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Abstract:

Given a possibilistic distribution on a nonempty space Ω with possibility degrees in a chained complete
lattice, lattice-valued entropy function for such distribution is defined as the expected value (in the sense of
Sugeno possibilistic integral) of the lattice-valued function ascribing to each ω ∈ Ω the possibilistic measure
of its complement Ω− {ω}. This entropy function is proved to possess some properties syntactically close
to those of Shannon probability entropy, even if in other aspects both the entropy functions prove quali-
tative differences. In particular, explicit expressions are proved for lattice-valued entropy of possibilistically
independent (non-interactive, in other terms) products of lattice valued possibilistic distributions.
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1 INTRODUCTION, MOTIVATION, PRELIMINARIES

Research effort leading to the notion of possibility (or possibilistic) distributions and measures to be
investigated also below originated in the famous pioneering work by L. A. Zadeh [18] introducing and
analyzing the notion of real-valued fuzzy sets. For our purposes, all the mathematical, philosophical
and methodological aspects and problems related to fuzzy sets may and will be omitted ([6] can be
recommended as a good survey) and real-valued fuzzy subsets of a universe Ω will be identified with
mappings A : Ω → [0, 1]; as a rule, only normalized fuzzy sets for which the condition

∨
ω∈Ω A(ω) = 1

holds will be taken into consideration. Here and below,
∨

(
∧

, resp.) denotes the supremum (infimum,
resp.) operation no matter whether the standard operations in [0, 1] or operations defined by a (partial)
ordering in some non-numerical structures are considered, this should be always easy to recognize from
the context.

Given a fuzzy subset A of Ω and a crisp subset B ⊂ Ω, L. A. Zadeh quantified, in [17], the
total amount of fuzziness defined by A and contained in B by the value Π(B) =

∨
ω∈B A(ω) and the

resulting mapping Π : P(Ω) → [0, 1], induced on the power-set P(Ω) of all subsets of Ω, he called the
possibility measure induced by A (in what follows, we prefer the adjective “possibilistic” to avoid a
confusion with an informal use of the word “possibility”). In order to emphasize parallel syntactical
features between probabilistic and possibilistic measures the primary fuzzy set A is often denoted by
π and it is called (real-valued) possibilistic distribution on Ω defining the possibilistic measure Π on
P(Ω).

For a number of formally mathematical as well as practical reasons (applications of fuzzy sets to
various situations and problems from the real world around), the idea of fuzzy sets with non-numerical
membership degrees, namely with membership degrees from a complete lattice, appeared in [8] as soon
as in 1967 (cf. also [2], [5] or elsewhere for a more detailed discussion of the related matters).

The reader is supposed to be familiar with the notion of partially ordered set (p.o.set or poset)
defined by the pair 〈T,≤T 〉 = T , where ≤T is a reflexive, antisymmetric and transitive binary relation
on T (subset of T × T ). For S ⊂ T the supremum

∨T
S =

∨T
s∈S s and infimum

∧T
S =

∧T
s∈S s, if

defined, are defined uniquely in the standard way. If no misunderstanding menaces, we omit the index
T in ≤T ,

∨T
, and

∧T
. Let T = 〈T,≤〉 be a p.o.set. As can be easily seen, in general neither

∨
S nor∧

S need be defined for any S ⊂ T. P.o.set T = 〈T,≤〉 is called a lattice, if for each s1, s2 ∈ T, s1 ∨ s2

as well as s1 ∧ s2 is defined in T ; it follows immediately that in this case the values
∨

S and
∧

S are
defined in T for each finite nonempty subset S ⊂ T. If both the values

∨
S and

∧
S are defined in T

for each ∅ 6= S ⊂ T, the p.o.set T = 〈T,≤〉 is called complete lattice and just complete lattices will
play the role of our key tool when quantifying and processing possibility degrees with non-numerical
values. Let us note that both the structures most often used as tools for quantification, 〈[0, 1],≤〉 and
〈P(X),⊂〉, define complete lattices.

If T = 〈T,≤〉 is a complete lattice, the element
∨

T (
∧

T, resp.) is called the unit (element) (the
zero (element), resp.) of T and denoted by 1T (®T , resp.). In this case the index T will be saved in
order to avoid a confusion with the standard notation for integers 1 and 0. For the empty subset ∅ of
T we define, by convention consistent with the properties of complete lattices,

∨ ∅ =
∧

T = ®T , and∧ ∅ =
∨

T = 1T .
Partial ordering relation ≤ defined on T is called linear (or a chain), if s ≤ t or t ≤ s holds for

each s, t ∈ T, hence, due to the antisymmetry axiom imposed on partial ordering, if s < t or t < s
holds for each s 6= t. Here and below, s < t means that s ≤ t and s 6= t holds together, instead of
s ≤ t and s < t we will write also t ≥ s and t > s. Complete lattice T = 〈T,≤〉 with linear ordering
≤ is called complete chained lattice.

Let us note that the complete lattice 〈[0, 1],≤〉 is chained (the standard ordering ≤ on [0, 1] is
linear, but for 〈P(X),⊂〉 it is not the case up to the trivial possibility when X is a singleton.

Given a complete lattice T = 〈T,≤〉 and a nonempty set Ω, a mapping π : Ω → T such that∨
ω∈Ω π(ω) = 1T holds is called T -(valued normalized) possibilistic distribution on Ω or over Ω. As

a matter of fact, it is nothing else than a lattice-valued normalized fuzzy subset of Ω as conceived
by J. A. Goguen in [8]. The mapping Π : P(Ω) → T ascribing to each (crisp) subset A ⊂ Ω the
value Π(A) =

∨
ω∈A π(ω) is called the possibilistic measure induced by π on P(Ω) (for A = ∅ the

convention Π(∅) = ®T applies). The following immediate consequence is easy to check. If T = 〈T,≤〉
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is a complete chained lattice and, if π is a T -possibilistic distribution on a nonempty space Ω, then for
each A ⊂ Ω either Π(A) = 1T or Π(Ω−A) = 1T (or both) holds, like as it is the case for real-valued
possibilistic measures taking their values in the unit interval of reals. Indeed, for each A ⊂ Ω the
relation Π(A)∨Π(Ω−A) = 1T holds, but for linear ordering ≤ on T either t1 ∨ t2 = t1 or t1 ∨ t2 = t2
holds for each t1, t2 ∈ T.

The following notion will be very important on our further reasonings. A T -possibilistic distribu-
tion π on Ω is called isolated, if there exists ω0 ∈ Ω such that Π(Ω − {ω0}) =

∨
ω∈Ω,ω 6=ω0

π(ω) < 1T
holds. If T = 〈T,≤〉 is a complete chained lattice isolated in ω0, then π(ω) = 1T if and only if ω = ω0

(the assertion is almost obvious, cf. also the proof of Lemma 4.2, below and the discussion at the end
of Section 4).

In what follows, we always assume that both the spaces Ω and T contain at least two elements in
order to avoid degenerated and trivial cases.

Our aim will be, in this paper, to propose and analyze, in more detail, a T -valued global character-
istic of the total amount of uncertainty (in the sense of fuzziness) contained in a given T -possibilistic
distribution π on Ω. This characteristic should stand as close as possible to the principles on which
Shannon entropy, taken as a global characteristic of the total amount of randomness contained in a
probability distribution, is based. The main restriction imposed on our constructions will be that
only notions and tools definable within the framework of lattice theory may be applied. These apriori
methodological assumptions are discussed, in more detail, in Section 2. In Section 3, two alternative
approaches to definition of the notion of entropy for possibilistic distributions, proposed and investi-
gated by other authors, are discussed and confronted with the methodological demands from Section 2.
Our variant of lattice-valued entropy function meeting the demands in question is introduced in Sec-
tion 4 and its properties, mainly as far as the possibilistically independent (non-interactive, in other
terms) products of T -possibilistic distributions are concerned, are investigated in Section 5.

2 Shannon-Like Lattice-Valued Entropy Function
with Strongly Reduced Ontologically Independent
Assumptions

Let T = 〈T,≤〉 be a complete lattice, let Ω be a nonempty space, and let π : Ω → T be a T -
(lattice-valued normalized possibilistic) distribution on Ω, so that

∨
ω∈Ω π(ω) = 1T (=

∨
T ) holds.

