ 0, hence |x| = x and from (4.18) we have simply
x = (I −∆)−1ej = Mej, hence

xi = mij (4.19)

for each i. Now, let yj = −1. Then from (4.18) it follows that xi ≥ 0 for each i 6= j,
so that we can write

|x| = (x1, . . . , xj−1, |xj|, xj+1, . . . , xn)T = x + (|xj| − xj)ej,

and from (4.18) we obtain

(I −∆)x = −ej + (|xj| − xj)∆ej,
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hence premultiplying this equation by the nonnegative matrix M = (I −∆)−1 gives

x = −Mej + (|xj| − xj)M∆ej = −Mej + (|xj| − xj)(M − I)ej (4.20)

(using (4.11)) and consequently

xj = −mjj + (|xj| − xj)(mjj − 1). (4.21)

Assuming xj ≥ 0, we would have xj = −mjj ≤ −1 < 0 by (4.5), a contradiction. This
shows that xj < 0, hence |xj| = −xj, and (4.21) yields

xj = − mjj

2mjj − 1
= −µj (4.22)

(see (4.3)). Hence
|xj| − xj = −2xj = 2µj,

and substituting into (4.20) gives

x = −Mej + 2µj(M − I)ej,

so that
xi = −mij + 2µjmij = (2µj − 1)mij (4.23)

for each i 6= j. Hence from (4.19), (4.23) and (4.22) we obtain that

xi =





mij if yj = 1,
(2µj − 1)mij if yj = −1 and i 6= j,
−µj if yj = −1 and i = j

for each i. Since (By)•j = Tyx by (4.17), this means that

(By)ij = yixi =





yimij if yj = 1,
yi(2µj − 1)mij if yj = −1 and i 6= j,
µj if yj = −1 and i = j,

which is (4.15). Hence we can see that (By)ij, aside from mij and µj, depends on yi

and yj only. The values of (By)ij for all possible combinations of yi and yj are summed
up in Fig. 4.1. Validity of (4.14), (4.16) can be checked simply by assigning yi = ±1,
yj = ±1 into their right-hand sides and verifying that the results obtained correspond
to those in Fig. 4.1. Finally, rewriting (4.14) in the equivalent form

(By)ij = yimijyj + yi(mij − Iij)µj(1− yj),

we can see that this is the componentwise version of (4.13) (taking into account that
all three matrices Ty, Tµ, I are diagonal). 2
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yi yj (By)ij

1 1 mij

−1 1 −mij

1 −1 (2µj − 1)mij

−1 −1 −(2µj − 1)mij + 2µjIij

Figure 4.1: Dependence of (By)ij on yi, yj.

Proof. Equivalence of (4.13), (4.14), (4.15) and (4.16) has been established in the
previous proof. From (4.15), (4.7) and (4.10) we have

|By|ij =

{
mij if yj = 1,
(2µj − 1)mij if yj = −1

for each i, j, but also

(M(Ty + Tµ(I − Ty)))ij = mij(yj + µj(1− yj)) =

{
mij if yj = 1,
(2µj − 1)mij if yj = −1

for each i, j, which shows that

|By| = M(Ty + Tµ(I − Ty)).

Then

By − I = Ty(M − I)Ty + Ty(M − I)Tµ(I − Ty) = Ty(M − I)(Ty + Tµ(I − Ty))

= Ty∆M(Ty + Tµ(I − Ty)) = Ty∆|By|
(because of (4.11) and of the fact that T 2

y = I), hence

By − Ty∆|By| = I,

which means that By is a solution to (4.12) which, according to Theorem 2, is unique.
2

Now we shall apply this result to the inverse interval matrix.

Theorem 5. Let A = [I − ∆, I + ∆] with %(∆) < 1. Then the inverse interval
matrix A−1 = [B,B] is given by

B = −M + Tκ, (4.24)

B = M, (4.25)

where

κj =
2m2

jj

2mjj − 1
(j = 1, . . . , n), (4.26)
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or componentwise

Bij =

{ −mij if i 6= j,
µj if i = j,

(4.27)

Bij = mij (4.28)

(i, j = 1, . . . , n).

Proof. For each i 6= j, Theorem 4 in view of Fig. 4.1, (4.4) and (4.7) gives

Bij = min
y∈Y

(By)ij = min{mij,−mij, (2µj − 1)mij,−(2µj − 1)mij}
= min{−mij,−(2µj − 1)mij} = −mij

and similarly

Bij = max{mij, (2µj − 1)mij} = mij.

