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Abstract:

We present three paradoxes in the theory of branching programs. They are of the same type – an absolutely
negligible phenomenon produces a massive proof machinery.

The first paradox concerns read-once branching programs. Many lower bound results are in fact based
on the small phenomenon that two parts arising from the cube {0, 1}k by fixing a variable to 0 or to 1 are
(sub)cubes, too.

For the second paradox the phenomenon consists of two simple facts. The first one says (on the
intuitive level of reasoning) that any application of one instruction of any Turing machine means reading
(and possibly remembering) the content of one input bit. The second one concerns convex functions. It says
that the values of any secant in its inner interval (resp. of any tangent) are above (resp. below) the values
of the (convex) function in question. This phenomenon gives a new possibility of classifying branching
programs, and it implies a general lower bound method for branching programs without any restriction,
in particular. Based on this phenomenon new-type classes of branching programs are known such that in
polynomial they cover all polynomial read-once branching programs, of course, and moreover, they cover in
polynomial most of witness functions for superpolynomial lower bounds known till now. For the so strong
classes of branching programs the new general method mentioned above implies superpolynomial lower
bounds.

The third phenomenon is also easy. We know that in any branching program the computations on any
two inputs of different function values have the last common inner node. Our phenomenon says that the
same -the last common node- is true for three inputs of different function values, too. In this paper from
this phenomenon we derive a new lower bound proof for branching programs. We prove a superpolynomial
lower bound for a nontraditional but reasonable class of branching programs connected with some special
function considerably large in that context than the class of read-once branching programs.
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1 Introduction

First we introduce some usual definitions for completeness of the text and then we present three
phenomenon mentioned in the abstract in a more detailed way.

1.1 Technical preliminaries

By a branching program (b.p.) P (over binary inputs of length n) we mean a finite, oriented, acyclic
graph with one source (in-degree = 0) where all nodes have out-degree = 2 (so-called branching or
inner nodes) or out-degree = 0 (so-called sinks). The branching nodes are labeled by variables xi,
i = 1, ..., n, one out-going edge is labeled by 0 and the other by 1, the sinks are labeled by 0 or by 1.
If a node v is labeled by xi we say that xi is tested at v.

For an input a = a1...an ∈ {0, 1}n by comp(a) we mean the sequence of nodes starting at the
source of P and ending in a sink. In the sequence for each i, 1 ≤ i ≤ n, at any node with label xi the
next node is pointed by the edge with label ai.

A special case of b.p. with in-degree = 1 in each node (with exception of the source) is called
decision tree.

If a node v ∈ comp(a) we say that a reaches v. If a and b reach v and immediately below v they
reach different nodes we say that comp(a) and comp(b) diverge in v (or shortly a and b diverge at v).
Similarly for more than two inputs.

P computes function fP which on each a ∈ {0, 1}n outputs the label of the sink reached by a.

We say that P computes in time t(n) if each its computation is of the length at most t(n).

The well-known class of restricted b.p.’s are so-called read-once branching programs in which along
each computation each variable is tested at most once. Read-once b.p.’s compute in time n, of course.

If comp(a) has a common part with a path p in P we say that a follows p.

By a distribution we mean any mapping D of {0, 1}n to (the set of nodes of) P with the property
that for each a D(a) is a node of comp(a) (D(a) ∈ comp(a)). The class of the distribution at node v
is the set of all a‘s mapped to v.

Let v be a node of P and let A be a set of some (not necessarily all) inputs reaching v. We
say that T is a tree developed in v according to P with respect to A iff the branches of T simply
follow (only) the paths of P starting at v and followed by inputs from A till the sinks (in T no
joining of paths is allowed, of course). Moreover each edge pointing to a node with out-degree = 1
in T is repointed to its successor. Hence in T each node has out-degree = 2 with exception of its leaves.

By the size of P we mean the number of its nodes. By the complexity of a Boolean function f we
mean the size of the minimal b.p.’s computing f .

It is a well-known fact that superpolynomial lower bound on the size of b.p.‘s implies superloga-
rithmic lower bound for space complexity of Turing machines [9].

1.2 Some comments on lower bound problems

The main goal of the theory of branching programs is to find Boolean functions superpolynomially
hard for the general branching programs. In the ideal case to find these functions in P or at least in
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NP . This would solve the famous problem LOG ⊂? P or respectively LOG ⊂? NP .

At the origin of the theory(last seventies) two possible ways of the next development of the theory
were considered. The first possible way was to work with the general b. p.’s and gradually step by step
to prove higher and higher lower bounds with the hope that one day a superpolynomial bound will be
achieved. However, the history has chosen the another possible way - to prove superpolynomial lower
bounds for restricted b. p.’s gradually less and less restricted with the hope that one day we obtain a
superpolynomial lower bound for b.p.’s without any restriction, i.e. for general b.p.’s. As an example
we may follow the line of the research consisting in the next sequence of restrictions: read-once b.p.’s
- real-time b.p.’s - (1,+k)-b.p.’s - syntactic k-b.p.’s - k-b.p.’s - time restricted b.p.’s cf. [7] (with
superpolynomial lower bound for n.log n-time restricted b.p.’s as a consequence of [1]). In general it
seems that the proof of a superpolynomial lower bound for a class of b.p.’s is more valuable than the
proof of a higher lower bound but for a class of b.p.’s which is not so large.

In the past, the definitions of new classes of restricted b.p.’s and the proofs of the respective su-
perpolynomial lower bounds were in any case great successes, millstones in the development of the
theory. On the other hand taken from the critical point of view with the full respect to the past
efforts we may say that the proofs of lower bounds achieved in the last 30 years are in some sense
also witnesses - memory-stones - of our incapability to develop our ideas to the more general proofs,
especially to the proofs of LOG 6= P resp. LOG 6= NP .

