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Pod vodárenskou věž́ı 2, 182 07 Prague 8, Czech Republic and

bTechnical University of Liberec, Hálkova 6, 461 17 Liberec, Czech Republic

Technical report No. V 1060

December 2009
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Abstract:

Two families of limited-memory variable metric or quasi-Newton methods for unconstrained
minimization based on quasi-product form of update are derived. As for the first family,
four variants how to utilize the Strang recurrences for the Broyden class of variable metric
updates are investigated; three of them use the same number of stored vectors as the limited-
memory BFGS method. Moreover, one of the variants does not require any additional matrix
by vector multiplication. The second family uses vectors from the preceding iteration to
construct a new class of variable metric updates. Resulting methods again require neither
any additional matrix by vector multiplication nor any additional stored vector.

Global convergence of four of presented methods is established for convex sufficiently
smooth functions. Numerical results indicate that two of the new methods can save com-
putational time substantially for certain problems.
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1 Introduction

In this report we present two new families of limited-memory (LM) variable metric
(VM) line search methods for unconstrained minimization which generalize the well-
known LM BFGS method, see [6], [3].

VM or quasi-Newton line search methods, see [4], start with an initial point x0 ∈ RN

and generate iterations xk+1 ∈ RN by the process xk+1 = xk + sk, sk = tkdk, k ≥ 0,
where dk is the direction vector and tk > 0 is a stepsize.

It is assumed that the problem function f : RN → R is differentiable and stepsize
tk is chosen in such a way that

fk+1 − fk ≤ ε1tkg
T
k dk, gT

k+1dk ≥ ε2g
T
k dk, (1.1)

k ≥ 0, where 0 < ε1 < 1/2, ε1 < ε2 < 1, fk = f(xk), gk = ∇f(xk) and dk = −Hkgk

with a symmetric positive definite matrix Hk; usually H0 = I and Hk+1 is obtained
from Hk by a rank-two VM update to satisfy the quasi-Newton condition Hk+1yk = sk

(see [2], [4]), where yk = gk+1 − gk, k ≥ 0.
For i ≥ 0 we denote (note that sT

i yi > 0 for gi 6= 0 by (1.1))

Bi = H−1
i , ai = yT

i Hiyi, bi = sT
i yi, ci = sT

i Bisi, Vi = I − (1/bi)siy
T
i .

To simplify the notation we frequently omit index k and replace index k+1 by symbol +
and index k − 1 by symbol −.

The LM BFGS method (see [3], [6]) is based on the following quasi-product form
of the BFGS update

H+ = (1/b)ssT + V HV T . (1.2)

The advantage of this form consists in the fact that instead of matrices Hk, only
the last m̃ + 1 couples {si, yi}k

i=k−m̃, where m̃ = min(k,m−1) and m ≥ 1 is a given
parameter, are stored to compute the direction vector dk+1 = −Hk+1gk+1 by the Strang
recurrences, using matrices {Hk+1

i }m̃+1
i=0 , see [6]. Matrices Hk+1 are not computed, only

defined by Hk+1 = Hk+1
m̃+1, k ≥ 0, where

Hk+1
0 = (bk/|yk|2)I, (1.3)

Hk+1
i+1 = (1/bj)sj sT

j + VjH
k+1
i V T

j , j = k − m̃ + i, 0 ≤ i ≤ m̃ . (1.4)

Note that matrix Hk, which satisfies dk = −Hkgk, is different from matrix Hk+1
m̃ used in

the last update (1.4) in general; among others since matrix Hk is created by updating
of matrix Hk

0 = (bk−1/|yk−1|2)I, which is different from matrix Hk+1
0 = (bk/|yk|2)I.

Thus Hk+1
m̃ gk 6=−dk generally; this fact is important for LM methods investigated in

this report.

We focus here on generalization of this approach. In Section 2 we mention some
problems with a such generalization for the other updates from the Broyden class, see
[2], [4], and describe four methods based on the quasi-product form of the VM update
resembling (1.2). In Section 3 we present a new class of variable metric updates which
do not belong to the Broyden class, but which are very useful for constructing of LM
methods. Corresponding algorithms for our methods are given in Section 4 and global
convergence is investigated in Section 5. Numerical results are reported in Section 6.
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2 The Broyden class updates in quasi-product form

Quasi-product form (1.2) of the BFGS update can be easily generalized for the Broyden
class updates with η ≥ 0 (see e.g. [7]):

HBC
+ =

1

b
ssT + Ṽ HṼ T , Ṽ = I −

(√
η

b
s +

1−√η

a
Hy

)
yT . (2.1)

If we proceed analogically as above, we can store the last m̃+1 triplets {si, yi, Hiyi}k
i=k−m̃

here instead of matrix H. Besides H+g+, also vector Hy can be computed by the
slightly modified Strang recurrences which require more both arithmetic and memory
operations. Nevertheless, the number of function evaluations can be reduced by the
choice of η (see Section 6).