Our aim will be, in what follows, to propose and analyze, in more detail, a mapping H ascribing
to π a value H(π) from T in a way expressing adequately the total amount of uncertainty (in the
sense of vagueness or fuzziness) contained in the possibilistic distribution π. The two meta-theoretical
conditions ultimately imposed on our effort will read as follows.

First, not only the value H(π) itself, but all the values used when introducing and when analyzing
the properties of the mapping H should be values from T, and the only operations and relations
applied when processing these values should be the relation of partial ordering ≤ on T, the operations
of supremum (

∨
) and infimum (

∧
) induced by ≤ in T, and perhaps further relations and operations

secondary defined on the ground of ∨,∧, and ≤ taken as the primary tools. Consequently, the complete
lattice T will be considered at the most general level in the sense that only the conditions definable
within the framework of lattice-based operations and relations as specified above may be imposed on
T in order to investigate some particular cases of complete lattices (e.g., the assumption that ≤ defines
a linear ordering, i.e., that T = 〈T,≤〉 is a chained lattice, can be defined within these restrictions).
It is perhaps worth being noted explicitly that according to this methodological assumption, which
can be taken as the principle of elimination of all ontologically independent assumptions from our
mathematical model, no mappings of T into real numbers as well as no algebraic operations over such
real-valued images or relations among them will be supposed and applied. Even when T = 〈[0, 1],≤〉
is the particular case of complete lattice under consideration, no arithmetical or algebraic operations
and relations on [0, 1] except the lattice-based ones will be admitted.

The second meta-theoretical assumption will read that the mapping H should stand as close to the
Shannon probabilistic entropy function and should share as much properties possessed by the Shannon
entropy (or properties in a reasonable sense close or analogous to the properties of the Shannon
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entropy) as it is possible within the restricted framework of mathematical models and tools remaining
at our disposal when keeping in mind the principle of elimination of ontologically independent inputs
as introduced one paragraph above. If is why a very brief re-calling of the basic ideas on which
Shannon entropy relies seems to be useful.

Let Ω = {ω1, ω2, . . . , ωn} be a finite space, let p be a probability distribution on Ω, i.e., p : Ω →
[0, 1],

∑n
i=1 p(ωi) = 1 holds. Taking a random sample from p and obtaining, say, ωi0 as the result, our

surprise on this result (informally told) will be the greater the smaller p(ωi0) is, i.e., the smaller had
been our apriori expectation that just ωi0 occurs. Calling a numerical value quantifying the degree of
surprise by aposteriori information on the distribution p obtained when obtaining the sample value
ωi0 and denoting this information by a real-valued function f : Ω → R+ = [0,∞], we obtain that f
should be a decreasing function of p(ω) such that f(ω) = 0, if p(ω) = 1 (the occurrence of random
event expected with the probability 1 brings no surprise and no new information); and f(ω) should
tend to ∞, if p(ω) tends to 0. As a reasonable characteristic of the total amount of uncertainty (in the
sense of randomness) contained in the probability distribution p on Ω the expected value of f over Ω,
i.e., the value

H(p) =
n∑

i=1

f(ωi)p(ωi) (2.1)

could be accepted (applying the convention that 0.∞ = 0, if p(ωi) = 0). Considering two spaces Ωi

with probability distributions pi : Ωi → [0, 1], i = 1, 2, setting

(p1 × p2)(ω1, ω2) = p1(ω1)p2(ω2) (2.2)

for each 〈ω1, ω2〉 ∈ Ω1 × Ω2, and imposing on the function f the demand that

H(p1 × p2) = H(p1) + H(p2) (2.3)

should be valid, we arrive at the conclusion that up to a multiplicative constant, i.e., up to the base to
which logarithm function will be defined, only the function f(ω) = log(1/p(ω)) meets our demands.
Taking by convention as the unit of the information quantity the information obtained when observing
the result of regular (1/2 : 1/2) coin tossing, we arrive at the Shannon entropy function H defined by

H(p) = −
n∑

i=1

(log2 p(ωi))p(ωi), (2.4)

for the first time presented in 1948 ([12]). From the mathematical point of view, Shannon entropy
develops and generalizes the Hartley entropy function (cf. [9] or the monograph [10]), as far as the
technical aspects were concerned, inspiration came from thermodynamics and some results concerning
rational message encoding.

Unfortunately, the function log2(1/p(ω)) applied in (2.4) is too closely related to the structure and
operations over the unit interval of real numbers to be translated into the lattice structures so that
we have to try other decreasing function of p(ω), namely, the simple function 1 − p(ω). Replacing
log2(1/p(ω)) by 1− p(ω) in (2.4), we arrive at the function HQ defined by

HQ(p) =
n∑

i=1

(1− p(ωi))p(ωi) = 1−
n∑

i=1

(p(ωi))2, (2.5)

referred in the surveyal paper [11]. Like as in the Shannon entropy, HQ(p) = 0 (the minimum value
of HQ), iff p(ω) = 1 for some (obviously just one) ω ∈ Ω and HQ(p) = 1− (1/n) (the maximum value
of HQ), iff p(ωi) = 1/n for each ωi ∈ Ω = {ω1, ω2, . . . , ωn}. Contrary to Shannon entropy taking its
values in [0,∞),HQ(p) takes its values in [0, 1); if p1, p2 are probability distributions on spaces Ω1, Ω2,
then for their statistically (stochastically) independent product p1 × p2 defined by (2.2) the relation

HQ(p1 × p2) = 1− [(1−HQ(p1))(1−HQ(p2))] (2.6)

holds.
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Denoting by P the probability measure induced by p on P(Ω), i.e., setting P (A) =
∑

ω∈A p(ω) for
each A ⊂ Ω, the expression 1 − p(ω) can be written as P (Ω − {ω}), so that, for finite or countable
space Ω, (2.5) yields that

HQ(p) =
∑

ω∈Ω

[P (Ω− {ω})p(ω)]. (2.7)

Hence, given a complete lattice T = 〈T,≤〉, a T -possibilistic distribution π on Ω, and replacing
∑

ω∈Ω

by
∨

ω∈Ω, product by infimum, and P (Ω− {ω}) by Π(Ω− {ω}) (Π induced by π on P(Ω)), we arrive
at the expression

I(π) =
∨

ω∈Ω

[Π(Ω− {ω}) ∧ π(ω)]. (2.8)

The value I(π) belongs to T and can be taken as the expected value (in the sense of Sugeno integral,
cf. [2] for more detail) of the nonincreasing (in the sense of the partial ordering ≤ on T ) lattice-valued
function Π(Ω− {ω}) with respect to the T -possibilistic distribution π on Ω. Indeed, if π(ω1) ≤ π(ω2)
holds for ω1, ω2 ∈ Ω, then

Π(Ω− {ω1}) = Π(Ω− {ω1, ω2}) ∨ π(ω2) ≥
≥ Π(Ω− {ω1, ω2}) ∨ π(ω1) = Π(Ω− {ω2}) (2.9)

easily follows.
To conclude this section, we may quote that the mapping I(π), defined by (2.8), meets the demands

imposed above on lattice-valued entropy function over lattice-valued possibilistic distributions. Indeed,
no ontologically independent assumptions are imposed and applied and the pattern of Shannon entropy
is followed by the closest path compatible with the narrow framework of lattice theory apparatus.
So, the mapping I(π) deserves, at least in the author’s opinion, to be considered as a promising
candidate on the role of lattice-valued entropy function defined over T -possibilistic distributions and,
consequently, to be analyzed in more detail, from this point of view. Nevertheless, before doing so, let
us briefly mention two alternative approaches to the definition of entropy function over possibilistic
distributions, first of all comparing their methodological and meta-theoretical basic principles with
those introduced and defended above.

The following fact should be clear from what has been already told, but let us recall it explicitly.
The introduction of classical Shannon entropy H(p)(2.4) and the function HQ(p)(2.5), both of them
mapping probability distributions p into real numbers, does not violate our assumption to avoid
from consideration notions not embeddable into the framework of lattice theory. Indeed, both the
functions H and HQ serve just as an intuitive and informal inspiration, when proposing the lattice-
valued function I(π)(2.8), but neither H nor HQ are used as inputs taking part in the mathematical
definition of the function I(π) and they are not applied when proving properties of I(π). Moreover,
neither H nor H∗ are subjects of our investigations and both these functions could be eliminated from
the text without menacing the formal correctness; just the intuition behind would be perhaps less
obvious.