In this paper we want to prolong and to modify the second way of research mentioned above
(superpolynomial lower bounds for restricted b.p.’s). Taking into account the line of restrictions men-
tioned above (read-once b.p.’s - .... - time restricted b.p.s) we see that each of these restrictions is
in some sense easy to understand. The question arises whether the restrictions which are so easy
for our thinking reflect the wonderful world of b.p.’s in a sufficient way, sufficient for doing effective
proofs. In this sense in the paper we want to do some small nonconventional steps outside of the
practice used up to now. We introduce a restriction which is closely related to a function which is sus-
pected to be a witness function for an important class of programs (n.(log n)2-time restricted b.p.’s)
and which in that context in polynomial covers read-once b. p.’s, of course. For this restriction we
prove a superpolynomial lower bound . We hope that this is the way how to achieve the desired result.

1.3 Paradox 1: Read-once branching programs

The first paradox is based on a small phenomenon as follows: Let us divide the cube {0, 1}n into two
disjoint parts by fixing a variable xi = 0 and xi = 1. The phenomenon is that both parts are cubes,
too, (with dimension n− 1). The property ”to be a cube” is a hereditary one under the operation of
fixing the variables. This property has a deep impact for read-once b.p.’s.

Let a node of a b.p. be reached by a set of inputs which contains a subcube and let this node test
a variable which is free for our subcube. After the test both edges out-going the node are followed by
a subset of the subcube each, and moreover according to the phenomenon above both these subsets
are subcubes, too.

Let P be a read-once b.p. and let v be its inner node. Let p be a computational path leading from
the source to v. For p there is a corresponding subcube S such that its fixed bits are those tested
along p. Since P is a read-once b.p. at v one of only free variables of S may be tested. According
to the phenomenon above both edges out-going v are followed by two subcubes both with one fixed
variable more. We repeat this operation on the next nodes. Since in each such node a free variable of
some subcube is tested both next nodes are reached (by some subcubes). As a consequence we have
that each node of b.p. Pv induced by v is reached by some (small) subcube of S. Hence in each node
of Pv there are some inputs which have followed p (and tested the variables which are fixed for S).
Since P is a read-once b.p. we obtain that in the whole Pv there is no test on any variable which is
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fixed for S. Further we deduce that in Pv there is no test on any bit tested on any path from the
source to v. This fact was crucial for the first lower bound proofs [9, 6] and then for many other proofs
of lower bounds for read-once branching programs in the history. The concrete formal expression of
this observation can be viewed in the definition of the so-called k-mixed functions and the lemma
saying that each such function requires read-once b.p.’s of size at least 2k−1( [7] refers to [2]). [7] also
mentions many read-once lower bound results.

Hence, starting with a trivial consideration of so simple property of the cube we achieved the point
of departure of many lower bound proofs for read-once b.p.’s. This is a paradox!

1.4 Paradox 2: Windows and Trees

Let us introduce the second paradox mentioned in the Abstract. From the human point of view on
the premathematical intuitive level of thinking it seems that at the moment when some instruction
of a Turing machine is performed the content of the tape cell scanned by the head of the machine is
read and maybe remembered. This commonly used intuitive idea has a strong impact in the theory
of branching programs as we want to demonstrate in this subsection.

Let us have a Turing machine M which has two-way read-only input tape and a sublinear read-
write work tape. By a configuration of M we mean a pair consisting of the position of the input head
and of the situation on the rest of the machine (the state of the finite control, the content of the work
tape and the position of its head). The resulting graph (the configurations in the role of nodes and
transitions in the role of edges) has some significant properties. It is a finite non-empty acyclic graph
which has one source (= the starting configuration), with sinks labelled by 1 (=YES) and 0 (=NO)
(= the ending configurations ). Each non-sink node has out-degree 2 and it is labelled by the input
bit scanned by the head on the input tape (seeing the node in question as the configuration). The
out-going edges are labelled by 0 and 1 according to the fact to what next configuration the input
tape symbols 0 or 1 lead.

The definition of branching programs is based on a small step in our reasoning, simply to abandon
Turing machines and to investigate the graphs with these properties above - the branching programs.
Now firstly from the log-exp relation between the length of the work tape and the number of config-
urations of a TM we see why the superpolynomial lower bound on the number of nodes of branching
programs implies the superlogarithmic lower bound on the space complexity of Turing machines [9].
And secondly, the question what the machine has read and remembered is now translated into the
context of branching programs and it remains an actual one. Intuitively the role of our phenomenon
plays now the suspicion that the test at a node of any branching program is in fact an action of
remembering a bit of information (=the content of the tested bit).

Now we start to apply the usual mathematical routine to investigate our phenomenon. Firstly we
see that we must in some sense define what is ”remembering” and consequently also what is ”for-
getting”. More concretely before us there is a problem to define what the branching program has
remembered and forgotten about the input word a along comp(a), i.e. in each node and in each edge
of comp(a). Such a definition is a great task, of course. Fortunately, there is also a small task more
appropriate to the ability of the present author. We want to define what the program has remembered
or forgotten about the values 0 or 1 of the input bits along comp(a). We shall investigate this small
problem, of course.

So, we are in the situation that (for a given b.p.) we want to catch the desired information concern-
ing the contents of the bits of any input word a of length n. We shall proceed in such a way that we
shall assign a word w of length n over the ternary alphabet {0, 1, +} to each node and to each edge of
comp(a). Each such w will have the following property: for each i, 1 ≤ i ≤ n, wi = ai or wi = +. The
sign ”+” will be called ”a cross”, and on the intuitive level of reasoning it will stand for ”unknown”
or ”forgotten”. The assigned word w will be called window on a at the respective node or edge of

3



comp(a). By its length we shall mean the number of its non-crossed bits. On the intuitive level of our
reasoning these non-crossed bits will represent the remembered information.

