národní
úložiště
šedé
literatury

## An Improvement of the Bauer-Skeel Bounds

Rohn, Jiří
2010
Dostupný z http://www.nusl.cz/ntk/nusl-41271

Dílo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národního úložiště šedé literatury (NUŠL).
Datum stažení: 16.07.2024
Další dokumenty můžete najít prostřednictvím vyhledávacího rozhraní nusl.cz .

Institute of Computer Science Academy of Sciences of the Czech Republic

# An Improvement of the Bauer-Skeel Bounds 

Jǐ̌í Rohn

Technical report No. V-1065
22.02.2010

Institute of Computer Science Academy of Sciences of the Czech Republic

## An Improvement of the Bauer-Skeel Bounds

Jirí Rohn ${ }^{1}$

Technical report No. V-1065
22.02.2010


#### Abstract

: It is shown that the Hansen-Bliek-Rohn bounds are never worse, and "almost always" better, than the classical Bauer-Skeel bounds. Formulae for overestimation of the Hansen-Bliek-Rohn bounds are given.


Keywords:
Bauer-Skeel bounds, Hansen-Bliek-Rohn bounds, comparison, overestimation.

[^0]
## 1 Introduction

This is transcription of slides of a talk I delivered at the Bergische Universität Wuppertal, Germany on Dec. 9, 2003. It has never been made a regular paper. So after six years, I decided to make it at least a report written in a terse "slide-like" style. Theorems 3 through 6 are new.

## 2 Notations

- $A \leq B$,
- $|A|$,
- $\min \{A, B\}, \max \{A, B\}$
understood componentwise.
Especially,

$$
|A-B| \leq C
$$

is equivalent to

$$
B-C \leq A \leq B+C
$$

## 3 The problem

Given a fixed system

$$
A_{c} x_{c}=b_{c}
$$

with $A_{c}$ nonsingular, and a perturbed system

$$
A x=b
$$

such that

$$
\begin{aligned}
\left|A-A_{c}\right| & \leq \Delta \\
\left|b-b_{c}\right| & \leq \delta
\end{aligned}
$$

estimate

$$
\ldots \leq x \leq \ldots
$$

in terms of $x_{c}, A_{c}^{-1}, \Delta$ and $\delta$.

## 4 Assumption

We shall assume throughout that the data satisfy

$$
\varrho\left(\left|A_{c}^{-1}\right| \Delta\right)<1 .
$$

Under this spectral condition we have

$$
M:=\left(I-\left|A_{c}^{-1}\right| \Delta\right)^{-1}=\sum_{j=0}^{\infty}\left(\left|A_{c}^{-1}\right| \Delta\right)^{j} \geq I \geq 0
$$

In particular,

$$
M_{i i} \geq 1
$$

for each $i$ (a property which will turn out extremely important).

## 5 The Bauer-Skeel bounds

Theorem 1. (Bauer 1966, Skeel 1979) If

$$
\varrho\left(\left|A_{c}^{-1}\right| \Delta\right)<1,
$$

then for each $A, b$ such that $\left|A-A_{c}\right| \leq \Delta$ and $\left|b-b_{c}\right| \leq \delta, A$ is nonsingular and the solution of

$$
A x=b
$$

satisfies

$$
-x^{*}+x_{c}+\left|x_{c}\right| \leq x \leq x^{*}+x_{c}-\left|x_{c}\right|,
$$

where

$$
\begin{aligned}
M & =\left(I-\left|A_{c}^{-1}\right| \Delta\right)^{-1} \\
x^{*} & =M\left(\left|x_{c}\right|+\left|A_{c}^{-1}\right| \delta\right) .
\end{aligned}
$$

Note. Usually presented as $\left|x-x_{c}\right| \leq x^{*}-\left|x_{c}\right|$, with $\delta=0$ or in normwise setting. Two inversions needed.