3 Two Alternative Approaches to Entropy Functions over
Possibilistic Distributions

In [3], De Luca and Termini investigate standard real-valued fuzzy sets defined by a mapping f :
Ω → [0, 1] for a finite space Ω = {ω1, ω2, . . . , ωN}. They try to analyze, in which sense and degree
Shannon entropy function could be used as a reasonable mathematical tool in order to quantify the
total amount of uncertainty contained in the fuzzy set f, in spite of qualitative differences between the
uncertainty in the sense of randomness (for which Shannon entropy was fitted) and the uncertainty
in the sense of vagueness and fuzziness. As the first approximation, the authors propose the function
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H(f) = −K

N∑

i=1

f(ωi)lnf(ωi) (3.1)

where K is a positive constant and ln denotes logarithm to the base e. However, this function does
not meet the intuitively reasonable demand according to which H(f) should take its maximum value
when f(ωi) = 1/2 for each ωi ∈ Ω. In order to satisfy this demand, De Luca and Termini propose to
define the entropy function by the mapping

d(f) = H(f) + H(1− f), (3.2)

where 1− f is the fuzzy subset of Ω defined by (1− f)(ωi) = 1− f(ωi) for each ωi ∈ Ω. The authors
propose an alternative nonprobabilistic interpretation of this entropy (illustrated by an example) and
prove some non-trivial mathematical results dealing with the mapping d, which may be of interest
and use for specialists analyzing or applying standard real-valued fuzzy sets. However, from the point
of view of our intentions, the notions introduced and results achieved in [3] are too closely related
to the properties of real numbers, and to wide spectrum of operations by which these numbers can
be processed, to be immediately applicable for non-numerical fuzzy sets without some additionally
defined projection of these uncertainty degrees into the real line.

De Luca and Termini go on in their effort to apply Shannon entropy function to fuzzy sets in [4].
The mathematical model proposed and analyzed here is rather abstract to be described as briefly as
in [3], but the intuition behind may be as follows. Given Ω = {ω1, ω2, . . . , ωN} as before, not only one
fuzzy set f, but an M -tuple of fuzzy sets f1, f2, . . . , fM on Ω is defined, each of them taking Ω into
[0, 1]. E.g., each fi may be taken as fuzzy description of a property which is possessed, in the degree
fj(ωi), by an object ωi ∈ Ω (the size of the object ωi is large in degree f1(ωi), the weight of ωi is high
in degree f2(ωi), its color is blue in degree f3(ωi), . . . ). The sequence 〈f1(ωi), f2(ωi), . . . , fM (ωi)〉 of
numbers from [0, 1] (or its subsequence, if the classification of certain objects with respect to certain
properties is not known) is taken as vector-valued membership degree f(ωi) ascribed to ωi ∈ Ω, hence
it is a mapping taking Ω into the set of all m-tuples, m ≤ M , of real numbers from [0, 1]. The standard
linear ordering ≤ on [0, 1], according to which for each j ≤ M and each i1, i2 ≤ N such that fj(ωi1)
and fj(ωi2) are defined either fj(ωi1) ≤ fj(ωi2) or the inverse inequality holds, obviously does not
induce a linear ordering on the space of vectors 〈f1(ω, f2(ω), . . . , fM (ω)〉 and their sub-vectors, but
under some intuitive and acceptable conditions investigated in [4] the space of values possibly taken
by f defines a complete lattice with respect to the partial ordering ≤∗ such that

f(ω1) = 〈f1(ω1), f2(ω1), . . . , fM (ω1) ≤∗ 〈f1(ω2), f2(ω2), . . . , fM (ω2)〉 = f(ω2) (3.3)

holds iff fj(ω1) ≤ fj(ω2) is valid for each ω1, ω2 ∈ Ω for which both the values fj(ω1) and fj(ω2) are
defined. The vector-valued entropy d of the lattice-valued mapping f is then defined by

d(f) = 〈d1(f1), d2(f2), . . . , dM (fM )〉 (3.4)

where each dj defines a real-valued entropy from a class of Shannon-like real-valued entropy functions,
possibly different for different j’s, but each of then defined like (3.2). Hence, the entropy function d
takes its values in the set of finite sequences of real numbers partially ordered by ≤∗; under certain
conditions analyzed in [4] also this partially ordered structure defines a complete lattice.

The approach presented in [4] offers a number of interesting ideas and valuable results which may
be of use when applying the notion of fuzziness when solving some problems from the surrounding us
real world. However, the complete lattices in which membership degrees fj(ωi) and entropy function
d(f) take their values are particular and sophistically proposed complete lattices over vectors and
matrices of real numbers, not a free input into our reasonings and constructions (“Let T = 〈T,≤〉 be
a complete lattice. . . ”) as demanded by our methodological assumptions imposed on lattice-valued
fuzzy sets and entropy functions in Section 2.

A qualitatively different approach to the quantification of the total amount of fuzziness contained
in a fuzzy set is presented by R. R. Yager in [14] (for real-valued fuzzy sets) and in [15] (for the
lattice-valued ones). His basic idea reads that a fuzzy set f : Ω → [0, 1] is the more “fuzzy” the
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smaller is the difference between f and its fuzzy complement 1− f defined by (1− f)(ω) = 1− f(ω)
for each ω ∈ Ω. Consequently, the most “fuzzy” is the fuzzy set f1/2

(ω) = 1/2 for each ω ∈ Ω, which
is identical with its complement, and fuzzy set f2 is “at least as fuzzy” as fuzzy set f1 (f1 ¹ f2, in
symbols), if

f1(ω) ∧ (1− f1)(ω) ≤ f2(ω) ∧ (1− f2)(ω) (3.5)

(∧ stands for the standard minimum in [0, 1]) holds for each ω ∈ Ω. Indeed, f ¹ f1/2
holds for each

ω ∈ Ω.
As ¹ obviously does not define a linear ordering on the space of real-valued fuzzy subsets of Ω,

various metrics and distance functions are introduced and examined in more detail in order to obtain
a linear ordering of fuzzy subsets over Ω (e.g., expected value of the difference |f(ω) − f1/2

(ω)| with
respect to a measure on P(Ω) or some more sophisticated functions).

Given a distance function δ taking pairs of real-valued fuzzy sets into [0, 1], the value 1− δ(f, f1/2
)

could be taken as a real-valued quantification of the total amount of fuzziness contained in f. However,
such a mapping is not applicable to lattice-valued fuzzy sets and, moreover, some ontologically inde-
pendent inputs are necessary (the mapping δ, the complement function 1− ., . . . ) and may be chosen
in various ways. Hence, our methodological conditions imposed on lattice-valued entropy functions
are, again, violated.

In the case of real-valued fuzzy subsets of Ω the relation f1 ¹ f2, defined by (3.5), can be expressed
also in the form that f2 and 1− f2 “lie between” f1 and 1− f1 in the sense that, for each ω ∈ Ω, both
the values f2(ω)∧ (1− f2)(ω) and 1− (f2(ω)∧ (1− f2)(ω)) lie between the values f1(ω)∧ (1− f1)(ω)
and 1 − (f1(ω) ∧ (1 − f1)(ω)), indeed, f1/2

= 1 − f1/2
≡ 1/2 lies between f1(ω) ∧ (1 − f1(ω)) and its

complement for each f1.
In [1], G. Birkhoff defines the notion of betweenness (the ternary relation “to lie between”) for

lattice 〈T,≤〉 in this way: given a, b, c ∈ T, b lies between a and c, if the relation

(a ∧ b) ∨ (b ∧ c) = b = (a ∨ b) ∧ (b ∨ c) (3.6)

holds. For distributive lattices (3.6) reduces to

(a ∨ c) ∧ b = b = (a ∧ c) ∨ b. (3.7)

In order to be able to apply this relation to lattice-valued fuzzy sets following the pattern just outlined
for real-valued fuzzy sets, a lattice-valued modification of the complement function 1−f(.) is necessary.
R. R. Yager in [15] enriches the lattice structure in which fuzzy sets take their values by a new unary
operation of negation which is defined as ontologically independent input into the lattice structure;
for x ∈ T the negation of x is denoted by xC . Axiomatically imposed demands on the operation of
negation are that of involution and order reversing, under some simplifying conditions these demands
reduce to De Morgan rules. Moreover, for crisp fuzzy sets (i.e., for fuzzy sets taking only ®T or 1T
as membership degrees) negation reduces to standard set complement operation.

