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In this paper, we propose a new numerical method to compute approximate and the so-called
relaxed pessimistic solutions to mathematical programs with equilibrium constraints (MPECs)
where the solution map arising in the equilibrium constraint is generally not single-valued.
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1 Introduction

In the last twenty years researchers have paid a lot of attention to a class of optimization
problems where, among the constraints, there is a special one in the form of a variational
inequality or a complementarity problem. One speaks about an equilibrium constraint, and
the overall optimization problem coined the name MPEC. As an early version of an MPEC
one can consider the Stackelberg game of two players ([17]), and we use the respective
terminology very often also in the MPEC setting.

Let us consider an abstract MPEC in the form

minimize
x

f(x, y)

subject to

y ∈ S(x)

x ∈ ω.

(1)

In (1), x ∈ Rn is the strategy of the dominant player called Leader, who acts first and
aims to minimize his continuous objective f by using strategies from a closed set ω ⊂ Rn.
The so-called solution map S[Rn ⇒ Rm], arising in the equilibrium constraint (x, y) ∈
Gph S, assigns x the set of possible responses of his opponent(s) called Follower(s). So,
y ∈ Rm stands for the cumulative strategy of all Followers and S describes their behavior.
Unfortunately, problem (1) is not well-posed, whenever S is not single-valued on ω. Then,
namely, the Leader can hardly optimize his choice of x, not knowing the response of his
opponent(s).

To avoid this hurdle, one imposes in some situations an additional hypothesis specifying
the response of the Follower(s) at those x ∈ ω, where S(x) is not a singleton. Usually
we assume that he (they) behave(s) with respect to the Leader’s objective either in a
cooperative or in a non-cooperative way. In the former case one speaks about the optimistic
solution concept in which the MPEC (1) is replaced by a hierarchical optimization problem
where, on the upper level, one minimizes the value function

µ(x) := inf
y∈S(x)

f(x, y)

over x ∈ ω. This allows us (under mild assumptions) to convert (1) to the (well-defined)
MPEC

minimize
x,y

f(x, y)

subject to

(x, y) ∈ GphS

x ∈ ω.

(2)

In (2) one minimizes f with respect to both variables x and y. A vast majority of the
MPEC literature, including the monographs [13], [14] and [7], is devoted to problem (2)
and its numerous variants.
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To introduce its counterpart, the pessimistic solution concept, one usually employs the
value function ϑ[Rn → R̄] defined by

ϑ(x) := sup
y∈S(x)

f(x, y).

A pair (x̂, ŷ) ∈ ω × Rm is declared a (local) pessimistic solution to (1), provided

ϑ(x̂) = f(x̂, ŷ)

ϑ(x̂) ≤ ϑ(x) for all x ∈ O ∩ ω,
(3)

where O is a neighborhood of x̂.
Such a pair exists, however, only under special, rather restrictive assumptions on f and

S. Therefore, especially in numerous papers by Loridan and Morgan (see eg. [8], [9], [10]),
a lot of attention has been paid to various relaxations of condition (3), leading to more
workable solution concepts for the non-cooperative case. Such an effort is very important
because this type of behavior of the Follower(s) can frequently be observed in applications.

An incentive for this paper has been provided by a successful algorithm BOBYQA,
developed by Powell for derivative-free minimization of (possibly discontinuous) functions
([15]). As mentioned by Dempe in [6], to find a pessimistic solution to (1) we have to
minimize either a discontinuous, implicitly given value function which is generally not lower
semicontinuous, or its special relaxation constructed via a modification of the equilibrium
constraint. In this paper we address the first possibility.

The plan of the paper is as follows. In the next section we provide a preliminary
analysis of the problem and address two “relaxed” solution schemes which are suitable
and reasonable to consider when a local pessimistic solution to MPEC does not exist.
Further, we give a brief description of our proposed numerical method, particularly its two
already existing components, BOBYQA and UFO. We also comment on convergence rate
of our method. In the final section we summarize our numerical experience on several test
MPECs.

