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1 Introduction

This is transcription of slides of a talk I delivered at the Bergische Universitat Wup-
pertal, Germany on Dec. 9, 2003. It has never been made a regular paper. So after
six years, I decided to make it at least a report written in a terse “slide-like” style.
Theorems 3 through 6 are new.

2 Notations
o A< B,
o 4],
e min{A, B}, max{A, B}

understood componentwise.
Especially,
A-Bl<C

is equivalent to

B-C<A<L<B+C.

3 The problem

Given a fixed system

A.x. = b,

with A. nonsingular, and a perturbed system

Ax =0
such that
|A - Ac‘ S Aa
|b - bc| S 5a
estimate
<z <

in terms of z., A;', A and ¢.



4 Assumption
We shall assume throughout that the data satisfy
o(lAZ1A) < 1.

Under this spectral condition we have

M= (I—[AA) =) (A MAY > 1>0.
=0
In particular,
My > 1

for each i (a property which will turn out extremely important).

5 The Bauer-Skeel bounds
Theorem 1. (Bauer 1966, Skeel 1979) If
o(|A;1A) < 1,

then for each A, b such that |A — A, < A and |b —b.| <, A is nonsingular and the
solution of
Ax =1

satisfies
_-:U* + Le + ’:I;c’ S x S I* + LTe — ‘«I(:‘a

where

M = (I-]AMA)T
v = M(lz| +[AZ1]9).

Note. Usually presented as |x — x.| < z* — |x.|, with 6 = 0 or in normwise setting.
Two inversions needed.

6 Proof

We have
ATTA=T1—- A YA - A),

where

o(A; (Ac — A)) < o(JAT (A — A)]) < o(IAT1A) < 1,
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hence A;'A is nonsingular and thus also A. If Az = b, then

|z — x| = ‘A;lAc(x — zc)|
< A [(Ac— Az + (b—be)]
< |AZY(Afz] + 9).

[Attention: This is the bifurcation point of the two proofs.]

< JAZN(AL] +0) = AT (Alz — e + 2| +6)
< JAZNAlE = | + A (Alze| + ),

|z — x|

hence
(I —[AZHA) o — x| < |AZH(Alze| + 6).

Premultiplying by M = (I —|A;YA)™! > 0:

|z — x| < MA]Y|(Alze| +0)
= (M —I)|z.| + M|A|S

= 2" — |z

and equivalently
' x4 |z <x <"+ x.— |z O

7 The HBR bounds

Theorem 2. (Hansen 1992, Bliek 1992, R. 1993) Under the same assumption

o(|A:1[A) <1
we have
min{z, Tz} <z < max{z, T7},

where

M = (I - ’Acil‘A)ia

D = diag(MH, ey Mnn)a

T = 2D—-1)1,

v = Mz +[AM9),

v = =2+ D(z. + |z.]),

T = 2+ D(x.— |z.]).



8 Proof

As in the proof of the Bauer-Skeel bounds we proceed up to the “bifurcation point”
| — @] < [AZY(Alz] +9),
but then we continue in another way: we have on one hand
T —z. < |z — 2] < |ATH(A]2]| + ) (8.1)

and on the other hand

2] = Jae| < |z — x| < A7 |(Alz] + ). (8.2)
For i fixed, take the ith inequality from (8.1) and for j # i from (8.2):

zi < (2e)i + (|AZ|(Alz] +6));

i) < Jael; + (AT (Al2] +6));, 5 # 1.

Since z; = |z;| + (z; — |z;]) and the same holds for (x.);, we can put them together as
2] + (@i — |wil)es < lael + ((2e)i — |weli)es + [AZ [(Alz] +9),
which implies
(I = 1AZA) 2] + (23 = zil)es < Jwel + ((we)i — |welier + |ATM6.
Again premultiplying by M = (I — |A'|A)™! > 0:
|| + (zi — |z )Me; < 3% + ((xe)i — |weli) Me;
and taking the ith inequality we get
23| + (25 — |23 ) My < 27 + ((ve)i — |2e|s) M = T,
an inequality containing x; only. If x; > 0, then this inequality becomes
x; < T,
and if x; < 0, then it turns into
x; < &;/(2M;; — 1) = Ty,

in both cases
x; < max{Z;, T;7;}.

Since ¢ was arbitrary, we conclude that
r < max{z, Tz},

which is the upper bound. Similarly for the lower one. O
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9 Comparison: preliminaries

For comparison, denote the Bauer-Skeel bounds by

<z<7T

|8

and the HBR bounds by

13
VAN

x <7,
1.e.
= —x" 4z, + |z,

4z — |z,

s 8018
|

min{z, T'r},

Sl

= max{z, TZ}.
It turns out that crucial for the comparison is the fact that

M;; > 1 for each i.