Using the negation operation, the relation f1 ¹ f2 (f2 is at least as fuzzy as f1) can be extended
also to lattice-valued fuzzy sets in order to define the case when the values f2(ω) ∧ (f2(ω))C and
[f2(ω) ∧ (f2(ω))C ]C lie between f1(ω) ∧ (f1(ω))C and [f1(ω) ∧ (f1(ω))C ]C for each ω ∈ Ω. As in
other cases briefly reviewed in this section a number of interesting and valuable results concerning
the relation ¹ between lattice-valued fuzzy sets are presented and proved, but their methodological
basis does not meet our demands introduced in Section 2 at least in two points: an ontologically
independent input in the form of operation of negation is necessary and the total amount of fuzziness
contained in a fuzzy set is not quantified by a single value from the lattice under consideration, but
fuzzy sets are compared directly, hence, there is not single value which would characterize the fuzzy
set in question in the sense of its entropy value.

4 Entropy Function over Complete Chained Lattices

Definition 4.1 Let T = 〈T,≤〉 be a complete lattice, let π be a T -possibilistic distribution on a
nonempty space Ω. T -(valued) entropy (function) I(π) is defined by
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I(π) =
∨

ω∈Ω

(Π(Ω− {ω}) ∧ π(ω)). (4.1)

As may be easily observed, T ,-entropy I(π) takes its minimum value ®T , if π(ω0) = 1T for some
ω0 ∈ Ω and π(ω) = ®T for each ω ∈ Ω, ω 6= ω0. I(π) takes its maximum value 1T , if π is not isolated
(e.g., if there are ω1 6= ω2 such that π(ω1) = π(ω2) = 1T , cf. Lemma 4.1. Let π1, π2 be T -possibilistic
distributions on Ω such that π1(ω) ≤ π2(ω) holds for each ω ∈ Ω, then Π1(A) ≤ Π2(A) holds for
each A ⊂ Ω and, consequently, the relation I(π1) ≤ I(π2) is valid. Let us note that if p1 and p2 are
probability distributions on finite or countable space Ω, the relation p1(ω) ≤ p2(ω) for each ω ∈ Ω
may be the case only when the probability distributions p1 and p2 are identical.

Lemma 4.1 Let T = 〈T,≤〉 be complete chained lattice (i.e., the partial ordering ≤ is linear), let
Ω, π and I(π) be as in Definition 4.1. Then I(π) < 1T holds if and only if π is isolated in some ω0 ∈ Ω
and if this is the case, then I(π) = Π(Ω− {ω0}).

Proof: For each ω0 ∈ Ω, (4.1) yields that

I(π) = [Π(Ω− {ω0}) ∧ π(ω0)] ∨
∨

ω∈Ω,ω 6=ω0

[Π(Ω− {ω}) ∧ π(ω)]. (4.2)

As ≤ is linear on T and π is isolated in ω0, π(ω0) = 1T follows. Indeed, if π(ω0) ≤ Π(Ω − {ω0})
were the case, then

∨
ω∈Ω π(ω) < 1T would follow, but this contradicts the definition of π. Hence,

π(ω0) > Π(Ω − {ω0}) and Π(Ω) = 1T = Π(Ω − {ω0}) ∨ π(ω0) = π(ω0) results. Hence, as Ω − {ω}
contains ω0 for each ω 6= ω0, the relation Π(Ω − {ω}) = 1T for each ω 6= ω0 follows. Consequently,
(4.2) yields that

I(π) = (Π(Ω− {ω0}) ∧ 1T ) ∨
∨

ω∈Ω,ω 6=ω0

(1T ∧ π(ω)) =

= Π (Ω− {ω0}) ∨
∨

ω∈Ω,ω 6=ω0

π(ω) = Π(Ω− {ω0}) < 1T . (4.3)

If π is not isolated, then Π(Ω− {ω}) = 1T holds for each ω ∈ Ω, so that

I(π) =
∨

ω∈Ω

(Π(Ω− {ω}) ∧ π(ω)) =
∨

ω∈Ω

π(ω) = 1T . (4.4)

The assertion is proved. 2

For possibilistically independent (non-interactive, in other terms) product of two possibilistic dis-
tributions over the Cartesian product of their support spaces the generalized version of the assertion
of Lemma 4.1 reads as follows.

Lemma 4.2 Let T = 〈T,≤〉 be a complete chained lattice. For both i = 1, 2, let Ωi be a nonempty
space, let πi be an isolated T -possibilistic distribution on Ωi, and let I(πi) be defined by (4.1). Let
π12 : Ω1×Ω2 → T be defined by π12(ω1, ω2) = π1(ω1)∧ π2(ω2) for each 〈ω1, ω2〉 ∈ Ω1×Ω2, let I(π12)
be defined by (4.1) with Ω replaced by Ω1 × Ω2, hence,

I(π12) =
∨

〈ω1,ω2〉∈Ω1×Ω2

(Π12((Ω1 × Ω2)− {〈ω1, ω2〉}) ∧ π12(ω1, ω2)). (4.5)

Then π12 defines an isolated T -possibilistic distribution on Ω1 × Ω2 and the relation

I(π12) = I(π1) ∨ I(π2) < 1T (4.6)

holds.
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Proof: As π1 and π2 are isolated and ≤ is linear, there exist uniquely defined elements ω0
1 ∈ Ω1 and

ω0
2 ∈ Ω2 such that π1(ω0

1) = π2(ω0
2) = 1T , so that π12(ω0

1 , ω0
2) = 1T ∧ 1T = 1T . Hence,

∨

〈ω1,ω2〉∈Ω1×Ω2

π12(ω1, ω2) = 1T (4.7)

and π12 defines a T -possibilistic distribution on Ω1 × Ω2. Moreover,

Π((Ω1 × Ω2)− {〈ω0
1 , ω0

2〉}) =

=
∨

〈ω1,ω2〉∈Ω1×Ω2,〈ω1,ω2〉6=〈ω0
1 ,ω0

2〉
(π1(ω1) ∧ π2(ω2))

=
∨

〈ω1,ω2〉∈Ω1×Ω2,ω1 6=ω0
1 ,ω2 6=ω0

2

(π1(ω1) ∧ π2(ω2)) ∨

∨
∨

ω2∈Ω0,ω2 6=ω0
2

(π1(ω0
1) ∧ π2(ω2)) ∨

∨
∨

ω1∈Ω1,ω1 6=ω0
1

(π1(ω1) ∧ π2(ω0
2)). (4.8)

For the third line in (4.8) we obtain that

∨

〈ω1,ω2〉∈Ω1×Ω2,ω1 6=ω0
1 ,ω2 6=ω0

2

(π1(ω1) ∧ π2(ω2)) ≤

≤

 ∨

ω1∈Ω1,ω1 6=ω0
1

π1(ω1)


 ∧


 ∨

ω2∈Ω2,ω2 6=ω0
2

π2(ω2)


 =

= (Π1(Ω1 − {ω0
1})) ∧ (π2(Ω2 − {ω0

2})) (4.9)

holds, for the fourth line in (4.8) we obtain that

∨

ω2∈Ω2,ω2 6=ω0
2

(π1(ω0
1) ∧ π2(ω2)) =

=
∨

ω2∈Ω2,ω2 6=ω0
2

(1T ∧ π2(ω2)) = Π2(Ω2 − {ω0
2}), (4.10)

and analogously for the fifth line in (4.8)
∨

ω1∈Ω1,ω1 6=ω0
1

(π1(ω1) ∧ π2(ω0
2)) = Π1(Ω1 − {ω0

1}). (4.11)