2 Problem formulation and numerical method

As we mentioned in the introduction, a (local) pessimistic solution to (1) exists only under
restrictive assumptions on problem data. Therefore we consider the following relaxation of
the pessimistic solution concept.

Definition 1. (relaxed pessimistic solution to MPEC)
The pair (x̂, ŷ) ∈ ω × Rm is called a relaxed pessimistic solution to (1), provided that
∃xi

ω−→ x̂, yi → ŷ, yi ∈ S(xi), such that ϑ(xi) = f(xi, yi) and ϑ(xi) → infx∈ω ϑ(x).

Clearly, possible accumulation points ỹ of {yi} do not generally fulfill the relation
ϑ(x̂) = f(x̂, ŷ) due to the possible lack of continuity of S.

For simplicity, throughout the whole sequel we impose the following assumptions.
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Assumption 1. ω := {x ∈ Rn|ai ≤ xi ≤ bi}, where ai, bi ∈ R̄, i = 1, . . . , n.

Assumption 2. S is nonempty and compact-valued over ω.

Assumption 3. S is outer semicontinuous over ω, cf. [16, Definition 5.4].

By [2, Theorem 1.4.16], Assumptions 2 and 3 ensure that µ(x) is lower semicontinuous
(lsc) over ω, ϑ is upper semicontinuous (usc) over ω and that for all x ∈ ω one has

µ(x) = min
y∈S(x)

f(x, y),

ϑ(x) = max
y∈S(x)

f(x, y).

Let us denote by ϑ̂ the lsc regularization of ϑ, i.e. the largest lsc minorant of ϑ. Then
it is clear that x̂ is a relaxed pessimistic solution to (1) if and only if it is a local minimum
of ϑ̂ over ω. In this way we have lower estimates for all approximations of pessimistic
solutions at our disposal. Further, this type of relaxed solution to (1) exists whenever ω is
compact.

However, the relaxed pessimistic solutions are generally not feasible for MPEC (1). In
that case, the Leader is usually forced to deviate slightly from his optimal behavior and
has to be content with an approximate solution.

Definition 2. ((δ, ε)-pessimistic solution to MPEC)
Let x̂ be a relaxed pessimistic solution to (1) and δ, ε > 0 be given. We say that (x̃, ỹ) is a
(δ, ε)-pessimistic solution to (1), provided

ϑ̂(x̃) = ϑ(x̃) = f(x̃, ỹ)

ϑ̂(x̃) ≤ ϑ(x̂) + ε

||x̃− x̂|| < δ.

This notion corresponds to so-called η-solutions by Loridan and Morgan ([8]) when
δ = +∞. We include a parameter δ to this concept because in many cases the choice of δ
directly corresponds to the trust-region radius in the numerical method described below.

Our main aim is to suggest a numerical procedure for the computation of relaxed
pessimistic and (δ, ε)-pessimistic solutions to (1). To this end we split the pessimistically
formulated MPEC into the outer and the inner optimization problems.

For solving the inner optimization problem

maximize
y

f(x, y)

subject to

y ∈ S(x)

(4)

with a fixed x we use a suitable optimization method from the interactive system UFO.
As explained in the previous sections, the optimal value function of this problem, ϑ(x), is
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a generally discontinuous function. Thus, for the outer optimization problem

minimize
x

ϑ(x)

subject to

x ∈ ω

(5)

we use the code BOBYQA for derivative-free optimization, developed by Powell. To find
pessimistic solutions to MPECs, we have joined these two algorithms into one code. A
brief description of both algorithms follows.