Before creating the formal definition of windows we have two simple ideas at our disposition.
Firstly, on the intuitive level a test in b.p. means remembering of (the content of) one bit. Hence our
next formal definition of windows should respect the rule ”one test, (exactly) one cross is removed”.
Secondly, on the intuitive level it is difficult to say what is ”remembered” but it is easy to say the
complementary thing what is ”forgotten” or ”unknown”. We see intuitively that ”the bit which will
be tested in the future is unknown or forgotten one now, and it should be a crossed one, now”. - Our
intuition reflects in the next formal definition of window.

Definition 1 Let P be a branching program, v be its node. Let A be a subset of the set of all inputs
reaching v. From v we develop a tree Tv,A according to P with respect to A. From the level of sinks we
arbitrarily(!) test appropriate bits in such a way that in these tests both out-going edges are followed
by inputs from A (till the moment when in each leaf of the resulting tree Tv,A there is exactly one
input from A).

For each a ∈ A we define the window w(a, v, A) on a at v with respect to A in such a way that
w(a, v, A)i = + if and only if in Tv,A there is a test on bit i along the branch followed by a. (On the
other -non-crossed- bits w(a, v, A) equals a. )

The length of a window is the number of its non-crossed bits.

The window w(a, v,A) is said to be a natural one iff A is the set of all inputs reaching v.

Comments.

i) We see that the definition of windows is ambiguous due to the arbitrary last part of the con-
struction of Tv,A beginning at the level of sinks. We may do so since the next theorems concerning
windows will be independent on this part of the construction.

ii) In the definition if we replace ”node v” by ”edge e” we obtain the window assigned to the edge e.

iii) For each a in a given set A comparing the window on a at v with the respect to A and the
window on a at an out-going edge e leaving v with respect to the subset of A corresponding to e we
see that the rule ”one test, (exactly) one cross is removed” mentioned above is satisfied.

iv) It is clear that the simple thing holds: ”The larger A, the larger number of branches in the
tree, the larger number of crosses, the shorter windows”.

Another confirmation of our intuition is given by a small theorem in [10] saying that for each
(general) branching programs computing symmetric words it holds that during the computation on
such a word each pair of symmetric positions must be non-crossed at least in one natural window. In
other words branching programs computing symmetric words must compute in a human-like way. In
the history the analysis of this phenomenon lead to the definition of multisyms (below).

For the theory of windows the following theorem ([10]) is very important.

Theorem 1 Let P be a branching program and A be a set of inputs of length n distributed in (the set
of nodes of ) P . Let A1, ... Ar be all classes of this distribution. Then

log2 (size of P ) ≥ log2 r ≥ log2 |A| − n + avelw
where avelw is the average length of windows of inputs from A according to Ai’s, i = 1, ... r.
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We postpone the proof for a while till the moment when we will have made some planned lemmas
on binary trees.

Comments.
i) Now is the point to check the relation between our intuition on one hand and the formal theory

on the second hand. Firstly the intuitive rule ”one test, (exactly) one cross is removed” is in the
theory satisfied. Secondly, for symmetric words the intuitive strategy to compare symmetric bits is in
the theory unique one possible. And now thirdly, Theorem 1 confirms our intuition that remembering
many information about many inputs requires a large memory, i. e. a large branching program. We
see that our construct -windows- is closely related to our intuition.

ii) Moreover Theorem 1 gives a general method for proving large lower bounds. For proving a
lower bound for a Boolean function it suffices to prove that on any b.p. this function requires large
windows on many inputs.

The next theorem will be useful in the sequel.

Theorem 2 Let P be a branching program, A be a set of inputs of length n and z be a number.
Then there is a set Az ⊆ A of cardinality at least (1− 1

z ).|A| such that for each a ∈ Az all natural
windows on a along comp(a) are of length at most z.(log2 (size of P )− log2 |A|+ n).

Proof: We distribute each a ∈ A to the node of its (first) maximal natural window. Let r be the
number of classes of this distribution. We see that for each a ∈ A the window according to (the
corresponding class of) this distribution is not shorter than the maximal natural window on a and
therefore it is not shorter than any natural window along whole comp(a).

What concerns of windows according to our distribution the previous theorem says that
avelw ≤ log2 (size of P )− log2 |A|+ n.

Further at most 1
z .|A| inputs from A have windows according to our distribution of length at least

z.avelw. Hence at least (1 − 1
z ).|A| of inputs from A have windows according to our distribution of

length at most z.avelw. Hence - as stated above - (1− 1
z ).|A| of inputs from A have each their natural

windows (along the whole computations) of length at most z.avelw. Q.E.D.

2

Comments.
i) Informally, the theorem says that for any large A all a’s from A but a fraction of them have

short natural windows.

Now, it is the time to investigate the second part of the considered phenomenon, especially the
simple statements concerning convex functions and their secants and tangents.

First let us take into account the function f(x) = x. log x on interval [1; 2]. Its second derivative
is log2 e. 1

x > 0. Hence f is convex on [1; 2]. The straight line s(x) = 2x − 2 is the secant of f , their
common points are (1; 0) and (2; 2). Therefore on [1;2] s(x) ≥ f(x).

Let k be an arbitrarily chosen natural number and let m be a number, m ∈ [0; 2k]. For x = 1 + m
2k

from the inequality s(x) ≥ f(x) above we may obtain the inequality (2k+m).k+2.m
2k+m

≥ log(2k + m).

The semantics of the last inequality is as follows: Let us have a binary tree (with a root)in which
some branches are of the length k and the others are of the length k + 1. Let m be the number of all
nodes of our tree which are in the distance k from the root and which are not leaves. Now, we see
that the inequality in question says that the average length of branches in our tree is at least binary
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logarithm of their numbers.