Consequently, the relation

I(π12) = Π12((Ω1 × Ω2)− {〈ω0
1 , ω0

2〉}) =
= ((Π1(Ω1 − {ω0

1})) ∧ (Π2(Ω2 − {ω0
2}))) ∨Π1(Ω1 − {ω0

1}) ∨Π2(Ω2 − {ω0
2}) =

= Π1(Ω1 − {ω0
1}) ∨Π2(Ω2 − {ω0

2}) < 1T (4.12)

follows. Indeed, Πi(Ωi − {ω0
i }) < 1T holds for both i = 1, 2 and, as ≤ is a linear ordering on T,

t1 ∨ t2 = t1 or t1 ∨ t2 = t2 holds for each t1, t2 ∈ T. The assertion is proved. 2
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It is perhaps worth being noted explicitly that the condition according to which both the particular
T -possibilistic distributions π, on Ω1 and π2 on Ω2 must be isolated in order to obtain an isolated
T -possibilistic distribution π12 on Ω1 × Ω2 is substantial. Indeed, let only π2 be isolated, so that
Π1(Ω1 − {ω1}) = 1T holds for each ω1 ∈ Ω1 and Π2(Ω2 − {ω0

2}) < 1T holds for uniquely defined
ω0

2 ∈ Ω2.
Given t ∈ T, t < 1T , there exists ωA ∈ Ω1 such that t < π1(ω1) holds (as ≤ is linear, this follows

immediately from the condition that Π1(Ω1) =
∨

ω1∈Ω1
π1(ω1) = 1T ). If there were only one ωA ∈ Ω1

such that t < π1(ωA) were the case, we would obtain that Π1(Ω1 − {ωA}) ≤ t < 1T holds, but this
relation contradicts the assumption that π1 is not isolated. Consequently, for each t < 1T there exists
different elements ωA, ωB ∈ Ω1 such that π1(ωA) > t and π1(ωB) > t holds.

Take ω0
2 ∈ Ω2, so that π2(ω0

2) = 1T and

π12(ω1, ω
0
2) = π1(ω1) ∧ π2(ω0

2) = π1(ω1) ∧ 1T = π1(ω1) > t (4.13)

holds for both ω1 = ωA and ω1 = ωB . As 〈ωA, ω0
2〉 and 〈ωB , ω0

2〉 are different elements of the Cartesian
product Ω1 × Ω2, for each 〈ω1, ω2〉 ∈ Ω1 × Ω2 at least one of these pairs is in (Ω1 × Ω2)− {〈ω1, ω2〉},
so that

Π12((Ω1 × Ω2)− {〈ω1, ω2〉}) ≥ π12(ωA, ω0
2) ∧ π12(ΩB , ω0

2) > t (4.14)

follows. As t < 1T may be chosen arbitrarily, we obtain that
∨

〈ω1,ω2〉∈Ω1×Ω2

[Π12((Ω1 × Ω2)− {〈ω1, ω2〉}) ∧ π12(ω1, ω2)] = 1T = I(π12) (4.15)

holds. So, π12 is not an isolated T -possibilistic distribution on Ω1 ×Ω2 and, as I(π1) = 1T according
to (4.4), the relation

I(π12) = I(π1) ∨ I(π2) = 1T ∨ I(π2) = 1T (4.16)

holds trivially.

Lemma 4.3 Let T = 〈T,≤〉 be a complete chained lattice, let Ω be a nonempty space, let π be a
T -possibilistic distribution on Ω. Let Ω∗ = {Ωi : i ∈ J } be a decomposition of Ω, i.e., Ωi ∩ Ωj = ∅
for each i, j ∈ J , i 6= j, and

⋃
i∈J Ωi = Ω, let π∗(i) = Π(Ωi) for each i ∈ J . Then the mapping

π∗ : J → T defines a T -possibilistic distribution on J such that, for I(π) and I(π∗) defined by (4.1),
the inequality I(π∗) ≤ I(π) holds.

Remark 1 The T -possibilistic distribution π∗ on J can be obviously taken as T -possibilistic distri-
bution on Ω∗, simply identifying each Ωi ∈ Ω∗ with its index i ∈ J .

Proof: If π is not isolated, then I(π) = 1T and the assertion holds trivially. If π is isolated, then there
exists uniquely defined ω0 ∈ Ω such that Π(Ω − {ω0}) < 1T and, consequently, π(ω0) = 1T holds.
Let i0 ∈ J be the uniquely defined i ∈ J such that ω0 ∈ Ωi is the case. Then we obtain

I(π∗) =
∨

i∈J
(Π∗(J − {i}) ∧ π∗(i)) =

∨

Ωi∈Ω∗
(Π(Ω− Ωi) ∧Π(Ωi)) =

= [Π(Ω− Ωi0) ∧Π(Ωi0)] ∨
∨

Ωi∈Ω∗,Ωi 6=Ωi0

(Π(Ω− Ωi) ∧Π(Ωi)). (4.17)

As ω0 ∈ Ωi0 and, consequently, ω0 ∈ Ω − Ωi for each i ∈ J , i 6= i0, holds, we obtain that Π(Ωi0) =
Π(Ω− Ωi) = 1T for each i ∈ J , i 6= i0, follows. Hence,
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I(π∗) = Π(Ω− Ωi0) ∨
∨

Ωi∈Ω∗,Ωi 6=Ωi0

Π(Ωi) =

= Π(Ω− Ωi0) ∨Π


 ⋃

Ωi 6=Ωi0

Ωi


 = Π(Ω− Ωi0) ∨Π(Ω− Ωi0) = Π(Ω− Ωi0)

≤ Π(Ω− {ω0}) = I(π) (4.18)

holds, as ω0 ∈ Ωi0 implies that Ω − Ωi0 ⊂ Ω − {ω0} and Π(Ω − Ωi0) ≤ Π(Ω − {ω0}) holds. The
assertion is proved. 2

An immediate corollary of Lemma 4.3 reads that if the T -possibilistic distribution π on Ω is
isolated, i.e., if I(π) < 1T holds, then the T -possibilistic distribution π∗ induced by π on (the para-
metric set J of indices of sets from) a decomposition Ω∗ of Ω is also isolated, i.e., I(π∗) < 1T
follows. On the other side, π∗ may be isolated even when π is not isolated, e.g., if there are
ω1, ω2 ∈ Ω, ω1 6= ω2, such that π(ω1) = π(ω2) = 1T . Indeed, if the decomposition Ω∗ of Ω is
such that there exists Ωi0 ⊂ Ω, Ωi0 ∈ Ω∗, with the property that there exists t ∈ T, t < 1T ,
such that π(ω) ≤ t holds for each ω ∈ Ω − Ω0 (hence, all ω’s with π(ω=1T are contained in
Ωi0), then π∗(i0) = Π(Ωi0) = 1T , π∗(i) ≤ Π(Ω − Ωi0) ≤ t for each i ∈ J , i 6= i0, holds, hence,
Π∗(J − {i0}) = Π(Ω−Ωi0) ≤ t < 1T follows, so that π∗ is an isolated T -possibilistic distribution on
J (on Ω∗, resp.).

Lemma 4.4 Let T = 〈T,≤〉 be a complete chained lattice, let Ω1,Ω2 be nonempty spaces, let π12 :
Ω1×Ω2 → T be a T -possiblistic distribution on Ω1×Ω2, i.e.,

∨
〈ω1,ω2〉∈Ω1×Ω2

π12(ω1, ω2) = 1T holds.
For both i = 1, 2, let π∗i denote the marginal T -possiblistic distribution on Ωi induced by π12, so that

π∗1(ω1) =
∨

ω2∈Ω2

π12(ω1, ω2), π∗2(ω2) =
∨

ω1∈Ω1

π12(ω1, ω2) (4.19)

holds for each ω1 ∈ Ω1, ω2 ∈ Ω2. Let π∗1 × π∗2 be the possibilistically independent product of marginal
T -possibilistic distributions π∗1 , π∗2 , so that, for each 〈ω1, ω2〉 ∈ Ω1 × Ω2, the relation

(π∗1 × π∗2)(ω1, ω2) = π∗1(ω1) ∧ π∗2(ω2) (4.20)

holds, let the T -entropy I(π) be defined by (4.1) for π = π12, π
∗
1 , π∗2 and π∗1 × π∗2 . Then the inequality

I(π12) ≤ I(π∗1 × π∗2) = I(π∗1) ∨ I(π∗2) (4.21)

is valid.

