
národní
úložiště
šedé
literatury

A General Method for Enclosing Solutions of Interval Linear Equations Rohn, Jirí
2010
Dostupný z http://www.nusl.cz/ntk/nusl-41360
Dílo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národního úložišť̌ šedé literatury (NUŠL).
Datum stažení: 10.04.2024
Další dokumenty můžete najít prostřednictvím vyhledávacího rozhraní nusl.cz .

Institute of Computer Science Academy of Sciences of the Czech Republic

A General Method for Enclosing Solutions of Interval Linear Equations

Jiří Rohn

Technical report No. V-1067
29.03.2010

A General Method for Enclosing Solutions of Interval Linear Equations

Jiǐí Rohn ${ }^{11}$

Technical report No. V-1067
29.03.2010

Abstract

: We describe a general method for enclosing the solution set of a system of interval linear equations. We present a general theorem and an algorithm in a MATLAB-style code. The result is called a "method", not an "algorithm", because it involves solving absolute value matrix inequalities; the way how to solve these inequalities will be explained elsewhere.

Keywords:
Interval linear equations, solution set, enclosure, absolute value inequality.

[^0]
1 Introduction

In this report we describe a general method for enclosing the solution set of a system of interval linear equations. We present a general theorem (Theorem 3) and an algorithm in a MATLAB-style code (Fig. 5.1). We call the result a "method", not an "algorithm", because it involves solving absolute value matrix inequalities whose solution is not specified; we plan to elaborate on this issue in a forthcoming paper.

2 Notations

We use the following notations. Matrix inequalities, as $A \leq B$ or $A<B$, are understood componentwise. The absolute value of a matrix $A=\left(a_{i j}\right)$ is defined by $|A|=\left(\left|a_{i j}\right|\right)$. The same notations also apply to vectors that are considered onecolumn matrices. I is the unit matrix, e_{j} is the j th column of I, and $e=(1, \ldots, 1)^{T}$ is the vector of all ones. $Y_{n}=\{y| | y \mid=e\}$ is the set of all ± 1-vectors in \mathbb{R}^{n}, so that its cardinality is 2^{n}. Vectors $y, z \in Y_{n}$ are called adjacent if they differ in exactly one entry. Obviously, $y, z \in Y_{n}$ are adjacent if and only if $y=z-2 z_{j} e_{j}$ for some j. For each $x \in \mathbb{R}^{n}$ we define its sign vector $\operatorname{sgn}(x)$ by

$$
(\operatorname{sgn}(x))_{i}=\left\{\begin{aligned}
1 & \text { if } x_{i} \geq 0, \\
-1 & \text { if } x_{i}<0
\end{aligned} \quad(i=1, \ldots, n)\right.
$$

so that $\operatorname{sgn}(x) \in Y_{n}$. For each $z \in \mathbb{R}^{n}$ we denote

$$
T_{z}=\operatorname{diag}\left(z_{1}, \ldots, z_{n}\right)=\left(\begin{array}{cccc}
z_{1} & 0 & \ldots & 0 \\
0 & z_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & z_{n}
\end{array}\right)
$$

and $\mathbb{R}_{z}^{n}=\left\{x \mid T_{z} x \geq 0\right\}$ is the orthant prescribed by the ± 1-vector $z \in Y_{n}$.

3 The problem

Given an $n \times n$ interval matrix $\mathbf{A}=\left[A_{c}-\Delta, A_{c}+\Delta\right]$ and an interval n-vector $\mathbf{b}=$ [$b_{c}-\delta, b_{c}+\delta$], the solution set of the system of interval linear equations $\mathbf{A} x=\mathbf{b}$ is defined as

$$
\mathbf{X}(\mathbf{A}, \mathbf{b})=\{x \mid A x=b \text { for some } A \in \mathbf{A}, b \in \mathbf{b}\} .
$$

The Oettli-Prager theorem [4] asserts that the solution set is described by

$$
\mathbf{X}(\mathbf{A}, \mathbf{b})=\left\{x| | A_{c} x-b_{c}|\leq \Delta| x \mid+\delta\right\} .
$$

If \mathbf{A} is regular, then $\mathbf{X}(\mathbf{A}, \mathbf{b})$ is compact and connected (Beeck [1]); if \mathbf{A} is singular, then each component of $\mathbf{X}(\mathbf{A}, \mathbf{b})$ is unbounded (Jansson [3]). The solution set is
generally of a complicated nonconvex structure. In practical computations, therefore, we look for an enclosure of it, i.e., for an interval vector \mathbf{x} satisfying

$$
\mathbf{X}(\mathbf{A}, \mathbf{b}) \subseteq \mathbf{x}
$$

The present text is dedicated to the problem of finding such an \mathbf{x} under general circumstances when regularity/singularity of \mathbf{A} is not known in advance (and is verified on the way). The text owes much to Christian Jansson's ideas in [3].