Let us take a (general) binary tree with a root. Let us consider its transformation into a tree such
that the maximal difference of lenghts of its branches equals 1 (this is the case of the tree above). Our
transformation works step by step. In one step in the maximal depth a pair of leaves with a common
predecessor are cut, in the minimal depth one leaf obtains two successors. In each step the number
of branches remains the same, their average length becomes shorter (and shorter). Hence from the
trivial fact concerning secants of convex functions we obtain the well known fact that the average
length of branches of binary tree is at least logarithm of their number.

Now, let f be a function convex on an interval and let t be any its tangent. Our simple fact says
that that for each x from the mentioned interval t(x) ≤ f(x) holds. Hence for any x1, ..., xr from the
interval the following holds:

1
r

∑r
i=1 f(xi) ≥ 1

r

∑r
i=1 t(xi)

= t(
∑r

i=1 xi

r ) since t is a linear function

= f(
∑r

i=1 xi

r ) for t being the tangent in the point (
∑r

i=1 xi

r ; f(
∑r

i=1 xi

r )).

Further from above we know that the function x. log x is a convex one on ((0;∞). Therefore we
have

1
r

∑r
i=1 xi log xi ≥

∑r
i=1 xi

r .(log (
∑r

i=1 xi)− log r)

and then
∑r

i=1 xi log xi∑r
i=1 xi

≥ log
∑r

i=1 xi − log r.

The semantics of the last inequality is as follows: Let xi be the number of leaves (and branches
) of a tree Ti. From above we know that the sum of lengths of branches of Ti is at least xi.log xi.
Hence we have the following lemma.

Lemma 1 Let us have r binary trees. Let l be the average length of their branches and S be the sum
of (the numbers of) their leaves. Then l ≥ log2 S − log2 r.

One possible proof can be found in [5]. For r = 1 we obtain the well-known fact that the average
length of branches of any binary tree is at least the binary logarithm of their numbers.

Now we are able to prove Theorem 1.

Proof: We use our tree lemma above. Let us take into account the trees developed according to Ai’s.
Let S be the number of their leaves and l be the average length of their branches. According to
lemma we have l ≥ log2 S − log2 r. We see that S = |A| and that l = n − avelw. Hence we have
n− avelw ≥ log2 |A| − log2 r. Q.E.D.

2

Using simple facts concerning secants and tangents of convex functions we have proven a theorem
giving general lower bound method for general b.p.’s.

In the history (1981) of this matter the requisition of this property lead to our definition of win-
dows ([8,10]).
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We see that windows and trees are complementary in some sense. At each node long windows
are the same as short branches in the respective tree and vice versa. The situation is discussed in
detail in [5]. Windows (and trees) can be used for classification of branching programs. For original
definition of windows [8],[10] we have that in read-once b.p.’s at each node each inputs reaching it have
the same natural windows in some sense. The same observation can be made for tree-like analysis in
[5]. Now we have had the possibility to define a larger class of b.p’s simply by allowing that at each
node the natural windows could be somewhat different. Now, there has been a task before us firstly
to demonstrate that in this way we have obtained a class of b.p.’s which is computationally stronger
than read-once b.p.’s, and secondly to prove superpolynomial lower bounds for our new class of b.p.’s.
This question is investigated in [10,3,5].

The deepest analysis of the question is made in [5]. There so called ∆-balanced b.p.’s are in-
troduced. The definition means that at least 2n−∆ inputs can be distributed among nodes of the
program in question in such a way that each class of the distribution induces a decision tree without
the branches of length shorter about ∆ than the average length (i.e. without too long windows by
complementarity of trees and windows) and with some additional special properties.

In [5] it is proven that read-once b. p.’s are covered by ∆-b.p.’s with ∆ = 0 and that many
functions which are superpolynomially hard for b.p.’s restricted in the classical way are easy for ∆-
balanced b.p.’s. including Ajtai’s function [1]. Moreover a superpolynomial lower bound was proven
for a class of so called strongly k-stable functions. These functions include among others the classical
clique function (which is in NP) and a type of pointer function (which is in AC0). The question is
open to achieve similar results for restrictions more free than ∆ b.p.’s.

Moreover using windows a superpolynomial lower bound for the function of so called multisyms
was proven in [4] . This function was defined after an analysis of the result concerning symmetric
words mentioned above. Multisyms will play the key role in the next sections.

We may conclude that a very small phenomenon (remembering of the content of an input cell
scanned by the head of a Turing machine when one instruction of TM is performed , and the very
simple facts about tangents and secants of convex functions ) has induced a deep massive proof ma-
chinery. However intuitive experience with this machinery has induced a desire for to find another
lower bound method more emphasizing separation of inputs with opposite function values. Such a
method is demonstrated in the next subsection and in the rest of the paper.

1.5 Paradox 3: A new principle for proving lower bounds

Let us introduce our third small phenomenon (mentioned in the abstract) in a more technical form.

Let us have a b.p. P which computes a function f . Let a = a1...an, b = b1...bn, x = x1...xn be
three inputs. Let for all i = 1...n xi = ai or xi = bi, and moreover f(a) = f(b) 6= f(x).

We see that there is at least one node in P reached by all three a, b, x - e.g. the source of P . On
the other hand f(a), f(b) differ from f(x) - therefore in P there is an inner node v which is the last
node in P reached by all three a, b, x.

Now on the intuitive level let us argue how this phenomenon could imply lower bounds.

Let us consider the situation in v. In v (according to the definition of v) a, b, x must diverge. Let
bit i be tested in v. It must be ai 6= bi otherwise ai = bi = xi and no divergence is possible.

Wlog we may assume that a follows 0-edge outgoing from v, b follows 1-edge and x follows 0-edge
, too. Since v is ”last”, the computational paths starting in v and given by a and given by b must
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not have any common node until the moment when a, x diverge (b never meets a before x leaving a).
This observation implies a new principle for proving lower bounds.

For its intuitive description it suffices to imagine that in one node many inputs with rich mutual
relations can be distributed with the effects that many paths must not have any common nodes till
some significant depths. If this is true also in the nodes below we obtain a binary tree embedded in
the branching program in question. As a consequence we can prove a lower bound.