Proof: Obviously,

∨

ω1∈Ω1

π∗1(ω1) =
∨

ω1∈Ω1

( ∨

ω2∈Ω2

π12(ω1, ω2)

)
=

∨

〈ω1,ω2〉∈Ω1×Ω2

π12(ω1, ω2) = 1T (4.22)

and similarly for π∗2(ω2), so that, for both i = 1, 2, π∗i defines a T -possibilistic distribution on Ωi. For
each ω1 ∈ Ω1, the inequality

π12(ω1, ω2) ≤
∨

ω2∈Ω2

π12(ω1, ω2) = π∗1(ω1) (4.23)

holds, analogously we obtain the inequality π12(ω1, ω2) ≤ π∗2(ω2). Hence, the inequality

π12(ω1, ω2) ≤ π∗1(ω1) ∧ π∗2(ω2) = (π∗1 × π∗2)(ω1, ω2) (4.24)

is valid for each 〈ω1, ω2〉 ∈ Ω1×Ω2. As proved at the beginning of this section, in this case the relation

I(π12) ≤ I(π∗1 × π∗2) = I(π∗1) ∨ I(π∗2) (due to Lemma 4.2) (4.25)

follows and the assertion is proved. 2
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5 Some Informal Reasonings Concerning the T -Valued
Entropy Function I(π)

Before going on with our investigations of the properties of the lattice-valued entropy function I(π)
defined by (4.1), let us briefly re-consider our meta-theoretical demands imposed on this function
in Section 2 above. As the demand to avoid ontologically independent inputs from our model is
concerned, we may take this assumption as having been met. Neither in the Definition 4.1 nor in
the statements of Lemmata 4.1 to 4.4 and their proofs, any assumptions and tools going beyond the
framework of lattice theory have been applied and the only specification imposed on the notion of
general complete lattice T = 〈T,≤〉, namely the assumption that the ordering ≤ on T is linear (so
that T is chained) may be and has been defined using just the apparatus of lattice theory.

As far as the promise to follows the pattern of Shannon probabilistic entropy function as closely as
possible, the assertions of Lemmata 4.2–4.4 can be seen as possibilistic modifications of well-known and
important properties possessed by the Shannon entropy function H (up to the syntactical difference
when replacing

∑
by

∨
, as could be more or less expected). Indeed, let Ω1, Ω2 be finite spaces, let

p1, p2 be probabilistic distributions on Ω1 and Ω2, and let p12 be their statistically (stochastically)
independent product on Ω1 × Ω2, so that p12(ω1, ω2) = p1(ω1)p2(ω2), then H(p12) = H(p1) + H(p2)
(compare with Lemma 4.2). Given a general probability distribution on Ω1×Ω2, i.e., p12 : Ω1×Ω2 →
[0, 1],

∑
〈ω1,ω2〉∈Ω1×Ω2

p12(ω1, ω2) = 1, and denoting by p∗1(p
∗
2, resp.) the marginal distribution induced

by p12 on Ω1(Ω2, resp.), the inequality H(p12) ≤ H(p∗1) + H(p∗2) holds (compare with Lemma 4.4).
Moreover, given a probability distribution p on Ω, given a decomposition Ω∗ ⊂ P(Ω) of Ω and setting
p∗(Ω0) =

∑
ω∈Ω0

p(ω) for any Ω0 ∈ Ω∗, the inequality H(p∗) ≤ H(p) holds, as in Lemma 4.3 for the
lattice-valued possibilistic distributions π and π∗.

On the other side, Lemma 4.1 proves the properties in which lattice-valued entropy I(π) defined
by (4.1) qualitatively differs from the Shannon probabilistic entropy. Before all, the entropy I(π) is
normalized, hence, its values are majorized by the unit element 1T of the complete chained lattice
under consideration. This fact enables to compare, at least partially, two T -possibilistic distributions
as far as the proximity of these entropy values to the maximum value is concerned, however, this
maximum value is not too sensitive to separate among wide variety of cases when the value I(π) = 1T
may occur. E.g., as shown in Lemma 4.2, if π(ω1) = π(ω2) = 1T holds for different ω1, ω2 ∈ Ω, then
I(π) = 1T no matter whether ω1, ω2 are the only elements in Ω with this property or whether, e.g.,
π(ω) = 1T for each ω ∈ Ω. However, from a certain point of view this consequence is quite intuitive.
Indeed, let the case π(ω) = 1T describe the situation when we have no argument weakening our apriori
expectation that ω is identical with the actual value ω0 of a hidden parameter under consideration
(the actual elementary random event, “state of world”, ω0 in the term of random variables). If there
are two different elements ω1, ω2 ∈ Ω such that π(ω1) = π(ω2) = 1T , there is no reason based on the
T -possibilistic distribution π in question for which just one element, say ω1, should be picked up as
the most favorable candidate to (or estimation of) the actual value ω0 ∈ Ω. Picking up, in spite of
this fact, just one element (ω1 or ω2) as the value ω0, the degree of uncertainty admitted, when taking
this decision, can be taken as the maximum one, i.e., in the terms of T -valued entropy function I(π),
the case I(π) = 1T occurs.

Nevertheless, even in the case of non-isolated T -possibilistic distribution π on Ω a reasonable and
useful information for decision making can be obtained when replacing Ω by a factor-space Ω∗ = Ω/ ≈
and π by π∗ on Ω∗ as in Lemma 4.3. E.g., supposing that elements of Ω are grouped into classes of Ω∗

according to their “colours” in such a way that each ω’s with π(ω) = 1T are “blue” and π(ω) ≤ t0 < 1T
holds for each ω’s which are “not blue”, we obtain an isolated T -possibilistic distribution π∗ on Ω∗.
Hence, we can make the conclusion as follows: there are no arguments based on π to pick up just one
ω ∈ Ω as the best candidate for ω0, but there are some arguments based on π∗ (hence, on π) according
to which the most favorable candidate on ω0 is a “blue” element of Ω.

Another way of reasoning would bring us to the following refinement of the definition of the T -
valued entropy function I(π). Namely, let π be a T -possibilistic distribution on Ω, let Ω0 = {ω ∈ Ω :
π(ω) = 1T }. For each ω0 ∈ Ω0 define the modification πω0 of π in this way: πω0(ω) = π(ω), if ω = ω0

or if π(ω) < 1T holds, πω0(ω) = ®T otherwise, i.e., if π(ω) = 1T , but ω 6= ω0. Set
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Î(π) = I(πω0). (5.1)

As a matter of fact, the value I(πω0) is the same for each ω0 ∈ Ω0. Obviously, if π is isolated and T
is chained, then Î(π) = I(π), but if I(πω0) < 1T holds for each ω0 ∈ Ω0, i.e., if each πω0 is isolated,
then Î(π) < 1T follows even when Ω0 contains more than one element. However, let us postpone a
more detailed analysis of the modified entropy function Î(π) till another occasion.

6 General Possibilistically Independent Products of
Lattice-Valued Possibilistic Distributions

Let us focus our attention, in this section, to a generalization of the notions, constructions and results
leading to Lemma 4.2 above to the case of possibilistically independent (or noninteractive, in other
terms) products of nonempty systems of T -possibilistic distributions without any apriori restrictions
as far as the cardinality of such systems (i.e., the number of T -possibilistic distribution combined
together) is concerned.

Let T = 〈T,≤〉 be a complete lattice, let J be a nonempty parametric set (in order to avoid
degenerated cases we assume, in what follows, that J contains at least two elements). For each i ∈ J ,
let Ωi be a nonempty space and πi : Ω → T a T -possibilistic distribution so that, for each i ∈ J ,∨

ω∈Ωi
πi(ω) = 1T . Without any loss of generality we may and will suppose that Ωi = Ω for each

i ∈ J . Indeed, if this is not the case, we set Ω =
⋃

i∈J Ωi and we extend each πi from Ωi to Ω, setting
πi(ω) = ®T for each ω ∈ Ω− Ωi. Let ΩJ denote the set of all mappings ωJ , each of them taking J
into Ω in such a way that, for each i ∈ J , ωJ (i) is in Ωi. Taking as an illustration the most simple
case investigated in Lemma 4.2, we have J = {1, 2}, ΩJ reduces to the set of all mappings of {1, 2}
into Ω, i.e., into the set of all ordered pairs 〈ω1, ω2〉 of elements of Ω, most often denoted by Ω1 ×Ω2

(or Ω× Ω or Ω2, if Ω1 = Ω2 = Ω), and each ωJ is nothing else than a particular ordered pair of this
kind.

Set, for each ωJ ∈ ΩJ ,

πJ (ωJ ) =
∧

i∈J
πi(ωJ (i)) (6.1)

The mapping πJ → T is called the possibilistically independent (or noninteractive) product of T -
possibilistic distributions πi over the parametric space J .