UFO [12] is an interactive system for universal functional optimization that serves for
solving both dense medium-size and sparse large-scale optimization problems. It can be
used for formulation and solution of particular optimization problems, for preparation of
specialized optimization routines and for designing and testing new optimization methods.
We can generate a large number of modifications of a given method and find the most
suitable implementation. The optimization methods can be implemented with various
strategies for a step-size selection. It contains line-search methods, general trust-region
methods, special trust-region methods for nonlinear least squares, Marquardt-type methods
for nonlinear least squares and filter-type methods for nonlinear programming including
Fletcher-Leyffer filters, barrier filters and Markov filters. The UFO system also contains
many efficient methods for solving related subproblems, for example methods for solving
systems of ordinary differential equations.

BOBYQA [15] is an algorithm for seeking a local minimum of a function F of several
variables, constrained by lower and upper bounds on each variable. The function values
of F can be specified by a “black box” and the information about its derivatives is not
available. Hence the algorithm can be used also for discontinuous functions as it is in our
case.

BOBYQA is based on finding interpolation points u1, . . . , um and computing a quadratic
approximations Qk to F that satisfy Qk(ui) = F (ui), i = 1, . . . ,m. At each iteration, a new
point xk+1 = xk + dk is computed and one of the interpolation points, say uj, is replaced
by xk+1. Thus only one interpolation point is altered on each iteration. Direction vector
dk is chosen by minimizing Qk(xk +d) subject to the prescribed bounds on variables under
the condition d ≤ ∆k, where ∆k is the current trust-region radius. At each iteration, as
a new point of a minimizing sequence x∗k we take the point which minimizes F among all
current interpolation points.

BOBYQA consists of a very accurate and efficient system of updating the approximation
models and it maintains a “good” set of interpolation points. This makes BOBYQA
numerically very stable and not sensitive to a reasonable level of computational errors in
values of the objective. However, BOBYQA does not make use of the problem structure
and the established local convergence rate is closer to linear then to quadratic. For this
reason, the algorithm sometimes prefers the early termination, see [5, Section 1.3].

From the above discussion it is clear that our code (consisting of BOBYQA and UFO)
is not very sensitive to possible computational errors of UFO and that the convergence rate
depends solely on performance of BOBYQA. In cases when no early termination occurs,
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we are able to compute a sequence of (δ, ε)-pessimistic solutions converging to the relaxed
pessimistic solution by choosing the final trust-region radius as δ. Note that ε depends on
the local Lipschitz behavior of ϑ around the respective approximate pessimistic solution.
These conclusions are supported by our numerical experience gained on the test problems
below.

Our final note is about the special situations when the map S happens to be continuous
over ω. Then ϑ is continuous over ω as well and the notions of relaxed pessimistic and
(δ, ε)-pessimistic solutions become superfluous. Our proposed procedure will then generate
pessimistic solutions in the sense of (3).

3 Numerical experiments

We have performed preliminary tests on several examples with small dimension by using
the code BOBYQA for the outer problem and the UFO system for the inner problem as
stated above. Examples 1 and 2 refer to the example in [7, Section 5.1], the former being the
pessimistic and the latter being the optimistic formulation of the same problem. Example
3 is a simple mathematical program with complementarity constraints (MPCC) where the
solution map is single-valued and continuous at each point from the interior of the feasible
set. Example 4 can be considered as a generalization of Example 1 into more dimensions.
By including Examples 2 and 3 in our test problems we intend to show that our proposed
method could be used also for computation of optimistic solutions and solutions to (1)
whenever S is single-valued, respectively. Now we briefly describe the examples.

Example 1. [7] An MPCC with relaxed pessimistic solution:

min
x∈[−2,2]

max
y∈S(x)

x2 + y2
1, (6)

where

S(x) =

{
y ∈ R3

+

∣∣∣∣∣
y1 ≤ 1, y2 − y3 − x = 0,

y1y3 = 0, y2(y1 − 1) = 0

}
.

The solution of the inner problem for a fixed x has the form

• if x < 0 then y∗ = (0, 0,−x)> with ϑ(x) = x2;

• if x ≥ 0 then y∗ = (1, x, 0)> with ϑ(x) = x2 + 1.