In Section 1 we mentioned the difference between matrices Hk and Hk+1
m̃ . Similarly,

VM matrices Hj occurring in the stored old vectors Hjyj contained in Ṽj differ from the
currently used VM matrices corresponding to Hk+1

i in (1.4), j = k− m̃ + i, 0 ≤ i ≤ m̃,
and thus the resulting LM method with η 6= 1 (and due to similar reasons, any new
LM method presented in this section) does not belong to the Broyden class.

Efficiency can be increased if we use another approach. We transform the Broyden
class update with parameter η to the formal BFGS update in transformed variables,
which makes possible to construct LM methods in a similar way as the BFGS up-
date, with the same number of stored vectors. First we give the simple variant of the
transformation. We denote

ω = 1 +
a

b
η , µ = η + (1− η)

b

a
. (2.2)

Theorem 2.1. Let ω 6= 0, µ ≥ 0 and denote α = (η±√µ)/ω. Then
√

µ 6= −η and the
standard Broyden class update of symmetric positive definite matrix H with parameter
η can be expressed in the form

HBC
+ =

η

b
ŝŝT + V̌ HV̌ T , ŝ = s− αH y, V̌ = I ±

√
µ

b
ŝyT . (2.3)

Proof. (i) First we show that
√

µ 6= −η. From (2.2) we have

η2 − µ = η2 − η − (1− η)b/a = (η − 1)(η + b/a) = (η − 1) ωb/a, (2.4)

thus
√

µ 6= −η for η 6= 1 by b > 0 and obviously also for η = 1.
(ii) Consider the Broyden class update with parameters η in the form, see [2], [4]

H BC
+ = H +

ω

b
ssT − η

b

(
H ysT + syT H

)
+

η − 1

a
H yyT H .

Setting s = ŝ + ξH y, ξ ∈ R, we obtain

H BC
+ = H +

ω

b
ŝŝT +

ξω − η

b

(
H yŝT + ŝyT H

)
+

(
η − 1

a
+

ξ2ω − 2ξη

b

)
H yyT H.
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The last term vanishes for ξ2ω − 2ξη + (b/a)(η − 1) = 0, i.e. for ξ = (η ±√µ)/ω = α;
then ξω − η = ±√µ and thus

H BC
+ = H +

ω

b
ŝŝT +

±√µ

b

(
H yŝT + ŝyT H

)
= V̌ HV̌ T +

1

b

(
ω − a

b
µ

)
ŝŝT .

In view of
ω − a

b
µ = 1 +

a

b
η − a

b
η − (1− η) = η (2.5)

we have (2.3). 2

Note that we prefer the minus sign in α and V̌ , since then for η = 1 we get α = 0,
ŝ = s, V̌ = V and (2.3) represents the usual quasi-product form of the BFGS update.
For η ≈ 1 it is also

√
µ ≈ 1, therefore the formula for α above should be rewritten in

another form. In view of (2.4) we obtain for ω 6= 0 (thus also
√

µ 6= −η by Theorem 2.1)

α =
η −√µ

ω
=

η2 − µ

ω(η +
√

µ)
=

(η − 1) ωb/a

ω(η +
√

µ)
=

(η − 1)b/a

η +
√

µ
. (2.6)

For better understanding, condition µ ≥ 0 can be rewritten as η(b − a) ≤ b, i.e.
η ≤ ηSR1 for ηSR1 > 0, or η ≥ ηSR1 for ηSR1 < 0, where ηSR1 = b/(b − a) is the
value of parameter η for the SR1 method, see [4]. For η = ηSR1 we obtain from (2.2)
ω = b/(b − a) 6= 0 and µ = 0, therefore Theorem 2.1 can also be used for the SR1
update.

For the transformation above, the similarity to the BFGS update is relatively free.
Firstly V̌ is not a projection matrix in general, secondly matrix HBC

+ does not satisfy
the quasi-Newton condition in transformed variables. Both these properties can be
obtained if we introduce an additional transformation.

Theorem 2.2. Let matrix H be symmetric positive definite, ω 6= 0, µ > 0, α =
(η − √

µ)/ω, b̂ = b/
√

µ, ŝ = s − αHy, ĉ = ŝT Bŝ. Then ĉ > 0 and denoting

β = −αb̂/ĉ and ŷ = y − βBŝ, we can express the standard Broyden class update of
matrix H with parameter η in the form

HBC
+ =

%̂

b̂
ŝŝT + V̂ HV̂ T, V̂ = I − 1

b̂
ŝŷT , %̂ =

η√
µ
− αβ. (2.7)

Moreover, b̂ = ŝT ŷ > 0 holds and if η ≥ 0 then %̂ > 0.