4 The results

The core of our method consists in specifying a subset Z of Y_{n} such that

$$
\mathbf{X}(\mathbf{A}, \mathbf{b}) \subseteq \bigcup_{z \in Z} \mathbb{R}_{z}^{n}
$$

In the first theorem such a set Z is described recursively ((a), (c) below) in terms of the solution set only.

Theorem 1 Let \mathbf{A} be an $n \times n$ interval matrix, \mathbf{b} an interval n-vector, and let Z be a subset of Y_{n} having the following properties:
(a) $\operatorname{sgn}\left(x_{0}\right) \in Z$ for some $x_{0} \in \mathbf{X}(\mathbf{A}, \mathbf{b})$,
(b) $\mathbf{X}(\mathbf{A}, \mathbf{b}) \cap \mathbb{R}_{z}^{n}$ is bounded for each $z \in Z$,
(c) if z, y are adjacent, $z \in Z, y \in Y_{n}$, and $\mathbf{X}(\mathbf{A}, \mathbf{b}) \cap \mathbb{R}_{z}^{n} \cap \mathbb{R}_{y}^{n} \neq \emptyset$, then $y \in Z$.

Then \mathbf{A} is regular and

$$
\begin{equation*}
\mathbf{X}(\mathbf{A}, \mathbf{b}) \subseteq \bigcup_{z \in Z} \mathbb{R}_{z}^{n} \tag{4.1}
\end{equation*}
$$

holds.
Proof. For brevity, denote $X=\mathbf{X}(\mathbf{A}, \mathbf{b})$. Let X_{0} be the component of X (i.e. a nonempty connected subset of X maximal with respect to inclusion) containing x_{0}. We shall prove that

$$
\begin{equation*}
X_{0} \subseteq \bigcup_{z \in Z} \mathbb{R}_{z}^{n} \tag{4.2}
\end{equation*}
$$

holds. Assume to the contrary that it is not so, so that there exists an $x_{1} \in X_{0}$ such that

$$
x_{1} \notin \bigcup_{z \in Z} \mathbb{R}_{z}^{n}
$$

Since X_{0} is connected, there exists a continuous mapping $\varphi:[0,1] \rightarrow X_{0}$ with $\varphi(0)=$ x_{0} and $\varphi(1)=x_{1}$. Let

$$
\tau=\sup \left\{t \mid \varphi(t) \in \bigcup_{z \in Z} \mathbb{R}_{z}^{n}\right\}
$$

and put $x^{*}=\varphi(\tau)$. Then $x^{*} \in \bigcup_{z \in Z} \mathbb{R}_{z}^{n}$ because φ is continuous and $\bigcup_{z \in Z} \mathbb{R}_{z}^{n}$ is closed, say $x^{*} \in \mathbb{R}_{z^{\prime}}^{n}, z^{\prime} \in Z$, hence $x^{*} \neq x_{1}$ and $\tau<1$. Put $\varepsilon=1-\tau$ and consider the sequence

$$
\{\varphi(\tau+\varepsilon / j)\}_{j=1}^{\infty}
$$

Since

$$
\varphi(\tau+\varepsilon / j) \in \bigcup_{z \notin Z} \mathbb{R}_{z}^{n}
$$

for each j and since the set $\left\{z \in Y_{n} \mid z \notin Z\right\}$ is finite, there exists a $z^{\prime \prime} \notin Z$ such that $\varphi(\tau+\varepsilon / j) \in \mathbb{R}_{z^{\prime \prime}}^{n}$ for infinitely many j. Taking the limit along this subsequence, we get that $x^{*} \in \mathbb{R}_{z^{\prime \prime}}^{n}$ because $\mathbb{R}_{z^{\prime \prime}}^{n}$ is closed. Thus we have that