10 Main result

Theorem 3. Under the common assumption o(|AZY|A) < 1, for each i we have

T; — T; > min {(My; — 1) (Jzeli — (2.):), %(ﬂf — |zel)} >0,

z —z; > min {(My; — 1)(|zeli + (2):), Z=2 () — |zeli)} > 0.
In particular,

x <7 <T,

IA
=

i.e. the HBR bounds are never worse than the Bauer-Skeel bounds.

Remark. Nonnegativity follows from the facts that M > I and z* = M(|z.| +
|AZ10) = |-

11 Refinement

Theorem 4. Let the spectral condition hold. Then for each i such that M;; > 1 and
(xc)i # 0 we have

_ 2(M;; — 1)?

(Ti—z;) — (@Ti—z)> oM — 1 el >0,

—1

hence
i.e., the ith HBR bound is better than the Bauer-Skeel bound.
Remark. Recall that M = (I —[A7'A)™ = 372 (JAZYA)) > 1. Hence My > 1



12 Partial conclusion

We can conclude that the HBR bounds are “almost always” better than the Bauer-
Skeel bounds. Still, how good are the HBR bounds themselves?

13 Exact bounds

For each 7 define
i = min{z;; Az =b, |[A— A <A, |b—0b.| <6},
¥ = max{z;; Ax =b, |[A— A <A, |b—b| <6}

7
Obviously, z¢ and ¥ are exact componentwise bounds, so that they satisfy
z<a® <P <7

E

(¢, ™ are NP-hard to compute). Now, what is the amount of overestimation?

14 Overestimation of the HBR bounds

Theorem 5. (2000, not yet published) Let the spectral condition hold. Then for
each i € {1,...,n} we have

r, < zj<z +d,
T, —d; < xf <7,
where
d; = (M|(diag(2)A; diag(z) — [AZ'])(§,AMe; + Az™ +6)|)s,
di = (M|(diag(z)A; diag(z) — [A;'[)(§;AMe; + Az™ +6)|)s,
§ = (zl+z—we—lal)s,
& = (T =T +we—|zl)i

and z, Z are given by

{ sgn (z.); if j # 1, _ { sgn (x.); if j #1,
Zj = ;o Rj =

~1 if j =4, 1 ifjog 0 G=hoon)

15 Example (J. Albrecht 1961)

Here A.x = b, reads
4.332, — 11229 — 1.082z5 + 1.142, = 3.52
—1.12z; + 4.3329 4+ 0.2423 — 1.2224 = 1.57
—1.08z1 + 0.24x9 + 7.2123 — 3.2224 = 0.54
1.14xy — 1.2229 — 3.2223 + 5.4324 = —1.09
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and

for each 1, j,

o(JAZHA) = 0.008.

16 Results

(rounded to four decimal digits)

[1.0408, 1.0441] [1.0517,1.0517]

| [0.5567,0.5593] [0.5670, 0.5689)]

zhd = 05600072 | | [0.1129,0.1164]
[—0.2352, —0.2299)] [—0.2218, —0.2210]

17 Unsatisfactory result (1997)

Theorem 5 applied to the system

e? [—e,e] [—e,¢] [—¢,€] T 0

0 1.1 1 1 zy | | [—e €l
0 1 1.1 1 z3 || [—e¢]
0 1 1 1.1 Ty [—e, €]

works for each € > 0 (since o(|]A;'|A) = 0) and yields independently of &

= = = 30 1230
[33'1 — dl, xﬂ = |:3—1, 3—1:| = [097, 3968]
whereas o = 2 = 26.77, i.e., ilg—gf = 22 = 0.48 (rounded to two decimal digits).

18 Zero overestimation cases

Theorem 6. Let the spectral condition hold. Then we have:
(i) z¢ = z, 2f =7 if A, is a diagonal matriz with positive diagonal entries,
(i) x¢ =z if A7' >0 and A7'b, <0,

(iii) 2% =T if A7 >0 and A7'b, > 0.



19 Conclusions

e both the Bauer-Skeel bounds and the HBR bounds require
solving A,z = b. and computing AZ! and (I —|A;YA)™L,

e the HBR bounds are never worse, and “almost always” better,
than the Bauer-Skeel bounds,

e overestimation of the HBR bounds can be computed at
almost no additional cost.
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