## 6 Proof

We have

$$
A_{c}^{-1} A=I-A_{c}^{-1}\left(A_{c}-A\right),
$$

where

$$
\varrho\left(A_{c}^{-1}\left(A_{c}-A\right)\right) \leq \varrho\left(\left|A_{c}^{-1}\left(A_{c}-A\right)\right|\right) \leq \varrho\left(\left|A_{c}^{-1}\right| \Delta\right)<1,
$$

hence $A_{c}^{-1} A$ is nonsingular and thus also $A$. If $A x=b$, then

$$
\begin{aligned}
\left|x-x_{c}\right| & =\left|A_{c}^{-1} A_{c}\left(x-x_{c}\right)\right| \\
& \leq\left|A_{c}^{-1}\right| \cdot\left|\left(A_{c}-A\right) x+\left(b-b_{c}\right)\right| \\
& \leq\left|A_{c}^{-1}\right|(\Delta|x|+\delta) .
\end{aligned}
$$

[Attention: This is the bifurcation point of the two proofs.]

$$
\begin{aligned}
\left|x-x_{c}\right| & \leq\left|A_{c}^{-1}\right|(\Delta|x|+\delta)=\left|A_{c}^{-1}\right|\left(\Delta\left|x-x_{c}+x_{c}\right|+\delta\right) \\
& \leq\left|A_{c}^{-1}\right| \Delta\left|x-x_{c}\right|+\left|A_{c}^{-1}\right|\left(\Delta\left|x_{c}\right|+\delta\right),
\end{aligned}
$$

hence

$$
\left(I-\left|A_{c}^{-1}\right| \Delta\right)\left|x-x_{c}\right| \leq\left|A_{c}^{-1}\right|\left(\Delta\left|x_{c}\right|+\delta\right) .
$$

Premultiplying by $M=\left(I-\left|A_{c}^{-1}\right| \Delta\right)^{-1} \geq 0$ :

$$
\begin{aligned}
\left|x-x_{c}\right| & \leq M\left|A_{c}^{-1}\right|\left(\Delta\left|x_{c}\right|+\delta\right) \\
& =(M-I)\left|x_{c}\right|+M\left|A_{c}^{-1}\right| \delta \\
& =x^{*}-\left|x_{c}\right|
\end{aligned}
$$

and equivalently

$$
-x^{*}+x_{c}+\left|x_{c}\right| \leq x \leq x^{*}+x_{c}-\left|x_{c}\right| .
$$

## 7 The HBR bounds

Theorem 2. (Hansen 1992, Bliek 1992, R. 1993) Under the same assumption

$$
\varrho\left(\left|A_{c}^{-1}\right| \Delta\right)<1
$$

we have

$$
\min \{\underset{\sim}{x}, T \underset{\sim}{x}\} \leq x \leq \max \{\tilde{x}, T \tilde{x}\},
$$

where

$$
\begin{aligned}
M & =\left(I-\left|A_{c}^{-1}\right| \Delta\right)^{-1}, \\
D & =\operatorname{diag}\left(M_{11}, \ldots, M_{n n}\right), \\
T & =(2 D-I)^{-1}, \\
x^{*} & =M\left(\left|x_{c}\right|+\left|A_{c}^{-1}\right| \delta\right), \\
\underset{\sim}{x} & =-x^{*}+D\left(x_{c}+\left|x_{c}\right|\right), \\
\tilde{x} & =x^{*}+D\left(x_{c}-\left|x_{c}\right|\right) .
\end{aligned}
$$

## 8 Proof

As in the proof of the Bauer-Skeel bounds we proceed up to the "bifurcation point"

$$
\left|x-x_{c}\right| \leq\left|A_{c}^{-1}\right|(\Delta|x|+\delta),
$$

but then we continue in another way: we have on one hand

$$
\begin{equation*}
x-x_{c} \leq\left|x-x_{c}\right| \leq\left|A_{c}^{-1}\right|(\Delta|x|+\delta) \tag{8.1}
\end{equation*}
$$

and on the other hand

$$
\begin{equation*}
|x|-\left|x_{c}\right| \leq\left|x-x_{c}\right| \leq\left|A_{c}^{-1}\right|(\Delta|x|+\delta) . \tag{8.2}
\end{equation*}
$$

For $i$ fixed, take the $i$ th inequality from (8.1) and for $j \neq i$ from (8.2):

$$
\begin{gathered}
x_{i} \leq\left(x_{c}\right)_{i}+\left(\left|A_{c}^{-1}\right|(\Delta|x|+\delta)\right)_{i} \\
\left|x_{j}\right| \leq\left|x_{c}\right|_{j}+\left(\left|A_{c}^{-1}\right|(\Delta|x|+\delta)\right)_{j}, \quad j \neq i .
\end{gathered}
$$

