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2010
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Jǐŕı Rohn1

Technical report No. V-1067

29.03.2010

Abstract:

We describe a general method for enclosing the solution set of a system of interval linear
equations. We present a general theorem and an algorithm in a MATLAB-style code. The
result is called a “method”, not an “algorithm”, because it involves solving absolute value
matrix inequalities; the way how to solve these inequalities will be explained elsewhere.
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1 Introduction

In this report we describe a general method for enclosing the solution set of a sys-
tem of interval linear equations. We present a general theorem (Theorem 3) and an
algorithm in a MATLAB-style code (Fig. 5.1). We call the result a “method”, not
an “algorithm”, because it involves solving absolute value matrix inequalities whose
solution is not specified; we plan to elaborate on this issue in a forthcoming paper.

2 Notations

We use the following notations. Matrix inequalities, as A ≤ B or A < B, are un-
derstood componentwise. The absolute value of a matrix A = (aij) is defined by
|A| = (|aij|). The same notations also apply to vectors that are considered one-
column matrices. I is the unit matrix, ej is the jth column of I, and e = (1, . . . , 1)T

is the vector of all ones. Yn = {y | |y| = e} is the set of all ±1-vectors in Rn, so that
its cardinality is 2n. Vectors y, z ∈ Yn are called adjacent if they differ in exactly one
entry. Obviously, y, z ∈ Yn are adjacent if and only if y = z − 2zjej for some j. For
each x ∈ Rn we define its sign vector sgn(x) by

(sgn(x))i =

{
1 if xi ≥ 0,

−1 if xi < 0
(i = 1, . . . , n),

so that sgn(x) ∈ Yn. For each z ∈ Rn we denote

Tz = diag (z1, . . . , zn) =




z1 0 . . . 0
0 z2 . . . 0
...

...
. . .

...
0 0 . . . zn


 ,

and Rn
z = {x | Tzx ≥ 0} is the orthant prescribed by the ±1-vector z ∈ Yn.

3 The problem

Given an n × n interval matrix A = [Ac − ∆, Ac + ∆] and an interval n-vector b =
[bc − δ, bc + δ], the solution set of the system of interval linear equations Ax = b is
defined as

X(A,b) = { x | Ax = b for some A ∈ A, b ∈ b }.
The Oettli-Prager theorem [4] asserts that the solution set is described by

X(A,b) = {x | |Acx− bc| ≤ ∆|x|+ δ }.

If A is regular, then X(A,b) is compact and connected (Beeck [1]); if A is singular,
then each component of X(A,b) is unbounded (Jansson [3]). The solution set is
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generally of a complicated nonconvex structure. In practical computations, therefore,
we look for an enclosure of it, i.e., for an interval vector x satisfying

X(A,b) ⊆ x.

The present text is dedicated to the problem of finding such an x under general
circumstances when regularity/singularity of A is not known in advance (and is verified
on the way). The text owes much to Christian Jansson’s ideas in [3].

4 The results

The core of our method consists in specifying a subset Z of Yn such that

X(A,b) ⊆
⋃
z∈Z

Rn
z .

In the first theorem such a set Z is described recursively ((a), (c) below) in terms of
the solution set only.

Theorem 1 Let A be an n×n interval matrix, b an interval n-vector, and let Z be
a subset of Yn having the following properties:

(a) sgn(x0) ∈ Z for some x0 ∈ X(A,b),

(b) X(A,b) ∩ Rn
z is bounded for each z ∈ Z,

(c) if z, y are adjacent, z ∈ Z, y ∈ Yn, and X(A,b) ∩ Rn
z ∩ Rn

y 6= ∅, then y ∈ Z.

Then A is regular and

X(A,b) ⊆
⋃
z∈Z

Rn
z (4.1)

holds.

Proof. For brevity, denote X = X(A,b). Let X0 be the component of X (i.e. a
nonempty connected subset of X maximal with respect to inclusion) containing x0.
We shall prove that

X0 ⊆
⋃
z∈Z

Rn
z (4.2)

holds. Assume to the contrary that it is not so, so that there exists an x1 ∈ X0 such
that

x1 /∈
⋃
z∈Z

Rn
z .

Since X0 is connected, there exists a continuous mapping ϕ : [0, 1] → X0 with ϕ(0) =
x0 and ϕ(1) = x1. Let

τ = sup{ t | ϕ(t) ∈
⋃
z∈Z

Rn
z },
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and put x∗ = ϕ(τ). Then x∗ ∈ ⋃
z∈Z

Rn
z because ϕ is continuous and

⋃
z∈Z

Rn
z is closed,

say x∗ ∈ Rn
z′ , z′ ∈ Z, hence x∗ 6= x1 and τ < 1. Put ε = 1 − τ and consider the

sequence
{ϕ(τ + ε/j)}∞j=1.