The last section introduces a proof of a lower bound based on this phenomenon.

2 Multisyms

Considering the windows on symmetric words (above in Subsection 1.4) and then on the set of words
{uk|u ∈ {0, 1}n/k} which have windows of length k but only on few inputs we have obtained the
following definitions of so-called multisyms. This function was already used in [4] for testing lower
bound techniques based on the notion of windows for the case of read-once b.p.’s. A superpolynomial
lower bound has been achieved.

For appropriate n‘s we understand the binary inputs of length n as matrices m×k where m.k = n.
We say that some t columns are covered by a row r if the bits of these t columns on row r have the
same value 0 or 1 (they are monochromatic on r). We say that such a matrix is a t-multisym if each
choice of t columns is covered by a row.

It is easy to see that for any constant t t-multisyms are in P and that for any unbounded and
reasonably constructible function t(n) t(n)-multisyms are in co-NP.

For the purposes of this text we shall use only 2-multisyms, simply multisyms.

We often use notation m = ε(n).log n and k = n
ε(n).log n . It is easy to see that for ε(n) ≥ 2 the

number of multisyms is at least 2n−1. Indeed the number of non-multisyms is at most

(
k
2

)
.2m.2n−2m ≤ ( n

ε(n).log n )2.2n−m ≤ 2n+2.log ( n
ε(n).log n

)−ε(n).log n ≤ 2n−1.

By a canonical branching programs computing multisyms we mean any branching program P con-
sisting from a chain of subprograms (Pi,j) for i, j = 1...k, i 6= j. Each program Pi,j is responsible for
verifying the covering of the pair of columns (Ci, Cj) by at least one row. Each Pi,j has two sinks -
simply to separate the matrices with covered (Ci, Cj) from the others. The first sink of Pi,j (”the pair
Ci, Cj is covered”) is the source of the next subprogram Pi′,j′ , the second sink of Pi,j (”the pair Ci, Cj

is not covered”) is one of sinks of P (”nonmultisyms”). Each such Pi,j is a chain of microprograms
Mr for each row r. Mr is responsible for testing of covering of (Ci, Cj) by row r. (Mr tests equality
of two bits.)

Let P be a branching program and let the input words be viewed as matrices. Let a, b, x be inputs
with the functional values fP (a) = fP (b) 6= fP (x). Let v be a node of P , C1, C2 be columns. By
R(v, a, C1, C2, b, x) we mean that

i) v is a node reached by all three a, b, x,
ii) in v a, b, x diverge, x follows a,
iii) the test in v is in C1 or C2, the test in which x leaves a for the first time (below v) is in the other
column C2 or C1 respectively,
iv) b never meets a before x leaving a.
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The point iv) reflects the main feature of our new principle from Subsection 1.5.

We say that P is a reasonable branching program iff P satisfies the next restriction R:

There is a set A of inputs with the same functional value o ∈ {0, 1}, |A| ≥ 2n−2, such that for each
a ∈ A and for each two columns C1, C2, C1 6= C2, there is a node v ∈ comp(a) such that

i) the set Ba,v =df {b|fP (b) = o, b reaches v and a, b diverge at v} 6= ∅ and,
ii) there is an input x, fP (x) 6= o, satisfying for each b ∈ Ba,v R(v, a, C1, C2, b, x).

The restriction R (reasonable) may seem to be very special since it is formulated in close con-
nection to multisyms. On the other hand multisyms seem to be a very appropriate candidate for
a function superpolynomially difficult for general b.p.’s computing in time n.(log n)2. We plan to
remove R in the next development of our ideas. R simply documents the level of proof we are able to
achieve contemporarily. Hence our approach to start with R is legitimate.

Moreover the next section demonstrates that R is taken from life. We prove that the canonical
branching programs are reasonable. Moreover what concerns superpolynomial lower bound for read-
once b.p.’s starting the proof ”by contradiction” by the (false) assumption that there is a read-once
b.p. of polynomial size computing multisyms we obtain that this program is a reasonable one. Hence
the proof of superpolynomial lower bound for reasonable programs computing multisyms - we produce
in this paper - implies immediately the same superpolynomial lower bound for read-once programs
and even for a larger class of programs. Therefore our task to prove a superpolynomial lower bound
for reasonable branching programs has its sense also from the traditional point of view based on tra-
ditional definitions such as read-once etc., and the corresponding lower bounds.

3 Reasonability of R

In the next lemma we demonstrate that R is satisfied by canonical branching programs.

Lemma 2 Each canonical branching program (computing multisyms) is reasonable.

Proof: Let P be a canonical branching program computing multisyms. We want to verify R for the
set of all multisyms.

Let a be a multisym, let C1, C2 be a pair of columns. Let us take the subprogram P1,2 of P
corresponding to the pair C1, C2 and within it the first microprogram Mr (responsible for a row r)
such that r covers C1, C2 in a. In Mr a leaves P1,2. Let v be the input node of Mr. We want to prove
R(v, a, C1, C2, b, x) for some nonmultisym x and for all b ∈ Ba,v.

Let x be a nonmultisym which at v follows a and which ends at sink of P1,2, i.e. x does not cover
the pair C1, C2. Such an x exists: e.g. x such that outside of C1, C2 x equals 1, on both C1, C2 x has
at least one 1, x does not cover C1, C2, and on Mr at v x follows and immediately then diverges a.
Let b equals the described x on all bits but the bit tested at v. b is a multisym and therefore Ba,v 6= ∅.
For each b′ ∈ Ba,v R(v, a, C1, C2, b, x) clearly. Q.E.D.

2

Comment. In the proof, v is the last common node of a, b′, x for all b′ ∈ Ba,v. The motif of our
principle from Subsection 1.5 is present here.