Since $x_{i}=\left|x_{i}\right|+\left(x_{i}-\left|x_{i}\right|\right)$ and the same holds for $\left(x_{c}\right)_{i}$, we can put them together as

$$
|x|+\left(x_{i}-\left|x_{i}\right|\right) e_{i} \leq\left|x_{c}\right|+\left(\left(x_{c}\right)_{i}-\left|x_{c}\right|_{i}\right) e_{i}+\left|A_{c}^{-1}\right|(\Delta|x|+\delta),
$$

which implies

$$
\left(I-\left|A_{c}^{-1}\right| \Delta\right)|x|+\left(x_{i}-\left|x_{i}\right|\right) e_{i} \leq\left|x_{c}\right|+\left(\left(x_{c}\right)_{i}-\left|x_{c}\right|_{i}\right) e_{i}+\left|A_{c}^{-1}\right| \delta .
$$

Again premultiplying by $M=\left(I-\left|A_{c}^{-1}\right| \Delta\right)^{-1} \geq 0$ :

$$
|x|+\left(x_{i}-\left|x_{i}\right|\right) M e_{i} \leq x^{*}+\left(\left(x_{c}\right)_{i}-\left|x_{c}\right|_{i}\right) M e_{i}
$$

and taking the $i$ th inequality we get

$$
\left|x_{i}\right|+\left(x_{i}-\left|x_{i}\right|\right) M_{i i} \leq x_{i}^{*}+\left(\left(x_{c}\right)_{i}-\left|x_{c}\right|_{i}\right) M_{i i}=\tilde{x}_{i},
$$

an inequality containing $x_{i}$ only. If $x_{i} \geq 0$, then this inequality becomes

$$
x_{i} \leq \tilde{x}_{i},
$$

and if $x_{i}<0$, then it turns into

$$
x_{i} \leq \tilde{x}_{i} /\left(2 M_{i i}-1\right)=T_{i i} \tilde{x}_{i},
$$

in both cases

$$
x_{i} \leq \max \left\{\tilde{x}_{i}, T_{i i} \tilde{x}_{i}\right\} .
$$

Since $i$ was arbitrary, we conclude that

$$
x \leq \max \{\tilde{x}, T \tilde{x}\}
$$

which is the upper bound. Similarly for the lower one.

## 9 Comparison: preliminaries

For comparison, denote the Bauer-Skeel bounds by

$$
\underline{x} \leq x \leq \bar{x}
$$

and the HBR bounds by

$$
\underline{\underline{x}} \leq x \leq \overline{\bar{x}},
$$

i.e.

$$
\begin{aligned}
\underline{x} & =-x^{*}+x_{c}+\left|x_{c}\right|, \\
\bar{x} & =x^{*}+x_{c}-\left|x_{c}\right|, \\
\underline{\underline{x}} & =\min \{\underset{\sim}{x}, T \underset{\sim}{x}\}, \\
\overline{\bar{x}} & =\max \{\tilde{x}, T \tilde{x}\} .
\end{aligned}
$$

It turns out that crucial for the comparison is the fact that

$$
M_{i i} \geq 1 \text { for each } i
$$

## 10 Main result

Theorem 3. Under the common assumption $\varrho\left(\left|A_{c}^{-1}\right| \Delta\right)<1$, for each i we have

$$
\begin{aligned}
& \bar{x}_{i}-\overline{\bar{x}}_{i} \geq \min \left\{\left(M_{i i}-1\right)\left(\left|x_{c}\right|_{i}-\left(x_{c}\right)_{i}\right), \frac{2\left(M_{i i}-1\right)}{2 M_{i i}-1}\left(x_{i}^{*}-\left|x_{c}\right|_{i}\right)\right\} \geq 0, \\
& \underline{\underline{x}}_{i}-\underline{x}_{i} \geq \min \left\{\left(M_{i i}-1\right)\left(\left|x_{c}\right|_{i}+\left(x_{c}\right)_{i}\right), \frac{2\left(M_{i i}-1\right)}{2 M_{i i}-1}\left(x_{i}^{*}-\left|x_{c}\right|_{i}\right)\right\} \geq 0 .
\end{aligned}
$$

In particular,

$$
\underline{x} \leq \underline{\underline{x}} \leq \overline{\bar{x}} \leq \bar{x},
$$

i.e. the HBR bounds are never worse than the Bauer-Skeel bounds.

Remark. Nonnegativity follows from the facts that $M \geq I$ and $x^{*}=M\left(\left|x_{c}\right|+\right.$ $\left.\left|A_{c}^{-1}\right| \delta\right) \geq\left|x_{c}\right|$.