$$
x^{*} \in \mathbb{R}_{z^{\prime}}^{n} \cap \mathbb{R}_{z^{\prime \prime}}^{n}
$$

where $z^{\prime} \in Z$ and $z^{\prime \prime} \notin Z$, so that $z^{\prime} \neq z^{\prime \prime}$. Put

$$
I=\left\{i \mid z_{i}^{\prime} \neq z_{i}^{\prime \prime}\right\}=\left\{i_{1}, \ldots, i_{m}\right\}
$$

then

$$
x_{i}^{*}=0
$$

for each $i \in I$, and define vectors $z^{0}, z^{1}, \ldots, z^{m} \in Y_{n}$ by induction as follows:

$$
z^{0}=z^{\prime}
$$

and

$$
z^{j}:=z^{j-1}, z_{i_{j}}^{j}:=-z_{i_{j}}^{j}
$$

for $j=1, \ldots, m$. Then $z^{0} \in Z$ and by induction for each $j=1, \ldots, m, z^{j-1}$ and z^{j} are adjacent, $z^{j-1} \in Z$ and $x^{*} \in \mathbb{R}_{z^{j-1}}^{n} \cap \mathbb{R}_{z^{j}}^{n}, x^{*} \in X_{0} \subseteq X$, hence $z^{j} \in Z$ by assumption (c). Thus, by induction, $z^{j} \in Z$ for each $j=0, \ldots, m$. In particular, $z^{\prime \prime}=z^{m} \in Z$, which contradicts the previously established fact that $z^{\prime \prime} \notin Z$. This contradiction finally proves that (4.2) holds.

Now, (4.2) implies that

$$
X_{0} \subseteq \bigcup_{z \in Z}\left(X_{0} \cap \mathbb{R}_{z}^{n}\right) \subseteq \bigcup_{z \in Z}\left(X \cap \mathbb{R}_{z}^{n}\right)
$$

hence the component X_{0} is bounded by assumption (b). If \mathbf{A} were singular, then, by Jansson's result in [3] each component of X would be unbounded. Since X_{0} is bounded, this implies that \mathbf{A} is regular and therefore X is connected (Beeck [1]); this means that $X_{0}=X$, and (4.2) implies (4.1).

In the second theorem we further assume existence of an enclosure of each nonempty set $\mathbf{X}(\mathbf{A}, \mathbf{b}) \cap \mathbb{R}_{z}^{n}, z \in Z$ (without specifying how it should be found).

Theorem 2 Let \mathbf{A} be an $n \times n$ interval matrix, \mathbf{b} an interval n-vector, and let Z be a subset of Y_{n} having the following properties:
($\left.a^{\prime}\right) \operatorname{sgn}\left(x_{0}\right) \in Z$ for some $x_{0} \in \mathbf{X}(\mathbf{A}, \mathbf{b})$,
(b') for each $z \in Z$ such that $\mathbf{X}(\mathbf{A}, \mathbf{b}) \cap \mathbb{R}_{z}^{n} \neq \emptyset$ there exists an interval vector $\left[\underline{x}_{z}, \bar{x}_{z}\right]$ satisfying $\mathbf{X}(\mathbf{A}, \mathbf{b}) \cap \mathbb{R}_{z}^{n} \subseteq\left[\underline{x}_{z}, \bar{x}_{z}\right]$,
(c') if $z \in Z, \mathbf{X}(\mathbf{A}, \mathbf{b}) \cap \mathbb{R}_{z}^{n} \neq \emptyset$, and $\left(\underline{x}_{z}\right)_{j}\left(\bar{x}_{z}\right)_{j} \leq 0$ for some j, then $z-2 z_{j} e_{j} \in Z$.
Then \mathbf{A} is regular and

$$
\mathbf{X}(\mathbf{A}, \mathbf{b}) \subseteq \bigcup_{z \in Z_{0}}\left[\underline{x}_{z}, \bar{x}_{z}\right]
$$

holds, where

$$
Z_{0}=\left\{z \in Z \mid \mathbf{X}(\mathbf{A}, \mathbf{b}) \cap \mathbb{R}_{z}^{n} \neq \emptyset\right\}
$$