Since
ϕ(τ + ε/j) ∈

⋃

z /∈Z

Rn
z

for each j and since the set { z ∈ Yn | z /∈ Z } is finite, there exists a z′′ /∈ Z such that
ϕ(τ + ε/j) ∈ Rn

z′′ for infinitely many j. Taking the limit along this subsequence, we
get that x∗ ∈ Rn

z′′ because Rn
z′′ is closed. Thus we have that

x∗ ∈ Rn
z′ ∩ Rn

z′′

where z′ ∈ Z and z′′ /∈ Z, so that z′ 6= z′′. Put

I = { i | z′i 6= z′′i } = {i1, . . . , im},

then
x∗i = 0

for each i ∈ I, and define vectors z0, z1, . . . , zm ∈ Yn by induction as follows:

z0 = z′

and
zj := zj−1, zj

ij
:= −zj

ij

for j = 1, . . . , m. Then z0 ∈ Z and by induction for each j = 1, . . . , m, zj−1 and zj are
adjacent, zj−1 ∈ Z and x∗ ∈ Rn

zj−1 ∩ Rn
zj , x∗ ∈ X0 ⊆ X, hence zj ∈ Z by assumption

(c). Thus, by induction, zj ∈ Z for each j = 0, . . . ,m. In particular, z′′ = zm ∈ Z,
which contradicts the previously established fact that z′′ /∈ Z. This contradiction
finally proves that (4.2) holds.

Now, (4.2) implies that

X0 ⊆
⋃
z∈Z

(X0 ∩ Rn
z ) ⊆

⋃
z∈Z

(X ∩ Rn
z ),

hence the component X0 is bounded by assumption (b). If A were singular, then,
by Jansson’s result in [3], each component of X would be unbounded. Since X0 is
bounded, this implies that A is regular and therefore X is connected (Beeck [1]); this
means that X0 = X, and (4.2) implies (4.1). 2

In the second theorem we further assume existence of an enclosure of each nonempty
set X(A,b) ∩ Rn

z , z ∈ Z (without specifying how it should be found).
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Theorem 2 Let A be an n×n interval matrix, b an interval n-vector, and let Z be
a subset of Yn having the following properties:

(a’) sgn(x0) ∈ Z for some x0 ∈ X(A,b),

(b’) for each z ∈ Z such that X(A,b)∩Rn
z 6= ∅ there exists an interval vector [xz, xz]

satisfying X(A,b) ∩ Rn
z ⊆ [xz, xz],

(c’) if z ∈ Z, X(A,b) ∩ Rn
z 6= ∅, and (xz)j(xz)j ≤ 0 for some j, then z − 2zjej ∈ Z.

Then A is regular and

X(A,b) ⊆
⋃

z∈Z0

[xz, xz]

holds, where
Z0 = { z ∈ Z | X(A,b) ∩ Rn

z 6= ∅ }.

Proof. We shall prove that assumptions (a’), (b’), (c’) imply validity of the assump-
tions (a), (b), (c) of Theorem 1. (a’) and (a) are the same, and (b’) clearly implies
(b). To prove (c), let z, y be adjacent, z ∈ Z, y ∈ Yn, and let X(A,b) ∩Rn

z ∩Rn
y 6= ∅.

Then there exists a j such that zk = yk for each k 6= j and zj = −yj, and there exists
an x ∈ X(A,b) ∩ Rn

z ∩ Rn
y which clearly satisfies xj = 0, hence, by (b’),

(xz)j ≤ 0 ≤ (xz)j

and therefore
(xz)j(xz)j ≤ 0,

hence y = z−2zjej ∈ Z by (c’), which proves (c). Thus the assumptions of Theorem 1
are met and and we obtain that A is regular and

X(A,b) ⊆
⋃
z∈Z

Rn
z ,

holds, which in conjunction with assumption (b’) and the definition of Z0 gives

X(A,b) ⊆
⋃
z∈Z

(X(A,b) ∩ Rn
z ) =

⋃
z∈Z0

(X(A,b) ∩ Rn
z ) ⊆

⋃
z∈Z0

[xz, xz].

2

Finally, in the third theorem we specify a way how to enclose the sets X(A,b)∩Rn
z 6=

∅, z ∈ Z, via solutions of certain nonlinear matrix inequalities. Thus, this theorem
describes a construction of a set Z as well as a construction of orthantwise enclosures.
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Theorem 3 Let A = [Ac−∆, Ac+∆] be an n×n interval matrix, b = [bc−δ, bc+δ]
an interval n-vector, and let Z be a subset of Yn having the following properties:

(a”) sgn(x0) ∈ Z for some x0 ∈ X(A,b),

(b”) for each z ∈ Z the inequalities

(QAc − I)Tz ≥ |Q|∆, (4.3)

(QAc − I)T−z ≥ |Q|∆ (4.4)

have matrix solutions Qz and Q−z, respectively,

(c”) if z ∈ Z, Q−zbc−|Q−z|δ ≤ Qzbc+|Qz|δ, and (Q−zbc−|Q−z|δ)j(Qzbc+|Qz|δ)j ≤ 0
for some j, then z − 2zjej ∈ Z.