The next theorem reduces the proof by contradiction of superpolynomial lower bound for read-once
b.p.’s to the problem of superpolynomial lower bound for reasonable b.p.’s.
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Theorem 3 Let P be a read-once branching program computing multisyms with (log log n)3 ≤ ε(n) ≤
log n. Let size(P ) ≤ nq.

Then P is a reasonable branching program.

Proof: By α(n)-strong multisyms we mean multisyms with at least α(n).log n (covering) monochro-
matic rows for each pair of columns. For α(n) ≤

√
ε(n) the number of α(n)-strong multisyms is at

least 2n−1. This follows from the fact that the number of strings which are not α(n)-strong multisyms
is at most

(
k
2

)
.2m.α(n).log n.

(
m

α(n).log n

)
.2n−2m ≤ n3.2n−m.mα(n).log n

≤ 2n−ε(n).log n+3+α(n).log n.log (ε(n).log n) ≤ 2n−1.

According to the previous theorem there are at least 2n−2 of α(n)-strong multisyms such that each
their natural window in P is of length at most 2.(q.log n + 1). Let S be the set of such multisyms.
For any multisym a and for each pair of columns C1, C2 we define a pair of nodes va,C1,C2 , wa,C1,C2

in comp(a) (in brief v, w) as follows: Let r be the first row monochromatic on C1, C2 such that both
its bits (on C1, C2) are both tested along comp(a). va,C1,C2 is the node of the first (in comp(a)) test
in question, wa,C1,C2 is the node of the second one.

Lemma 3 Let a ∈ S, let C1, C2 be columns.
Then there is no input c such that
a) c meets a at the moment when comp(a) still has not covered C1, C2 and still has touched (by

any test) at most 2.(q.log n + 1) pairs covering C1, C2 in a.
b) there is a bit i, i ∈ C1 ∪ C2, a(i) 6= c(i), a(i) tested by comp(a) before meeting comp(a) and

comp(c).

Proof: By contradiction. Suppose such an c exists. We construct c′ as a prolongation of c (it means
we define values of the bits not tested by comp(c) before meeting with comp(a) ). Outside of C1, C2

we give the same values which are in a. Hence c′ and a cannot diverge by tests outside of C1, C2.

Fact 1. On C1, C2 there is no bit tested by comp(c) but not tested by comp(a) before their meeting.

By contradiction. Let i1 be such a bit and let i′1 be a bit associated with it on the same row on
C1, C2. We construct a′, a′′ two prolongations of a. Outside of C1, C2 they equal a. On C1, C2 on
pairs of bits on the same rows with exception of i1, i

′
1 we give values 01, 10 so that each pair C, C1

and C, C2 is covered (we have at our disposition at least (α(n)− q).log n free pairs of bits). In i1 we
give different values for a′, a′′, in i′1 we give the same value for both a′, a′′. a′, a′′ differ only on i1 -
therefore they will not diverge because on i1 they must not test since i1 was tested by c. They reach
the same sink. On the other hand -due to the arrangement on i1, i

′
1- one of them is multisym and the

other not. A contradiction.
On 6.log n pairs of bits on rows on C1, C2 we may give values 10, 01 in such a way that both a and
c′ cover each C,C1 and C, C2 for each C 6= C1, C2.

Fact 2. c′ covers all pairs C, C ′ for C,C ′ 6= C1, C2.

By contradiction. On C1, C2 on the remaining pairs of bits we give values 00. a, c′ reach the same
sink but only exactly one is a multisym. A contradiction.

Fact 3. c covers C1, C2.

By contradiction. Let c not cover C1, C2. On the remaining bits of C1, C2 with exception of j
associated with i we construct a common prolongation in such a way that the resulting c′ does not
cover C1, C2. To j we give the value a(i). a′, c′ reach the same sink but only exactly one of them is a
multisym. A contradiction.
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We see that c′ covers all pairs of columns. On the other hand on C1, C2 there is a common prolongation
a′ of a such that a′, c′ reach the same sink with arrangement on bits i, j such that a′ is not multisym.
A contradiction. The proof of our lemma is closed.

2

Lemma 4 The number of pairs covering C1, C2 (in a) touched by (tests of) comp(a) before w is at
most 2.(q.log n + 1).

Proof: By contradiction. Let this number be larger. Then beginning at v many of bits from the
pairs in question are tested by comp(a) and therefore many bits are introducing natural windows on
a between v and w. But a ∈ S, therefore each its natural window is of length at most 2.(q.log n+ 1).
Hence soon after v a c must meet a and close some bit in the window on a. But this is impossible
according to the previous lemma. A contradiction. Q.E.D.

Let us verify that R holds. For a ∈ S an α(n)-multisym and for any pair of C1, C2 we have defined
the nodes va,C1,C2 , wa,C1,C2 ∈ comp(a) in brief v, w.

Let b be a multisym which differs a only in the bit tested at v. We see that Ba,v 6= ∅.
Let us define x as follows. Outside of C1, C2 a = x. On C1, C2 x equals a on all bits tested by

comp(a) before w, on the bit tested at w x differs a and on the remaining bits x is defined arbitrarily
in such a way that x is a nonmultisym. Now it suffices to prove that any b′ ∈ Ba,v never meets a
before w nor in w. But this follows from the previous lemmas.

2

2

4 Combinatorics

Lemma 5 Let T be a sequence of places, let |T | be its length. Let k be a natural number.
Let

(
k
2

)
pebbles be distributed on places of T , at most k − 1 pebbles on one place.

Let u, α be numbers, u <
(k
2)
|T | and u < k − 1.

Then in T there is a subsequence S of α places such that
(i) on each of them more than u pebbles are distributed,
(ii) between each two places neighboring in S there is at most d = α. |T |−o

o−1 nodes in T where

o = (k
2)−|T |.u
k−1−u .

Proof: By a marked place we mean any place with at least u + 1 pebbles. In T there is at least

o = (k
2)−|T |.u
k−1−u marked places. The average distance between marked places is at most p; p = |T |−o

o−1 .