Proof. We shall prove that assumptions (a^{\prime}), (b^{\prime}), (c^{\prime}) imply validity of the assumptions (a), (b), (c) of Theorem 1. (a') and (a) are the same, and (b') clearly implies (b). To prove (c), let z, y be adjacent, $z \in Z, y \in Y_{n}$, and let $\mathbf{X}(\mathbf{A}, \mathbf{b}) \cap \mathbb{R}_{z}^{n} \cap \mathbb{R}_{y}^{n} \neq \emptyset$. Then there exists a j such that $z_{k}=y_{k}$ for each $k \neq j$ and $z_{j}=-y_{j}$, and there exists an $x \in \mathbf{X}(\mathbf{A}, \mathbf{b}) \cap \mathbb{R}_{z}^{n} \cap \mathbb{R}_{y}^{n}$ which clearly satisfies $x_{j}=0$, hence, by (b'),

$$
\left(\underline{x}_{z}\right)_{j} \leq 0 \leq\left(\bar{x}_{z}\right)_{j}
$$

and therefore

$$
\left(\underline{x}_{z}\right)_{j}\left(\bar{x}_{z}\right)_{j} \leq 0,
$$

hence $y=z-2 z_{j} e_{j} \in Z$ by (c'), which proves (c). Thus the assumptions of Theorem 1 are met and and we obtain that \mathbf{A} is regular and

$$
\mathbf{X}(\mathbf{A}, \mathbf{b}) \subseteq \bigcup_{z \in Z} \mathbb{R}_{z}^{n}
$$

holds, which in conjunction with assumption (b') and the definition of Z_{0} gives

$$
\mathbf{X}(\mathbf{A}, \mathbf{b}) \subseteq \bigcup_{z \in Z}\left(\mathbf{X}(\mathbf{A}, \mathbf{b}) \cap \mathbb{R}_{z}^{n}\right)=\bigcup_{z \in Z_{0}}\left(\mathbf{X}(\mathbf{A}, \mathbf{b}) \cap \mathbb{R}_{z}^{n}\right) \subseteq \bigcup_{z \in Z_{0}}\left[\underline{x}_{z}, \bar{x}_{z}\right]
$$

Finally, in the third theorem we specify a way how to enclose the sets $\mathbf{X}(\mathbf{A}, \mathbf{b}) \cap \mathbb{R}_{z}^{n} \neq$ $\emptyset, z \in Z$, via solutions of certain nonlinear matrix inequalities. Thus, this theorem describes a construction of a set Z as well as a construction of orthantwise enclosures.

Theorem 3 Let $\mathbf{A}=\left[A_{c}-\Delta, A_{c}+\Delta\right]$ be an $n \times n$ interval matrix, $\mathbf{b}=\left[b_{c}-\delta, b_{c}+\delta\right]$ an interval n-vector, and let Z be a subset of Y_{n} having the following properties:
(a") $\operatorname{sgn}\left(x_{0}\right) \in Z$ for some $x_{0} \in \mathbf{X}(\mathbf{A}, \mathbf{b})$,
(b") for each $z \in Z$ the inequalities

$$
\begin{align*}
\left(Q A_{c}-I\right) T_{z} & \geq|Q| \Delta, \tag{4.3}\\
\left(Q A_{c}-I\right) T_{-z} & \geq|Q| \Delta \tag{4.4}
\end{align*}
$$

have matrix solutions Q_{z} and Q_{-z}, respectively,
(c") if $z \in Z, Q_{-z} b_{c}-\left|Q_{-z}\right| \delta \leq Q_{z} b_{c}+\left|Q_{z}\right| \delta$, and $\left(Q_{-z} b_{c}-\left|Q_{-z}\right| \delta\right)_{j}\left(Q_{z} b_{c}+\left|Q_{z}\right| \delta\right)_{j} \leq 0$ for some j, then $z-2 z_{j} e_{j} \in Z$.