We can see that there is no global (nor local) solution of problem (6). However, x̂ = 0 is a
relaxed pessimistic solution.

Example 2. [7] An MPCC with optimistic solution:

min
x∈[−2,2]

min
y∈S(x)

x2 + y2
1, (7)

where S is the same multifunction as in Example 1. Now, the solution of the inner problem
for a fixed x has the form
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• if x ≤ 0 then y∗ = (0, 0,−x)> with µ(x) = x2;

• if x > 0 then y∗ = (1, x, 0)> with µ(x) = x2 + 1.

Thus the optimistic solution of (7) is attained at x∗ = 0, y∗ = (0, 0, 0)>.

Example 3. An MPCC with unique lower-level solution at each feasible point:

min
x∈[−2,0]×[−2,0],y∈S(x)

x1 + x2 + 2(y1 + y2), (8)

where

S(x) =

{
y ∈ R2

+

∣∣∣∣∣
y1 − 2y2 − x1 ≥ 0, y1(y1 − 2y2 − x1) = 0

y2 − 2y1 − x2 ≥ 0, y2(y2 − 2y1 − x2) = 0

}
.

The solution of (8) is attained at x∗ = (0, 0)>, y∗ = (0, 0)>.

Example 4. A 3-dimensional MPCC with relaxed pessimistic solution:

min
x∈ω

max
y∈S(x)

‖y‖2 (9)

where
S(x) = {y ∈ R3|y = arg min

y∈(x1,x2,x2
1+x2

2)>+C
(−x1y1 − x2y2 + y3)},

C is a unit cube in R3 and ω is a box in R2 with suitable lower and upper bounds. Using
the first order necessary optimality conditions, problem (9) can be rewritten as

min
x∈ω

max
y∈R3,σ∈R3

+,λ∈R3
+

(y2
1 + y2

2 + y2
3)

subject to

x1 ≤ y1 ≤ x1 + 1,

x2 ≤ y2 ≤ x2 + 1,

x2
1 + x2

2 ≤ y3 ≤ x2
1 + x2

2 + 1,

σ1 − λ1 = x1, σ1(x1 + 1− y1) = 0, λ1(y1 − x1) = 0,

σ2 − λ2 = x2, σ2(x2 + 1− y2) = 0, λ2(y2 − x2) = 0,

σ3 − λ3 = −1, σ3(x
2
1 + x2

2 + 1− y3) = 0, λ3(y3 − x2
1 − x2

2) = 0.

(10)

The solution of the inner maximization problem for a fixed x has the following form:

• if x1 ≥ 0, x2 ≥ 0 then y∗ = (x1, x2, x
2
1 + x2

2)
> + (1, 1, 0)> and

ϑ(x) = (x1 + 1)2 + (x2 + 1)2 + (x2
1 + x2

2)
2;

• if x1 ≥ 0, x2 < 0 then y∗ = (x1, x2, x
2
1 + x2

2)
> + (1, 0, 0)> and

ϑ(x) = (x1 + 1)2 + x2
2 + (x2

1 + x2
2)

2;
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• if x1 < 0, x2 ≥ 0 then y∗ = (x1, x2, x
2
1 + x2

2)
> + (0, 1, 0)> and

ϑ(x) = x2
1 + (x2 + 1)2 + (x2

1 + x2
2)

2;

• if x1 < 0, x2 < 0 then y∗ = (x1, x2, x
2
1 + x2

2)
> and

ϑ(x) = x2
1 + x2

2 + (x2
1 + x2

2)
2.

Clearly, ϑ(x) is a discontinuous function. The relaxed pessimistic solution of (9) is x̂ =
(0, 0)> while (δ, ε)-pessimistic solution is x̃ = (−δ,−δ)> for an arbitrarily small δ > 0 with
ε = 2δ2(1 + 2δ2).