Then A is regular and

X(A,b) ⊆
⋃

z∈Z1

[
Q−zbc − |Q−z|δ, Qzbc + |Qz|δ

]

⊆ [
min
z∈Z1

(Q−zbc − |Q−z|δ), max
z∈Z1

(Qzbc + |Qz|δ)
]

holds, where
Z1 = { z ∈ Z | Q−zbc − |Q−z|δ ≤ Qzbc + |Qz|δ }.

Proof. Let z ∈ Z, X(A,b) ∩ Rn
z 6= ∅, and let Qz solve (4.3), so that it satisfies

Tz ≤ QzAcTz − |Qz|∆. (4.5)

Then for each x ∈ X(A,b) ∩ Rn
z we have Tzx = |x|, x = Tz|x|, and

|Acx− bc| ≤ ∆|x|+ δ (4.6)

by the Oettli-Prager theorem ([4], in the current form in [2]). First postmultiplying
(4.5) by |x| and later premultiplying (4.6) by |Qz|, we obtain

x = Tz|x| ≤ QzAcTz|x| − |Qz|∆|x|
= QzAcx− |Qz|∆|x|
= Qz(Acx− bc) + Qzbc − |Qz|∆|x|
≤ |Qz(Acx− bc)|+ Qzbc − |Qz|∆|x|
≤ |Qz||Acx− bc|+ Qzbc − |Qz|∆|x|
≤ |Qz|(∆|x|+ δ) + Qzbc − |Qz|∆|x|
= Qzbc + |Qz|δ.

Similarly, since T−z = −Tz, the inequality (4.4) can be written as

Tz ≥ −QzAcTz + |Qz|∆,
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and we have

x = Tz|x| ≥ Q−zAcTz|x|+ |Q−z|∆|x|
= Q−zAcx + |Q−z|∆|x|
= Q−z(Acx− bc) + Q−zbc + |Q−z|∆|x|
≥ −|Q−z(Acx− bc)|+ Q−zbc + |Q−z|∆|x|
≥ −|Q−z||Acx− bc|+ Q−zbc + |Q−z|∆|x|
≥ −|Q−z|(∆|x|+ δ) + Q−zbc + |Q−z|∆|x|
= Q−zbc − |Q−z|δ.

In this way we have proved that

X(A,b) ∩ Rn
z ⊆

[
Q−zbc − |Q−z|δ, Qzbc + |Qz|δ

]
.

Thus, if we put

xz = Qzbc + |Qz|δ,
xz = Q−zbc − |Q−z|δ,

then the assumptions (a’)-(c’) of Theorem 2 are met and the result follows from it
since

Z0 = { z ∈ Z | X(A,b) ∩ Rn
z 6= ∅ } ⊆ { z ∈ Z | xz ≤ xz } = Z1.

2

5 A general method

Theorem 3 has been implemented into a MATLAB-style code in Fig. 5.1. The text is
self-explanatory as the same notations are used. The following result is immediate:

Theorem 4 For each n×n interval matrix A and for each interval n-vector b the
algorithm (Fig. 5.1) in a finite number of steps either computes an enclosure X of the
solution set of the interval linear system Ax = b, or fails (produces an empty output).

In an envisaged forthcoming paper, we are going to explain how to solve efficiently
the inequalities (4.3), (4.4) and how to reorganize the method so as to compute the
optimal enclosure (the interval hull).
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(01) function X = genmeth (A,b)
(02) % Computes an enclosure X of the solution set
(03) % of Ax = b, or produces an empty output.
(04) if Ac is singular, X = [ ]; return, end
(05) xc = A−1

c bc; z = sgn(xc); x = xc; x = xc;
(06) Z = {z}; D = ∅;
(07) while Z 6= ∅
(08) select z ∈ Z; Z = Z − {z}; D = D ∪ {z};
(09) find a solution Qz of (QAc − I)Tz ≥ |Q|∆;
(10) if Qz not found, X = [ ]; return, end
(11) find a solution Q−z of (QAc − I)T−z ≥ |Q|∆;
(12) if Q−z not found, X = [ ]; return, end
(13) xz = Qzbc + |Qz|δ;
(14) xz = Q−zbc − |Q−z|δ;
(15) if xz ≤ xz

(16) x = min(x, xz); x = max(x, xz);
(17) for j = 1 : n
(18) z′ = z; z′j = −z′j;
(19) if ((xz)j(xz)j ≤ 0 and z′ /∈ Z ∪D)

(20) Z = Z ∪ {z′};
(21) end
(22) end
(23) end
(24) end
(25) X = [x, x];

Figure 5.1: A general method for computing enclosures.
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