The number of intervals of length at least α.p + 1 of non-marked places is at most |T |−o
α.p+1 =

|T |−o

α.
|T |−o
o−1 +1

< o
α .

Hence there are at most o
α subsequences of marked places in which each two neighbors have distance

at most α.p and moreover there is at least one such subsequence which contains at least α nodes. 2

2

Corollary 1 For k = n
ε(n). log n , ε(n) ≤ log n, T (n) = n.(log n)2, α = (log n)2 and u =

√
(n)

(log n)2 , d(n)
is at most 6.(log n)6.

Proof: d(n) = α(n).T (n)−o
o−1 =

α(n).T (n)
o−1 − α(n).o

o−1 ≤
n.(log n)4

o−1 (since o > 1)

= n.(log n)4

(k
2)−T (n).u

k−1−u −1

≤
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n.(log n)4.(k−1−u)

(k
2)−T (n).u−k+1+u

≤
n.(log n)4.k

1
2 .(k

2)
≤ 6.(log n)6. 2

2

5 Lower bound

Definition 2 Let B be a binary decision tree. Let M be a set of inputs, M ⊆ {0, 1}n. Let LB be the
number of all leaves of B and LM

B be the number of all leaves of B reached by inputs from M . By

M -ratio of B we mean the number pM
B = LM

B

LB
.

Let T be a subtree of B. Let LT be a number of all leaves of T and LM,B
T be the number of all leaves

of T reached (in B !) by inputs from M . By (M, B)-ratio of T we mean the number pM,B
T = LM,B

T

LT
.

Theorem 4 The polynomially sized reasonable branching programs cannot compute multisyms with
(loglog n)3 ≤ ε(n) ≤ log n in time n.(log n)2.

Proof: By contradiction. Let P be a reasonable branching program computing multisyms in time
n.(log n)2 and with |P | ≤ nq for some q. Since P is reasonable there is a set A of multisyms of
cardinality at least 2n−2 with the corresponding properties.

For each multisym a ∈ A we understand the nodes of comp(a) as a sequence of places. Let
v ∈ comp(a) be a node (place) and let C1 be the column of the variable tested in v. The number of
pebbles on v is given by the number of columns C such that R(v, a, C1, C, b, x) for some b‘s, x‘s. Hence
on each v there is at most k−1 pebbles where k is the number of columns in the matrices (multisyms).

From restriction R it follows that on comp(a) there must be at least
(
k
2

)
pebbles. Therefore ac-

cording to Lemma 5 and Corollary 1, for each a , in comp(a) there is a relatively long ((log n)2)

subsequence Sa of nodes with relatively many (
√

(n)

(log n)2 ) pebbles and with the distances between their
nodes relatively small (at most 6.(log n)6 ).

Let us distribute each multisym a ∈ A to the first node of Sa. Let v be the node with a maximal
class M of this distribution. Hence |M | ≥ 2n−2

nq .
From v we develop the syntactic tree B′ according to P (”syntactic” means that we take into account
also the branches which are not followed by any input e.g. in case of repeated tests on the same
variable) till the depth (log n)2.6.(log n)6 in P (this number corresponds to (log n)2 nodes of Sa

and the maximal distances 6.(log n)6 between them). Below this depth we continue the developing
of the tree ignoring the repeated tests. On each branch b at the node corresponding to the related
sink of P we add some subtree Sb which on each their branches tests all variables not tested below
v till now. We know that the length of branches (constructed till now) is at least n and that each
such branch is followed by at most one input (of length n). The branches (constructed till now) can
be of different length (due to the possible different number of repeated tests in the first interval of
length (log n)2.6.(log n)6 along different branches). To obtain a full tree B′ of certain length we add
some full tree Tb of appropriate length to each branch b shorter than the longest one of branches
constructed till now. As a result we obtain a full binary decision tree B′ of depth n + δ. δ is at most
(log n)2.6.(log n)6.
We modify B′ as follows. Below v till the depth (log n)2.6.(log n)6 in the middle of each edge we insert
a new node with the same test as in the node from which the edge in question out-goes. On the dead
edge of this test we add a dummy full binary tree D of depth log((log n)2.6.(log n)6) + (log n)2 + δ.
Below the depth (log n)2.6.(log n)6 we add dummy subtrees of depth δ− l where l is level of B′ below
(log n)2.6.(log n)6. Maximal l for this operation is δ.
Let B be the resulting tree. The number of its leaves is at most

2n+δ +
+26.(log n)8 .2log((log n)2.6.(log n)6)+(log n)2+δ +
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+
∑δ

l=0 2l.2δ−l ≤
≤ 2n+δ+1.
It follows that M-ratio of B
pM

B ≥ |M |
2n+δ+1 .

For the proof of our theorem it suffices to prove the next lemma.

Lemma 6 There is a full binary decision tree T of depth (log n)2 + δ rooted in v such that
a) Each its branch (considered as a sequence of nodes) is a subsequence of a branch of B.
b) pM,B

T ≥ pM
B .

c) The nodes of T reached by inputs from M in depth (log n)2 are pairwise different in P .
d) The number of leaves of T reached by inputs from M is the same as the number of nodes of T

reached by inputs from M on level (log n)2.

Since P is small (≤ nq) from c)and d) it follows that the number of leaves of T reached by in-
puts from M is small (≤ nq) which implies that pM,B

T ≤ nq

2(log n)2+δ
. According to b) it follows that

nq

2(log n)2+δ
≥ pM,B

T ≥ pM
B ≥ |M |

2n+δ+1 . A contradiction. Q.E.D. 2

The theorem is proven, it remains to prove the lemma.

Proof of Lemma 6.
The main point of construction of the desired tree T is recursive use of procedure Proc.