The inner problem is an optimization problem with constraints which include comple-
mentarity conditions. Such an optimization problem is difficult to solve since none of the
standard constraint qualifications are satisfied at any feasible point. To remove complica-
tions caused by complementarity constraints, special methods are being developed. The
expressions themselves can either be taken as the complementarity pairs, one of the two
constraints can be slacked, both of the expressions in the constraints can be slacked, zero
complementarity condition can be replaced by a relaxation parameter driven to zero, or
the complementarity constraint can be moved to the objective function in the form of an
l1-penalty term with a large enough penalty parameter. All such reformulations of the
problem have the same optimal solution but they have different algorithmic performance.
Preliminary results based on the interior-point approach using an exact penalty function
to remove complementarity constraints can be found in paper [11] and references therein.

In our numerical experiments we have solved the inner problem as a standard nonlinear
problem with complementarity equalities replaced by inequalities. Examples 1,2, and 3
are solved by methods for general nonlinear optimization. We construct a sequence of
iterations yi+1 = yi + di converging to a local solution y∗ for a fixed x. Direction vectors
di are generated by a trust-region approach which can be used when the Hessian matrix
of the problem is not positive definite (e.g. in Example 1). The structure of Example 4
enables to use methods for sum-of-squares minimization. For solving the KKT conditions,
we have used the Newton method and the resulting system of linear equations is solved by
a line-search approach. For more details concerning optimization methods, see [1], [3], [4].

Numerical results in all examples indicate that we have to be careful in choosing param-
eters of our numerical method. In particular, the choice of values of RHOBEG and RHOEND,
the initial and final values of a trust-region radius for BOBYQA, and of initial points
x0, y0 for UFO, are critical. In all our computations we have set the number of interpola-
tion points of BOBYQA to m = 2n + 1, where n is the dimension of x. Since BOBYQA
can be used only for problems with n ≥ 2, in Examples 1 and 2 we have introduced an
artificial variable which, however, does not enter the objectives.

Table 1 shows results for Example 1. We see that it is not easy to choose the right
values of RHOBEG and RHOEND for which the algorithm stops at the desired optimum. A
stagnation in function value occurs for certain values of RHOEND, moreover, lowering the
values of RHOBEG can also deteriorate the result. The reason for this behavior might be the
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x0 = 1 x0 = −1
RHOBEG RHOEND x̂ ϑ(x̂) x̂ ϑ(x̂)
1E-01 1E-04 -1.799460E-03 3.238055E-06 -5.071861E-05 2.572376E-09
1E-01 1E-08 -6.957051E-05 4.840058E-09 -6.873385E-07 4.740431E-13
1E-02 1E-04 -3.249525E-02 1.055941E-03 -3.210313E-05 1.030611E-09
1E-02 1E-08 -1.716110E-04 2.945033E-08 -1.448631E-06 2.098531E-12
1E-04 1E-06 2.046750E-06 4.189306E-12 -7.062689E-07 4.988192E-13
1E-05 1E-06 -2.083862E-07 2.473150E-13 -7.993180E-06 6.389112E-11
1E-06 1E-08 -3.030543E-02 9.184189E-04 -1.605396E-02 2.577294E-04
1E-06 1E-14 -3.030279E-02 9.182592E-04 -1.605395E-02 2.577294E-04
1E-07 1E-08 3.905667E-07 9.999998E-01 -1.418746E-06 2.012842E-12
1E-07 1E-14 3.907758E-07 9.999998E-01 -1.418262E-06 2.011470E-12
1E-08 1E-10 -1.782062E-06 3.175747E-12 -6.808809E-07 4.636840E-13
1E-12 1E-14 -1.394823E-06 1.945534E-12 -1.716068E-04 2.944889E-08
1E-15 1E-16 -9.141234E-03 8.356216E-05 -5.758049E-03 3.315513E-05

Table 1: Results for Example 1.

slow linear convergence of the algorithm resulting in the early termination. As we expected,
the choices of initial point x0 influence significantly the computation of a solution.