Lemma 6.1 Let T = 〈T,≤〉 be a complete chained lattice, let Ω,J ,ΩJ , πi : i ∈ J be as above. Then
πJ defines a T -possibilistic distribution on ΩJ , i.e., the relation

∨

ωJ∈ΩJ
πJ (ωJ ) = 1T (6.2)

holds.

Proof: Let us consider, separately, the two following cases. First, let T = 〈T,≤〉 be such that there
exists t0 ∈ T, t0 < 1T with this property: t ≤ t0 < 1T holds for each t ∈ T, t < 1T (e.g., T =
[0, x] ∪ {1}, x < 1, and ≤ is the standard linear ordering in [0, 1]). As

∨
ω∈Ω πi(ω) = 1T is valid for

each i ∈ J , there exists, for each i ∈ J , ω∗i ∈ Ω such that πi(ω∗i ) = 1T , as the ordering ≤ is linear.
Taking ωJ ,∗ ∈ ΩJ such that ωJ ,∗(i) = ω∗i for each i ∈ J , we obtain immediately that

∨

ωJ∈ΩJ
πJ (ωJ ) = πJ (ωJ ,∗) =

∧

i∈J
πi(ωJ ,∗(i)) =

∧

i∈J
πi(ω∗i ) = 1T (6.3)

and (6.2) is proved for this case.
Otherwise, i.e., if such t0 does not exist, we obtain that

∨{t ∈ T : t < 1T } = 1T is the case,
consequently, as ≤ is linear on T, for each t1 ∈ T, t1 < 1T , and for each i ∈ J there exists ω∗i ∈ Ω
such that πi(ω∗i ) ≥ ti holds. Setting ωJ (i) = ω∗i for each i ∈ J , we obtain that
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πJ (ωJ ) =
∧

i∈J
πi(ωJ (i)) =

∧

i∈J
πi(ω∗i ) ≥ ti (6.4)

holds, hence,
∨

ωJ∈ΩJ
πJ (ωJ ) =

∨
{ti ∈ T : ti < 1T } = 1T (6.5)

follows, and this relation completes the proof of the assertion. 2

Let us note that Lemma 6.1 does not hold in general (in the sense that the mapping πJ : ΩJ → T
does not define a T -possibilistic distribution on ΩJ ) supposing that the complete lattice T = 〈T,≤〉
is not chained (i.e., the partial ordering ≤ is not linear) and the parametric space J is infinite. For
the reader’s convenience a counter-example can be found in the Appendix section below.

Theorem 6.1 Let T ,Ω,J , and πi, i ∈ J be as in Lemma 6.1, let T -entropy function I(π) be defined
by (4.1) for each πi, i ∈ J , for πJ and for each πJ−{i}, i ∈ J ′. Then the relation

I(πJ ) =
∨

i∈J
I(πi) (6.6)

holds.

Proof: Take i ∈ J and set Ω1 = Ω, Ω2 = ΩJ−{i}, π1 = πi and π2 = πJ−{i}. As T is chained, the
mappings πJ as well as πJ−{i}, i ∈ J , define T -possibilistic distributions on Ω1 and ΩJ−{i}. We
obtain that for each ωJ ∈ ΩJ

πJ (ωJ ) =
∧

j∈J
πj(ωJ (j)) = πi(ωJ (i)) ∧

∧

j∈J−{i}
πj(ωJ (j)) =

= πi(ωJ (i)) ∧ πJ−{i}(ωJ−{i}) = π1(ωJ (i)) ∧ π2(ωJ−{i}), (6.7)

where ωJ−{i} denotes the restriction of ωJ to J − {i}, so that ωJ−{i}(j) = ωJ (j) for every j ∈ J ,
j 6= i. Applying Lemma 4.2 to π1 on Ω1 and π2 on Ω2, we obtain that the inequality

I(πJ ) = I(π1) ∨ I(π2) ≥ I(π1) = I(πi) (6.8)

follows for each i ∈ J , consequently, the inequality

I(πJ ) ≥
∨

i∈J
I(πi) (6.9)

is valid. So, if there exists i0 ∈ J such that πi0 is not isolated, then I(πi0) = 1T = I(πJ ) holds and
(6.6) is valid trivially. The same is the case when each πi is isolated, i.e., I(πi) < 1T holds for each
i ∈ J , but

∨
i∈J I(πi) = 1T is valid. Again, I(πJ ) = 1T follows and (6.6) is proved.

The only case which still remains to be analyzed reads that
∨

i∈J I(πi) = t0 < 1T holds. The
inequality I(πJ ) ≥ t0 then follows from (6.9), let us suppose, in order to arrive at a contradiction,
that

I(πJ ) =
∨

ωJ∈ΩJ
[ΠJ (ΩJ − {ωJ }) ∧ πJ (ωJ )] > t0 (6.10)

holds. As ≤ is a linear ordering on T, (6.10) yields that three exists ωJ ,0 ∈ ΩJ such that

ΠJ (ΩJ − {ωJ ,0}) ∧ πJ (ωJ ,0) > t0 (6.11)

holds. Applying the assumption of linearity of ≤ once more we obtain that the inequalities
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ΠJ (ΩJ − {ωJ ,0}) =
∨

ωJ∈ΩJ ,ωJ 6=ωJ ,0

πJ (ωJ ) > t0 (6.12)

and πJ (ωJ ,0) > t0 hold simultaneously. As

πJ (ωJ ,0) =
∧

i∈J
πi(ωJ ,0(i)) (6.13)

is valid due to (6.1), the inequality πi(ωJ ,0(i)) > t0 must be valid for each i ∈ J . On the other side, as
≤ is linear, (6.12) yields that there exists ωJ ,1 ∈ ΩJ −{ωJ ,0}, i.e., ωJ ,1 6= ωJ ,0, such that πJ (ωJ ,1) >
t0 holds. Applying (6.13) to πJ (ωJ ,1) we obtain that πi(ωJ ,1(i)) > t0 holds for each i ∈ J . However,
as ωJ ,1 6= ωJ ,0, there exists i0 ∈ J such that ωJ ,0(i0) 6= ωJ ,1(io), consequently, the inequalities
πi0(ω

J ,0(io)) > t0 and πi0(ω
J ,1(io)) > t0 hold simultaneously and ωJ ,1(i0) ∈ Ω − {ωJ ,0(i0)} is the

case. Hence, the inequalities Πi0(Ω− {ωJ ,0(i0)}) > t0 and πi0(ω
J ,0(i0)) > t0 hold simultaneously, so

that the relation

t0 < Πi0(Ω− {ωJ ,0(i0)}) ∧ πi0(ω
J ,0(i0)) ≤

≤
∨

ω∈Ω

(Πi0(Ω− {ω}) ∧ πi0(ω)) = I(πi0) ≤
∨

i∈I

I(πi) = t0 (6.14)

follows – a contradiction. Consequently, also in the case when
∨

i∈I I(πi) < 1T holds, the relation
(6.6) is valid and the proof of our assertion is completed. 2

The result of Lemma 4.4 can be extended from general T -possibilistic distributions π12 over Carte-
sian product Ω1 ×Ω2 to the case of general T -possibilistic distributions – πJ over product space ΩJ

in the following way.
Let T = 〈T,≤〉 be a complete chained lattice, let Ω and J be spaces as in Lemma 6.1, let

πJ : ΩJ → T be a T -possibilistic distribution on ΩJ , so that the relation
∨

ωJ∈ΩJ πJ (ωJ ) = 1T
holds. Given i ∈ J and ω ∈ Ω, set

π∗i (ω) =
∨

ωJ∈ΩJ ,ωJ (i)=ω

πJ (ωJ ), (6.15)

so that the mapping π∗i : Ω → T obviously defines the marginal T -possibilistic distribution induced
by πJ and by i ∈ J on Ω (taken as the i-th dimension of ΩJ ).