Then \mathbf{A} is regular and

$$
\begin{aligned}
\mathbf{X}(\mathbf{A}, \mathbf{b}) & \subseteq \bigcup_{z \in Z_{1}}\left[Q_{-z} b_{c}-\left|Q_{-z}\right| \delta, Q_{z} b_{c}+\left|Q_{z}\right| \delta\right] \\
& \subseteq\left[\min _{z \in Z_{1}}\left(Q_{-z} b_{c}-\left|Q_{-z}\right| \delta\right), \max _{z \in Z_{1}}\left(Q_{z} b_{c}+\left|Q_{z}\right| \delta\right)\right]
\end{aligned}
$$

holds, where

$$
Z_{1}=\left\{z \in Z\left|Q_{-z} b_{c}-\left|Q_{-z}\right| \delta \leq Q_{z} b_{c}+\left|Q_{z}\right| \delta\right\} .\right.
$$

Proof. Let $z \in Z, \mathbf{X}(\mathbf{A}, \mathbf{b}) \cap \mathbb{R}_{z}^{n} \neq \emptyset$, and let Q_{z} solve (4.3), so that it satisfies

$$
\begin{equation*}
T_{z} \leq Q_{z} A_{c} T_{z}-\left|Q_{z}\right| \Delta \tag{4.5}
\end{equation*}
$$

Then for each $x \in \mathbf{X}(\mathbf{A}, \mathbf{b}) \cap \mathbb{R}_{z}^{n}$ we have $T_{z} x=|x|, x=T_{z}|x|$, and

$$
\begin{equation*}
\left|A_{c} x-b_{c}\right| \leq \Delta|x|+\delta \tag{4.6}
\end{equation*}
$$

by the Oettli-Prager theorem ([4], in the current form in [2]). First postmultiplying (4.5) by $|x|$ and later premultiplying (4.6) by $\left|Q_{z}\right|$, we obtain

$$
\begin{aligned}
x & =T_{z}|x| \leq Q_{z} A_{c} T_{z}|x|-\left|Q_{z}\right| \Delta|x| \\
& =Q_{z} A_{c} x-\left|Q_{z}\right| \Delta|x| \\
& =Q_{z}\left(A_{c} x-b_{c}\right)+Q_{z} b_{c}-\left|Q_{z}\right| \Delta|x| \\
& \leq\left|Q_{z}\left(A_{c} x-b_{c}\right)\right|+Q_{z} b_{c}-\left|Q_{z}\right| \Delta|x| \\
& \leq\left|Q_{z}\right|\left|A_{c} x-b_{c}\right|+Q_{z} b_{c}-\left|Q_{z}\right| \Delta|x| \\
& \leq\left|Q_{z}\right|(\Delta|x|+\delta)+Q_{z} b_{c}-\left|Q_{z}\right| \Delta|x| \\
& =Q_{z} b_{c}+\left|Q_{z}\right| \delta .
\end{aligned}
$$

Similarly, since $T_{-z}=-T_{z}$, the inequality (4.4) can be written as

$$
T_{z} \geq-Q_{z} A_{c} T_{z}+\left|Q_{z}\right| \Delta,
$$

and we have

$$
\begin{aligned}
x & =T_{z}|x| \geq Q_{-z} A_{c} T_{z}|x|+\left|Q_{-z}\right| \Delta|x| \\
& =Q_{-z} A_{c} x+\left|Q_{-z}\right| \Delta|x| \\
& =Q_{-z}\left(A_{c} x-b_{c}\right)+Q_{-z} b_{c}+\left|Q_{-z}\right| \Delta|x| \\
& \geq-\left|Q_{-z}\left(A_{c} x-b_{c}\right)\right|+Q_{-z} b_{c}+\left|Q_{-z}\right| \Delta|x| \\
& \geq-\left|Q_{-z}\right|\left|A_{c} x-b_{c}\right|+Q_{-z} b_{c}+\left|Q_{-z}\right| \Delta|x| \\
& \geq-\left|Q_{-z}\right|(\Delta|x|+\delta)+Q_{-z} b_{c}+\left|Q_{-z}\right| \Delta|x| \\
& =Q_{-z} b_{c}-\left|Q_{-z}\right| \delta .
\end{aligned}
$$

In this way we have proved that

$$
\mathbf{X}(\mathbf{A}, \mathbf{b}) \cap \mathbb{R}_{z}^{n} \subseteq\left[Q_{-z} b_{c}-\left|Q_{-z}\right| \delta, Q_{z} b_{c}+\left|Q_{z}\right| \delta\right] .
$$