Proof. (i) First we establish ĉ > 0 and b̂ = ŝT ŷ > 0. From ŝ = s− αHy we get

ĉ = ŝT Bŝ = (s− αHy)T (Bs− αy) = c− 2αb + α2a = [ ac− b2 + (b− αa)2]/a. (2.8)

Since ac ≥ b2 by the Schwarz inequality and

b− αa = b− b
η − 1

η +
√

µ
= b

√
µ + 1

η +
√

µ
6= 0 (2.9)
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in view of (2.6) and
√

µ 6= −η, see Theorem 2.1, we obtain ĉ > 0. Further, we can
write ŝT ŷ = ŝT (y − βBŝ) = (s− αHy)T y − βĉ, which gives by (2.9), (2.6) and (2.2)

ŝT ŷ = b− αa + b̂α = b

√
µ + 1

η +
√

µ
+

b√
µ

(η − 1)b/a

η +
√

µ
=

b(µ +
√

µ + η − µ)√
µ(η +

√
µ)

= b̂ > 0.

(ii) Next we show that â/b̂ + 2β =
√

µ(a − β2ĉ)/b, where â = ŷT Hŷ. From

a = yT Hy = (ŷ + βBŝ)T (Hŷ + βŝ) = â + 2βb̂ + β2ĉ we obtain

â/b̂ + 2β = (â + 2βb̂)/b̂ = (a− β2ĉ)/b̂ =
√

µ (a− β2ĉ)/b. (2.10)

(iii) As in the proof of Theorem 2.1 we get

HBC
+ = H +

ω

b
ŝŝT −

√
µ

b

(
H yŝT + ŝyT H

)
.

Setting y = ŷ + βBŝ, we obtain by b = b̂
√

µ

HBC
+ = H − 1

b̂

(
HŷŝT+ ŝŷTH

)
+

(
ω

b
− 2β

b̂

)
ŝŝT = V̂ HV̂ T +

1

b̂

[
ω√
µ
−2β − â

b̂

]
ŝŝT .

To complete the proof, we rewrite the expression in brackets, using (2.10) and (2.5):

ω√
µ
−

(
2β +

â

b̂

)
=

(
ω√
µ
− a

b

√
µ

)
+ β2 ĉ

b

√
µ =

η√
µ

+
βĉ

b̂
β =

η√
µ
− αβ = %̂.

Since η=
√

µ for α = 0 by αω = η−√µ, we see that %̂ = η/
√

µ−αβ = η/
√

µ+α2b̂/ĉ > 0

holds for η ≥ 0 by b̂ > 0 and ĉ > 0. 2

Obviously, the quasi-Newton condition HBC
+ ŷ = %̂ŝ in transformed variables is

satisfied by (2.7). Note that ĉ can be computed e.g. by (2.8).
All these forms of the Broyden class update of matrix H with η 6= 1 need vector Hy

in every iteration, but it does not mean that we must calculate two matrix by vector
multiplications per iteration. If we have computed vector Hy, then the next direction
vector can be expressed as a linear combination of vectors s, Hy or in the form which
gives descending vector d+ even in case that we approximate some values.

Lemma 2.1. Consider the Broyden class update H+ of symmetric positive definite
matrix H with parameter η. If d = −Hg then the direction vector d+ = −H+g+

satisfies

td+ =
[
η

(
ac

b2
− 1

)
+ 1

] (
s− b

a
Hy

)
+

(
c

b
− t

)
s. (2.11)

Proof. Writing VM update in the form H+ = H + ∆, we get by s = −tHg and the
quasi-Newton condition H+y = s

td+ = −tH+g+ = −tH+y − t(H + ∆)g = (1− t)s + ∆Bs. (2.12)

4



For the Broyden class update we have, see [4],

∆ =
1

b

(
1 +

a

b
η
)

ssT − η

b

(
H ysT + syT H

)
+

η − 1

a
H yyT H .

Therefore

∆Bs =
[
c

b

(
1+

a

b
η
)
− η

]
s−

[
c

b
η − b

a
(η −1)

]
Hy =

c

b
s +

[
η

(
ac

b2
−1

)
+1

](
s− b

a
Hy

)
− s,

which together with (2.12) gives (2.11). 2

Theorem 2.3. Consider the Broyden class update H+ of the symmetric positive defi-
nite matrix H with parameter η and let

d+ = −sT g+

b
s− b + η δ

b + δ
V p, p = HV T g+ = HV T g, δ 6= −b. (2.13)

If η ≥ 0 and δ ≥ 0 then dT
+g+ < 0. If d = −Hg then sTg+ = b− c/t, Hy=(tp + s)b/c,

a=(t pTy + b)b/c and if we set δ= t pTy then vector d+ satisfies d+ = −H+g+.