If i = j, then it must be yi = yj, hence only the first and the last row of Fig. 4.1 apply,
giving

Bjj = min
y∈Y

(By)jj = min{mjj,−(2µj − 1)mjj + 2µj} = min{mjj, µj} = µj

due to (4.10) and (4.9), and similarly

Bjj = max{mjj, µj} = mjj.

This proves (4.27), (4.28) and thus also (4.24), (4.25) in view of the fact that κj defined
by (4.26) satisfies

−mjj + κj = µj

for each j. 2

In particular, we have the following result.

Corollary 6 If %(∆) < 1, then the inverse interval matrix [I−∆, I +∆]−1 = [B, B]
satisfies

1
2
≤ Bjj ≤ 1 ≤ Bjj

for each j.

Proof. This is a consequence of Theorem 5 and of (4.5), (4.8). 2
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5 Attainment

According to the definition of the inverse interval matrix

[I −∆, I + ∆]−1 = [B,B],

for each i, j there exists a matrix, say Aij, such that |Aij| ≤ ∆ and

Bij = (I − Aij)−1
ij

holds (we write (I −Aij)−1
ij instead of ((I −Aij)−1)ij), and an analogue holds for Bij.

In the last section we give an explicit expression of such an Aij for each i, j.
First of all, the situation is quite evident for B because from (4.25) we have

B = M = (I −∆)−1,

so that all the componentwise upper bounds are attained at the inverse of I −∆. But
the case of B is more involved.

Theorem 7. For each i, j we have:

(i) if i 6= j, then
Bij = (I − Ty∆Ty)

−1
ij

for each y ∈ Y satisfying yiyj = −1,

(ii) if i = j, then
Bjj = (I − Ty∆Tz)

−1
jj

for each y ∈ Y satisfying yj = −1 and z = y + 2ej.

Comment 5.1. Notice that I − Ty∆Tz ∈ [I −∆, I + ∆] for each y, z ∈ Y .
Proof. Let i, j ∈ {1, . . . , n}.
(i) For each y ∈ Yn there holds

(I − Ty∆Ty)
−1 = (Ty(I −∆)Ty)

−1 = TyMTy,

hence if yiyj = −1, then

(I − Ty∆Ty)
−1
ij = yiyjmij = −mij = Bij.

(ii) We have

I − Ty∆Tz = I − Ty∆(Ty + 2eje
T
j )

= (I − Ty∆Ty)(I − (I − Ty∆Ty)
−12Ty∆eje

T
j )

= (I − Ty∆Ty)(I − 2TyMTyTy∆eje
T
j )

= (I − Ty∆Ty)(I − 2TyM∆eje
T
j ),
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so that by the Sherman-Morrison formula [10] applied to the matrix in the last paren-
theses,

(I − Ty∆Tz)
−1 = (I − 2TyM∆eje

T
j )−1(I − Ty∆Ty)

−1

=

(
I +

2TyM∆eje
T
j

1− 2eT
j TyM∆ej

)
TyMTy

= TyMTy +
2TyM∆eje

T
j TyMTy

1 + 2(M∆)jj

(because yj = −1) and consequently

(I − Ty∆Tz)
−1
jj = mjj +

2(TyM∆)jj(TyMTy)jj

1 + 2(M − I)jj

= mjj − 2(M − I)jjmjj

1 + 2(M − I)jj

= mjj − 2(mjj − 1)mjj

2mjj − 1

=
mjj

2mjj − 1
= µj = Bjj.

2

Hence, the Bij’s are attained at inverses of many matrices in [I − ∆, I + ∆]. But
the results can be essentially simplified if we use the particular set of vectors

y(j) = e− 2ej = (1, . . . , 1,−1, 1, . . . , 1)T (j = 1, . . . , n).

Corollary 8 For each i, j we have:

(i) Bij = (I − Ty(j)∆Ty(j))
−1
ij if i 6= j,

(ii) Bjj = (I − Ty(j)∆)−1
jj .

Proof. The results are immediate consequences of Theorem 7 since y(j)j = −1,
y(j)iy(j)j = −1 for each i 6= j and z = y(j) + 2ej = e. 2
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