Another situation arises in obtained results when solving Example 2. As this problem
has a pessimistic solution, a suitably chosen initial x0, e.g. x0 = −1, results in computation
of the correct solution for arbitrarily chosen values of RHOBEG and RHOEND. On the other
hand, starting at x0 = 1 gives considerably worse results, see Table 2.

A typical behavior of function ϑ(x) during the iteration process is shown on following
figures. Figure 1 corresponds to Example 1 with x0 = 1, RHOBEG = 10−5, RHOEND = 10−9

and x0 = −1, RHOBEG = 10−1, RHOEND = 10−7, respectively. Figure 2 corresponds to
Example 2 with x0 = 1 and x0 = −1, both with RHOBEG = 10−5, RHOEND = 10−6. To better
reflect the convergence rate we have used function values in logarithmic scale.

x0 = 1 x0 = −1
RHOBEG RHOEND x∗ ϑ(x∗) x∗ ϑ(x∗)
1E-01 1E-04 -4.464945E-04 1.993642E-07 2.095502E-11 7.101800E-14
1E-01 1E-08 1.049396E-08 1.755819E-14 5.344864E-09 6.921173E-14
1E-02 1E-04 3.619327E-14 7.103005E-14 0.000000E+00 7.103006E-14
1E-02 1E-08 9.926963E-09 6.881548E-14 9.630018E-09 6.882312E-14
1E-07 1E-08 1.551564E-01 9.603774E-01 9.425458E-09 6.882954E-14
1E-07 1E-14 1.551564E-01 9.603774E-01 1.034798E-08 1.753320E-14
1E-08 1E-10 -2.237152E-08 7.618187E-14 3.243859E-07 1.226983E-13
1E-10 1E-12 1.000004E-06 1.000508E-12 3.242208E-07 1.226003E-13
1E-15 1E-16 1.034802E-08 1.753320E-14 1.034798E-08 1.753320E-14

Table 2: Results for Example 2.
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Figure 1: Function log(ϑ(x)) for Example 1.
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Figure 3: Function log(ϑ(x)) for Example 3.

Example 3 is rather simple and could be easily solved by conventional MPEC solvers.
The results are very good for arbitrarily chosen values of RHOBEG and RHOEND for a feasible
initial point x0 = (−1,−1)> as well as for an infeasible initial point x0 = (−3,−3)>. In
each computation we have obtained the true solution x∗ = (0, 0)> with function value
of order 10−14. The behavior of a function ϑ(x) in logarithmic scale in each iteration of
BOBYQA can be seen on Figure 3.

To solve a problem in Example 4, we have tested various strategies, see Table 3. We
used small bounds as well as larger bounds for variables (parameters a, b), high as well
as low desired precision for the solution (parameter RHOEND), and different starting points
x0, y0.

The precision of the computed solution strongly depends on the choice of parameter
RHOEND. As was mentioned above, the inner optimization problem is hard to solve, since
no standard constraint qualification is satisfied at any feasible point. The last column of
Table 3 (IF) shows the total number of inner failures caused either by generating direction
vectors that were not descent or by exceeding the total number of iterations.

For this reason, we were unable to solve the inner problem for initial points y0 stated in
Table 3. Nevertheless, for larger values of RHOEND (e.g. 10−6) we managed to successfully
resolve this problem after choosing another starting point y0 for the same fixed outer
iteration x. On the contrary, when we desired higher precision (e.g. RHOEND = 10−10) and
the outer iteration x was very small (near the solution), we did not succeed in solving the
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RHOBEG RHOEND a, b x0 y0 x̃1 x̃2 ϑ(x̃) NFV IF