Thus, if we put

$$
\begin{aligned}
& \bar{x}_{z}=Q_{z} b_{c}+\left|Q_{z}\right| \delta, \\
& \underline{x}_{z}=Q_{-z} b_{c}-\left|Q_{-z}\right| \delta,
\end{aligned}
$$

then the assumptions (a^{\prime})-(c^{\prime}) of Theorem 2 are met and the result follows from it since

$$
Z_{0}=\left\{z \in Z \mid \mathbf{X}(\mathbf{A}, \mathbf{b}) \cap \mathbb{R}_{z}^{n} \neq \emptyset\right\} \subseteq\left\{z \in Z \mid \underline{x}_{z} \leq \bar{x}_{z}\right\}=Z_{1} .
$$

5 A general method

Theorem 3 has been implemented into a MATLAB-style code in Fig. 5.1. The text is self-explanatory as the same notations are used. The following result is immediate:

Theorem 4 For each $n \times n$ interval matrix \mathbf{A} and for each interval n-vector \mathbf{b} the algorithm (Fig. 5.1) in a finite number of steps either computes an enclosure X of the solution set of the interval linear system $\mathbf{A} x=\mathbf{b}$, or fails (produces an empty output).

In an envisaged forthcoming paper, we are going to explain how to solve efficiently the inequalities (4.3), (4.4) and how to reorganize the method so as to compute the optimal enclosure (the interval hull).
(01) function $X=\operatorname{genmeth}(\mathbf{A}, \mathbf{b})$
(02) \% Computes an enclosure X of the solution set
(03) $\%$ of $\mathbf{A} x=\mathbf{b}$, or produces an empty output.
(04) if A_{c} is singular, $X=[]$; return, end
(05) $x_{c}=A_{c}^{-1} b_{c} ; z=\operatorname{sgn}\left(x_{c}\right) ; \underline{x}=x_{c} ; \bar{x}=x_{c}$;
(06) $Z=\{z\} ; D=\emptyset$;
(07) while $Z \neq \emptyset$
(08) select $z \in Z ; Z=Z-\{z\} ; D=D \cup\{z\}$;
(09) find a solution Q_{z} of $\left(Q A_{c}-I\right) T_{z} \geq|Q| \Delta$;
(10) if Q_{z} not found, $X=$ []; return, end
(11) find a solution Q_{-z} of $\left(Q A_{c}-I\right) T_{-z} \geq|Q| \Delta$;
(12) if Q_{-z} not found, $X=[]$; return, end
(13) $\quad \bar{x}_{z}=Q_{z} b_{c}+\left|Q_{z}\right| \delta$;
(14) $\quad \underline{x}_{z}=Q_{-z} b_{c}-\left|Q_{-z}\right| \delta$;
(15) if $\underline{x}_{z} \leq \bar{x}_{z}$
(16) $\quad \underline{x}=\min \left(\underline{x}, \underline{x}_{z}\right) ; \bar{x}=\max \left(\bar{x}, \bar{x}_{z}\right)$;
(17) \quad for $j=1: n$
(18) $\quad z^{\prime}=z ; z_{j}^{\prime}=-z_{j}^{\prime}$;
(19) if $\left(\left(\underline{x}_{z}\right)_{j}\left(\bar{x}_{z}\right)_{j} \leq 0\right.$ and $\left.z^{\prime} \notin Z \cup D\right)$
(20) $Z=Z \cup\left\{z^{\prime}\right\}$;
(21) end
(22) end
(23) end
(24) end
(25) $X=[\underline{x}, \bar{x}]$;

Figure 5.1: A general method for computing enclosures.

Bibliography

[1] H. Beeck, Charakterisierung der Lösungsmenge von Intervallgleichungssystemen, Zeitschrift für Angewandte Mathematik und Mechanik, 53 (1973), pp. T181-T182. 2, 4]
[2] M. Fiedler, J. Nedoma, J. Ramík, J. Rohn, and K. Zimmermann, Linear Optimization Problems with Inexact Data, Springer-Verlag, New York, 2006. 6
[3] C. Jansson, Calculation of exact bounds for the solution set of linear interval systems, Linear Algebra and Its Applications, 251 (1997), pp. 321-340. 2, 3, 3, 4
[4] W. Oettli and W. Prager, Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides, Numerische Mathematik, 6 (1964), pp. 405-409. 2, 6

[^0]: ${ }^{1}$ Supported by the Czech Republic Grant Agency under grant 201/09/1957 and by the Institutional Research Plan AV0Z10300504.