Given a fixed ωJ ,0 ∈ ΩJ , set ωi = ωJ ,0(i) for each i ∈ J . So, the element ωJ ,0 of ΩJ belongs to
the set {ωJ ∈ ΩJ : ωJ (i) = ωi} for each i ∈ J . So,

πJ (ωJ ,0) ≤ ΠJ ({ωJ ∈ ΩJ : ωJ (i) = ωi}) =
∨

ωJ∈ΩJ ,ωJ (i)=ωi

πJ (ωJ )

= π∗i (ωi) = π∗i (ωJ ,0(i)) (6.16)

holds for each i ∈ J using the notation (6.15). As (6.16) is valid for each ωJ ,0 ∈ ΩJ and each i ∈ J ,
we obtain that the relation

πJ (ωJ ) ≤
∧

i∈J
π∗i (ωJ (i)) = (Xi∈J π∗i )(ωJ ) (6.17)

follows, where Xi∈J π∗i denotes the possibilistically independent product of the T -possibilistic distri-
butions π∗i on ΩJ , i ∈ J . Consequently, as in the proof of Lemma 4.4 and applying Theorem 6.1
(formula (6.6)), we obtain that the inequality

I(πJ ) ≤ I(Xi∈J π∗i ) =
∨

i∈J
I(π∗i ) (6.18)

extending (4.20) from J = {1, 2} to any J 6= ∅ is valid.
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7 Conclusions

The results obtained in this paper belong to the group of results containing assertions already known,
or even weaker than the already known results, but proved under weaker, or at least incomparable
with the original ones, assumptions. These results are far not so popular as those ones explicitly
picking up new results, as everything what may be picked up (e.g., assertions of theorems) in our case
is from the first sight already known or even trivial, but the weakening of the conditions necessary in
order to prove these results is hidden behind the first look horizon.

We have developed lattice-valued variant of the notion of Shannon entropy and we have proved
some results perhaps weaker than those achievable when implementing some tools from real-valued
entropy functions (as integral parts, not only as informal inspiration into the model in question).
However, our results have been obtained without any help of tools borrowed from outside the lattice
theory. We have focused our attention to the lattice-valued entropy function for possibilistically
independent (non-interactive, in other terms) product of lattice-valued possibilistic distributions and
we have proved, for such products, a result syntactically rather similar to that well-known one valid for
Shannon entropy of the product of statistically independent probability distributions (just the roles
of summation and supremum symbols are interchanged). For possibilistic distributions taking values
in complete chained lattice the result holds for products of any system of lattice-valued possibilistic
distributions contrary to the fact that for possilibistic distributions taking values in general complete
lattices (i.e., not necessary chained, the assertion in question is valid only for products of finite systems
of lattice-valued possibilistic distributions.

As far as a possible further theoretical research in the field of lattice-valued entropy functions is
concerned, at least the three following directions seem to be interesting and promising. In Section 5
above we mentioned two ways how to overcome the rather restricted sensitivity of the lattice-valued
entropy I(π) when various cases of lattice-valued possibilistic distributions π with I(π) = 1T are to
be distinguished. One remedy consists in replacing the original space Ω, on which π is defined, by a
factor-space Ω/ ≈, or perhaps by more factor-spaces Ω/ ≈i, induced by different equivalence relations
≈i on Ω. Another way is to replace the entropy function I(π) by a more sophisticated entropy function
Î(π) defined by (5.1).

The following approach is perhaps also promising. Let us take the supremum and infimum opera-
tors on T not as secondary tools defined by the primary partial (or linear, in particular cases) ordering
≤ on T, but rather as triangular norm and corresponding conorm defined as primary operations on
T. In this case we may replace this t-norm and conorm by another t-norm and conorm and define a
T -valued entropy function as the Sugeno integral of the function Π(Ω − {ω}) ∧ π(ω), but this time
with Π defined by the conorm and ∧ replaced by the t-norm in question.

In every case, however, all these proposals would deserve a long and detailed further research effort
to be seriously analyzed. Let us hope that we will have an occasion to participate at this research
effort in future.

8 Appendix

As a matter of fact, for lattice-valued possibilistic distributions πi with i ranging over an infinite
parametric set J the mapping πJ : ΩJ → T, defined by (6.1), need not define a T -possibilistic
distribution on ΩJ , as the following counter-example demonstrates.

Let J = N+ = {1, 2, . . . }, let Ω = [0, 1] − Q, let T = 〈P(Q),⊂〉, where Q denotes the set of all
rational numbers from [0, 1], hence, Ω is the set of all irrational numbers from [0, 1] and T trivially
defines a complete lattice. For every n ∈ N+ and every j ∈ N+, j ≤ n, let

Rj,n = [(j − 1)/n, j/n] = {x ∈ [0, 1] : (j − 1)/n ≤ x ≤ j/n}, (8.1)

let Qj,n = Rj,n ∩Q. Obviously, for each n ∈ N+,
⋃n

j=1 Qj,n = Q = 1T , and even if the sets Rj,n, j =
1, 2, . . . , n, are not mutually disjoint, all the points common for two Rj,n’s are rational numbers. So,
for each irrational ω ∈ [0, 1] and each n ∈ N+ there exists just one 1 ≤ j ≤ n such that ω ∈ Rj,n

holds, let us denote this j by j(ω, n). On the other side, for each irrational ω ∈ [0, 1] and each rational
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α ∈ Q, |α − ω| > 0 holds, so that, for n > 1/|α − ω|, α ∈ Qj(ω,n),n cannot hold. Moreover, for each
n ∈ N+ and each j ≤ n there exists an irrational real number ω ∈ Rj,n, hence, there exists ω ∈ Ω
such that j(ω, n) = j.

Given n ∈ N+, let us define the mapping πn : Ω → T (= P(Q)) setting πn(ω) = Qj(ω,n),n ∈ T for
every ω ∈ Ω = [0, 1]−Q. Due to the fact quoted two lines above we obtain that

⋃
ω∈Ω πn(ω) = Q = 1T

holds for each n ∈ N+, hence, each πn defines a T -valued possibilistic distribution on Ω. Applying
(6.1) we obtain that, for every ωJ = 〈ω1, ω2, . . . 〉 ∈ ΩJ , πJ (ωJ ) =

⋂∞
n=1 πn(ωn).

Let {a, b}, 0 ≤ a ≤ b ≤ 1, be an open, semi-open, or closed subinterval of [0, 1], i.e., {a, b} =
(a, b), [a, b), (a, b] or [a, b]. For each {a, b} set l({a, b}) = b−a = l({a, b}∩Q). As can be easily verified,
for each infinite sequence {ai, bi}∞i=1 of intervals the relations

⋂∞
i=1({ai, bi} ∩Q) = (

⋂∞
i=1{ai, bi}) ∩Q

and l(
⋂∞

i=1{ai, bi}) ∩ Q) ≤ inf{l({ai, bi} ∩ Q : i = 1, 2, . . . } are valid. Applying these relations
to πJ (ωJ ) and πi(ωi), i = 1, 2, . . . , we obtain that l(πJ (ωJ )) = inf{l(πi(ωi)) : i = 1, 2, . . . } = 0.
Moreover, due to the properties of πi(ω) as defined and analyzed above, the only real number contained
in

⋂∞
n=1 Rj(ω,n),n =

⋂∞
n=1[(j(ω, n)− 1)/n, j(ω, n)/n] is the irrational number ω, so that

πI(ωI) =
∞⋂

n=1

πn(ωn) =
∞⋂

n=1

Qj(ω,n),n =

=

( ∞⋂
n=1

[(j(ω, n)− 1)/n, j(ω, n)/n]

)
∩Q = {ω} ∩Q = ∅ = ®T . (8.2)

Informally, the only nonempty interval in [0, 1] which is of the length 0 and which contains the
irrational number ω ∈ [0, 1] is the singleton {ω} which does not contain any rational number, so
that {ω} ∩ Q = ∅ = ®T . Hence,

∨
ωJ∈ΩJ πJ (ωJ ) = ®T , so that the possibilistically independent

product of T -possibilistic distributions πi on Ω, with i ranging over N+ = {1, 2, . . . }, does not define
a T -possibilistic distribution on ΩJ = X∞i=1Ωi,Ωi = Ω for every i = 1, 2, . . .

Hence, the situation with independent products of lattice-valued possibilistic distributions quali-
tatively differs when shifting our attention from finite to infinite parametric set J . Let us recall the
similar problem in probability theory, when infinite products of probability distributions need not
define a probability distribution on the Cartesian product in question – indeed, considering an infinite
sequence of independent and identically distributed coin tosses with 0 < P (Head) < 1, each sequence
in {Head, Tail}∞ occurs with the probability 0.
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