1E-01 1E-06 -2,2 (1, 1)> (1, 1, 1)> -2,82E-06 -9,42E-07 8,82E-12 193 17
(1, 1)> −(1, 1, 1)> -2,81E-06 -9,41E-07 8,81E-12 193 46
−(1, 1)> (1, 1, 1)> -1,78E-05 -1,76E-05 6,28E-10 117 10
−(1, 1)> −(1, 1, 1)> -1,78E-05 -1,76E-05 6,28E-10 117 23

-10,10 (10, 10)> (1, 1, 1)> -2,37E-06 -2,32E-05 5,43E-10 202 73
(10, 10)> −(1, 1, 1)> -2,37E-06 -2,32E-05 5,43E-10 202 79
−(10, 10)> (1, 1, 1)> -1,80E-05 -9,27E-06 4,10E-10 205 21
−(10, 10)> −(1, 1, 1)> -4,34E-05 -2,66E-05 2,59E-09 234 46

1E-01 1E-10 -2,2 (1, 1)> (1, 1, 1)> -1,05E-08 -2,26E-07 5,14E-14 277 18
(1, 1)> −(1, 1, 1)> -1,03E-09 -5,84E-09 3,50E-17 275 23
−(1, 1)> (1, 1, 1)> -1,03E-08 -2,21E-09 1,11E-16 188 11
−(1, 1)> −(1, 1, 1)> -8,77E-01 -9,12E-01 3,89E+00 81 41

-10,10 (10, 10)> (1, 1, 1)> -2,27E-08 -1,64E-09 5,17E-16 216 11
(10, 10)> −(1, 1, 1)> -6,69E-01 7,19E-01 4,33E+00 265 28
−(10, 10)> (1, 1, 1)> -2,10E-08 -1,69E-08 7,30E-16 270 15
−(10, 10)> −(1, 1, 1)> -1,29E-01 -1,32E+00 1,89E+00 81 24

Table 3: Results for Example 4.

inner problem for any initial point y0. This is the reason why BOBYQA finally returned
the values of ϑ(x̃) far from the true solution.

Generally, when the number of failures was large in comparison with the total number
of outer iterations (NFV), no solution was obtained. On the other hand, if the total number
of failures was small, the fact that the inner problem was not solved successfully in some
iterations did not influence the computation of a correct (δ, ε)-pessimistic solution of the
problem.

Figure 4 depicts function ϑ(x) in logarithmic scale for different values of RHOEND, various
starting points and bounds a1 = a2 = a, b1 = b2 = b:

Line 1: RHOBEG = 10−1, RHOEND = 10−6, a, b = −2, 2, x0 = (1, 1)>, y0 = (1, 1, 1)>;
Line 2: RHOBEG = 10−1, RHOEND = 10−6, a, b = −10, 10, x0 = (10, 10)>, y0 = (1, 1, 1)>;
Line 3: RHOBEG = 10−1, RHOEND = 10−10, a, b = −2, 2, x0 = −(1, 1)>, y0 = (1, 1, 1)>;
Line 4: RHOBEG = 10−1, RHOEND = 10−10, a, b = −10, 10, x0 = (10, 10)>, y0 = (1, 1, 1)>.

4 Conclusion

Our aim was to develop a new numerical procedure by merging two existing codes that
would compute a pessimistic solution of MPEC with non-unique lower-level solution map,
or a relaxation of a pessimistic solution in cases when the pessimistic solution does not exist.
Numerical experiments on small-dimensional programs with complementarity constraints
are very promising despite frequent early termination of the algorithm.

In our future research, we will test the proposed method on medium-dimensional pro-
grams with complementarity constraints and, using different solvers for the inner problem,
also on test problems from other classes of MPECs. Also, by using test problems from a
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Figure 4: Function log(ϑ(x)) for Example 4.

class of programs with continuous value function ϑ, we plan to compare the performance
of our method composed of BOBYQA and UFO with a method composed of standard
bundle method and UFO, the latter combination leveraging from the available first order
information of the minimized value function.
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