## 11 Refinement

Theorem 4. Let the spectral condition hold. Then for each $i$ such that $M_{i i}>1$ and $\left(x_{c}\right)_{i} \neq 0$ we have

$$
\left(\bar{x}_{i}-\underline{x}_{i}\right)-\left(\overline{\bar{x}}_{i}-\underline{\underline{x}}_{i}\right) \geq \frac{2\left(M_{i i}-1\right)^{2}}{2 M_{i i}-1}\left|x_{c}\right|_{i}>0,
$$

hence

$$
\overline{\bar{x}}_{i}-\underline{\underline{x}}_{i}<\bar{x}_{i}-\underline{x}_{i},
$$

i.e., the ith HBR bound is better than the Bauer-Skeel bound.

Remark. Recall that $M=\left(I-\left|A_{c}^{-1}\right| \Delta\right)^{-1}=\sum_{j=0}^{\infty}\left(\left|A_{c}^{-1}\right| \Delta\right)^{j} \geq I$. Hence $M_{i i}>1$ e.g. if $\left(\left|A_{c}^{-1}\right| \Delta\right)_{i i}>0$.

## 12 Partial conclusion

We can conclude that the HBR bounds are "almost always" better than the BauerSkeel bounds. Still, how good are the HBR bounds themselves?

## 13 Exact bounds

For each $i$ define

$$
\begin{aligned}
x_{i}^{e} & =\min \left\{x_{i} ; A x=b,\left|A-A_{c}\right| \leq \Delta,\left|b-b_{c}\right| \leq \delta\right\} \\
x_{i}^{E} & =\max \left\{x_{i} ; A x=b,\left|A-A_{c}\right| \leq \Delta,\left|b-b_{c}\right| \leq \delta\right\} .
\end{aligned}
$$

Obviously, $x^{e}$ and $x^{E}$ are exact componentwise bounds, so that they satisfy

$$
\underline{\underline{x}} \leq x^{e} \leq x^{E} \leq \overline{\bar{x}}
$$

( $x^{e}, x^{E}$ are NP-hard to compute). Now, what is the amount of overestimation?

## 14 Overestimation of the HBR bounds

Theorem 5. (2000, not yet published) Let the spectral condition hold. Then for each $i \in\{1, \ldots, n\}$ we have

$$
\begin{aligned}
\underline{\underline{x}}_{i} & \leq x_{i}^{e} \leq \underline{\underline{x}}_{i}+\underline{d}_{i} \\
\overline{\bar{x}}_{i}-\bar{d}_{i} & \leq x_{i}^{E} \leq \overline{\bar{x}}_{i}
\end{aligned}
$$

where

$$
\begin{aligned}
\underline{d}_{i} & =\left(M\left|\left(\operatorname{diag}(\underline{z}) A_{c}^{-1} \operatorname{diag}(\underline{z})-\left|A_{c}^{-1}\right|\right)\left(\underline{\xi}_{i} \Delta M e_{i}+\Delta x^{*}+\delta\right)\right|\right)_{i} \\
\bar{d}_{i} & =\left(M\left|\left(\operatorname{diag}(\bar{z}) A_{c}^{-1} \operatorname{diag}(\bar{z})-\left|A_{c}^{-1}\right|\right)\left(\bar{\xi}_{i} \Delta M e_{i}+\Delta x^{*}+\delta\right)\right|\right)_{i} \\
\underline{\xi}_{i} & =\left(|\underline{x}|+\underline{\underline{x}}-x_{c}-\left|x_{c}\right|\right)_{i} \\
\bar{\xi}_{i} & =\left(|\overline{\bar{x}}|-\overline{\bar{x}}+x_{c}-\left|x_{c}\right|\right)_{i}
\end{aligned}
$$

and $\underline{z}, \bar{z}$ are given by
$\underline{z}_{j}=\left\{\begin{array}{ll}\operatorname{sgn}\left(x_{c}\right)_{j} & \text { if } j \neq i, \\ -1 & \text { if } j=i,\end{array}, \quad \bar{z}_{j}=\left\{\begin{array}{ll}\operatorname{sgn}\left(x_{c}\right)_{j} & \text { if } j \neq i, \\ 1 & \text { if } j=i\end{array}, \quad(j=1, \ldots, n)\right.\right.$.