In the first step of Proc we take into account the both subtrees of B rooted by the immediate successors
v0, v1 of v. If one of these subtrees is reached by no input from M we add it to the constructed tree
T ′. We know that in the other case in P the branches starting in v0 and that ones starting in v1 and
both followed by inputs from M don’t meet till the depth

√
n

(log n)2 . This follows from the restriction
R. (Cf. c) of Lemma.)
For i = 0, 1 in vi and below vi we distribute each input a from M to the node of B where a has the
next (second) node of its special subsequence Sa. ( Similarly as above in case of v for each node w
of this distribution the branches followed by inputs from the corresponding class of the distribution
starting at 0-successor of w do not meet the other ones starting at 1-successor till the depth

√
n

(log n)2

by the restriction R. )
First let us take into account the easy case when on each branch there is at most one node of this

distribution. Among the full subtrees with roots in the nodes of the distribution we chose that one
which has maximal (M,B)-ratio. For case of back reconstruction of B from T from the point of view
of b) of Lemma it is important that this ratio is at least the same or larger than the ratio of the tree
rooted by corresponding vi. In T ′ there will be an edge from v to the root of the chosen tree. On each
tree chosen in the present iteration of Proc we apply the next iteration.

The difficult case is when some nodes of this distribution are on the same branch of B. We will
still construct trees rooted in the nodes of our distribution with the property that their sets of leaves
are pairwise disjoint. This property implies that the maximal (M, B)-ratio of these trees is at least
equal or larger than the (M, B)-ratio of the tree rooted in the corresponding vi.

Let leaders be nodes (of this distribution) which have no such nodes as predecessors. (Each leader
is the first on its branch.)

We take into account a partition of the set of nodes of the distribution according to the equivalence
”to be below (or equal to) the same leader”.

Let wi’s be a class of nodes (a class of the partition) where sets of multisyms Mi’s are distributed.

We construct the corresponding trees Ri’s rooted in wi’s. Each Ri contains all branches followed
by inputs from Mi. The sets of leaves of Ri’s are pairwise disjoint (since in each leaf there is at most
one input - from the construction of B). In general the union of Ri’s do not cover the whole subtree
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rooted in the leader of wi’s because in general there are branches not followed by any input from M .
To each Ri we potentially add some other branches to save the possibility to continue the construction
of full tree T of depth (log n)2 + δ in case when the modified Ri is chosen as the tree with maximal
(M, B)-ratio.

We proceed according to the following rules:

Let us take R one of Ri’s. In B let us follow its branches from its root to its leaves. Let u be a
node on some branch b such that only one outgoing edge is followed by inputs from Mi. In case when
u is in B in depth at least d = (log n)2.6.(log n)6 + δ we add the whole subtree of B rooted by the
out-going edge in question to R or we do nothing if u plays its role for another R which consumes this
subtree in question.
In case when u is in the depth at most d the most difficult case is such that the out-going edge in
question is followed by inputs from some other Mi’s.
We saturate the need of subtree in the direction of the out-going edge in question using the added
subtree rooted in the middle of this edge. The added subtree is large enough to yield subtrees of de-
sired depth (log n)2 + δ for at most 6.(log n)6 Ri’s (on one branch of B)in at most (log n)2 iterations
of Proc. Cf. the definition of B.

From T ′ we construct the desired full binary tree T of depth (log n)2 + δ as follows:

To obtain T we modify T ′ only below the depth (log n)2 (in T ′). Moreover from the construction
of T ′ we know that the nodes of T ′ reached by inputs from M in depth (log n)2 are pairwise different
in P . Hence c) of Lemma is satisfied.

From each node of T ′ in depth (log n)2 in T ′ we follow the branches in B (!). If the node in
question (on level (log n)2 and below) of T ′ is not reached in B by any input from M we simply add
a subtree of an appropriate depth to gain the desired depth (log n)2 + δ of T . (In case of the back
reconstruction of B from T b) of Lemma is not corrupted.)

If a node has only one out-going edge followed by inputs from M we prolong the dead edge by an
subtree of appropriate depth to gain the desired depth (log n)2 +δ and we follow the edge with inputs
from M .

If in a node both outgoing edges are followed by inputs from M we consider two subtrees rooted
in this node. Each of these two subtrees contains the subtree rooted by the outgoing edge in question
and the dummy tree rooted by the middle of the opposite out-going edge (cut in the appropriate depth
to gain the desired depth (log n)2 + δ of T ). We chose that one with maximal number of inputs from
M . d) of Lemma is satisfied. In both cases the back reconstruction of B does not corrupt b) of Lemma.

From the construction of B it follows that the operations above are ensured till the depth (log n)2.6.
(log n)6 + δ. This is sufficient for our construction of T .

The conditions a), b), c), d) of Lemma are satisfied.

It remains to verify that T is a full tree of depth (log n)2 + δ.
From the description of Proc it is easy to see that T is a full tree till the level (in T ) at least (log n)2.
On this level the nodes not reached (in B) by any input from M have an appropriate prolongation
by a subtree till the desired depth (log n)2 + δ - this follows from the construction of B and from the
description of Proc. Q.E.D. 2

What concerns the contradiction constructed within two sentences introduced immediately after
the formulation of Lemma 6 we see that the contradiction remains valid even for q = log n

2 − 1. Hence
the following Corollary holds.
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Corollary 2 The reasonable branching programs of size n
log n

2 −1 cannot compute multisyms with
(loglog n)3 ≤ ε(n) ≤ log n in time n.(log n)2.

After a simple analysis of Theorem 3 and of its proof we can obtain the following lower bound for
read-once b.p.’s.

Corollary 3 The read-once branching programs of size n
√

log n−7 cannot compute multisyms with
ε(n) = log n.

What concerns our new and very simple principle (Subsection 1.5) we see that via its main feature
catched in R it produces massive proofs and yields reasonable results. The third paradox mentioned
in the Abstract has been demonstrated.
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