## 15 Example (J. Albrecht 1961)

Here $A_{c} x=b_{c}$ reads

$$
\begin{aligned}
4.33 x_{1}-1.12 x_{2}-1.08 x_{3}+1.14 x_{4} & =3.52 \\
-1.12 x_{1}+4.33 x_{2}+0.24 x_{3}-1.22 x_{4} & =1.57 \\
-1.08 x_{1}+0.24 x_{2}+7.21 x_{3}-3.22 x_{4} & =0.54 \\
1.14 x_{1}-1.22 x_{2}-3.22 x_{3}+5.43 x_{4} & =-1.09
\end{aligned}
$$

and

$$
\Delta_{i j}=\delta_{i}=0.005
$$

for each $i, j$,

$$
\varrho\left(\left|A_{c}^{-1}\right| \Delta\right)=0.008
$$

## 16 Results

(rounded to four decimal digits)
$[\underline{\underline{x}}, \underline{\underline{x}}+\underline{d}]=\left(\begin{array}{c}{[1.0408,1.0441]} \\ {[0.5567,0.5593]} \\ {[0.1056,0.1072]} \\ {[-0.2352,-0.2299]}\end{array}\right), \quad[\overline{\bar{x}}-\bar{d}, \overline{\bar{x}}]=\left(\begin{array}{c}{[1.0517,1.0517]} \\ {[0.5670,0.5689]} \\ {[0.1129,0.1164]} \\ {[-0.2218,-0.2210]}\end{array}\right)$.

## 17 Unsatisfactory result (1997)

Theorem 5 applied to the system

$$
\left(\begin{array}{cccc}
\varepsilon^{2} & {[-\varepsilon, \varepsilon]} & {[-\varepsilon, \varepsilon]} & {[-\varepsilon, \varepsilon]} \\
0 & 1.1 & 1 & 1 \\
0 & 1 & 1.1 & 1 \\
0 & 1 & 1 & 1.1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
0 \\
{[-\varepsilon, \varepsilon]} \\
{[-\varepsilon, \varepsilon]} \\
{[-\varepsilon, \varepsilon]}
\end{array}\right)
$$

works for each $\varepsilon>0\left(\right.$ since $\left.\varrho\left(\left|A_{c}^{-1}\right| \Delta\right)=0\right)$ and yields independently of $\varepsilon$

$$
\left[\overline{\bar{x}}_{1}-\bar{d}_{1}, \overline{\bar{x}}_{1}\right]=\left[\frac{30}{31}, \frac{1230}{31}\right]=[0.97,39.68]
$$

whereas $x_{1}^{E}=\frac{830}{31}=26.77$, i.e., $\frac{\overline{\bar{x}}_{1}-x_{1}^{E}}{x_{1}^{E}}=\frac{40}{83}=0.48$ (rounded to two decimal digits).

## 18 Zero overestimation cases

Theorem 6. Let the spectral condition hold. Then we have:
(i) $x^{e}=\underline{\underline{x}}, x^{E}=\overline{\bar{x}}$ if $A_{c}$ is a diagonal matrix with positive diagonal entries,
(ii) $x^{e}=\underline{\underline{x}}$ if $A_{c}^{-1} \geq 0$ and $A_{c}^{-1} b_{c} \leq 0$,
(iii) $x^{E}=\overline{\bar{x}}$ if $A_{c}^{-1} \geq 0$ and $A_{c}^{-1} b_{c} \geq 0$.

## 19 Conclusions

- both the Bauer-Skeel bounds and the HBR bounds require solving $A_{c} x=b_{c}$ and computing $A_{c}^{-1}$ and $\left(I-\left|A_{c}^{-1}\right| \Delta\right)^{-1}$,
- the HBR bounds are never worse, and "almost always" better, than the Bauer-Skeel bounds,
- overestimation of the HBR bounds can be computed at almost no additional cost.


## References

[1] F. L. Bauer. Genauigkeitsfragen bei der Lösung linearer Gleichungssysteme. ZAMM, 46:409-421, 1966.
[2] R. D. Skeel. Scaling for numerical stability in Gaussian elimination. Journal of the ACM, 26:494-526, 1979.
[3] E. R. Hansen. Bounding the solution of interval linear equations. SIAM Journal on Numerical Analysis, 29:1493-1503, 1992.
[4] C. Bliek. Computer Methods for Design Automation. PhD thesis, MIT, Cambridge, MA, July 1992.
[5] J. Rohn. Cheap and tight bounds: The recent result by E. Hansen can be made more efficient. Interval Computations, 4:13-21, 1993.


[^0]:    ${ }^{1}$ Supported by the Czech Republic Grant Agency under grant 201/01/0343, and by the Institutional Research Plan AV0Z10300504.