Proof. (i) Equivalence of the two forms of p in (2.13) follows from V T y = 0.
(ii) Let η ≥ 0 and δ ≥ 0. Then from (2.13) we have

dT
+g+ = −(sT g+)2/b− [(b + η δ)/(b + δ)] gT

+V HV T g+. (2.14)

If sT g+ = 0 then V T g+ = g+ and dT
+g+ < 0 by positive definiteness of H and b > 0,

otherwise dT
+g+ ≤ −(sT g+)2/b < 0.

(iii) Let d = −Hg. In view of (i) we have p = HV T g = Hg − (sT g/b)Hy =
−(1/t)s + [c/(bt)]Hy, i.e. Hy = (t p + s)b/c, which yields a = (t pT y + b)b/c and

s− b

a
Hy = − b

a
V Hy = − b

a

b

c
V (tp + s) = −b2t

ac
V p (2.15)

by V s = 0. Further, we get sTg+ = sT y + sT g = b− sT Bs/t = b− c/t.
For t pTy = δ 6= −b we obtain from (2.13)

−d+ =
sTg+

b
s +

b + η t pTy

b + t pTy
V p =

sT g+

b
s +

[
1 + (η − 1)

(
1− b

b + t pTy

)]
V p . (2.16)

From a = (t pT y + b)b/c 6= 0 we get ac/b2 = (b + t pTy)/b, which gives

−d+ =
sTg+

b
s +

[
1 + (η − 1)

(
1− b2

ac

)]
V p =

[
η

(
ac

b2
− 1

)
+ 1

]
b2

ac
V p +

sT g+

b
s ,

i.e. (2.11) by (2.15) and sT g+ = b− c/t, therefore d+ = −H+g+ by Lemma 2.1. 2

Although assumption d = −Hg is not appropriate to LM method updates of type
(1.4), see Section 1, Theorem 2.3 can be utilized to increase efficiency, see Section 4.
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3 VM updates that use the preceding vectors

A drawback of methods in Section 2, consisting in the fact that for η 6= 1 we need vector
Hy in every iteration, is eliminated in the following family of VM updates based on
utilization of the quasi-Newton condition Hy−= s−. These updates do not belong to
the Broyden class. The resulting LM methods use the same number of stored vectors
and matrix by vector multiplications as the LM BFGS method, see Section 4.

Theorem 3.1. Let matrix H be symmetric positive definite, Hy− = s−, σ ∈ (−1, 1),

s̄ = s−σ
√

b/b− s−, ȳ = y−σ
√

b/b− y−, b̄ = s̄T y 6= 0 and %̄ = (1−σ2) b/b̄. Then update

HNB
+ given by

HNB
+ = (%̄/ b̄) s̄s̄T + V̄ HV̄ T , V̄ = I − (1/ b̄) s̄ȳT , (3.1)

with parameter σ is positive definite and satisfies the quasi-Newton condition HNB
+ y =

s. If σ = 0 then (3.1) is the BFGS update. If σ = sT y−/
√

bb− then b̄ = s̄T ȳ and in
case that this choice satisfies σ ∈ (−1, 1) and b̄ > 0, (3.1) represents the generalized
BFGS update with nonquadratic correction parameter %̄ (see [4]), with vectors s and y
replaced by s̄, ȳ.

Proof. (i) Positive definiteness of HNB
+ follows directly from (3.1): Let q ∈ RN , q 6= 0.

If qT s̄ 6= 0 then qT HNB
+ q ≥ (%̄/ b̄)(qT s̄)2 > 0, otherwise qT HNB

+ q = qTHq > 0.

(ii) Denoting σ̃ = σ
√

b/b−, we get HV̄ T y = H(y− ȳ) = σ̃ Hy−= σ̃ s− and therefore

HNB
+ y = %̄s̄ + σ̃ V̄ s− = [%̄ − σ̃ ȳTs−/ b̄ ]s̄ + σ̃s− . The expression in brackets can be

rewritten:

%̄− σ̃ ȳTs−/b̄ = %̄− σ̃ yTs−/b̄ + σ̃2b−/b̄ = (%̄+σ2b/b̄)− σ̃ yTs−/b̄ = (b−σ̃ yTs−)/b̄ = 1,

which yields HNB
+ y = s̄ + σ̃s− = s.

(iii) If σ = 0 then s̄ = s, ȳ = y, b̄ = b, %̄ = 1, V̄ = V and we have the BFGS update.

(iv) Let σ = sT y−/
√

bb−. Then s̄T y− = sT y− − σ
√

b/b− b− = 0 and thus s̄T ȳ =

s̄T y − σ̃s̄T y− = b̄. If b̄ > 0 then assumption σ ∈ (−1, 1) gives %̄ > 0 and we have the
generalized BFGS update in s̄, ȳ. 2

Our numerical experiments indicate that convergence is significantly deteriorated
when |σ| tends to unit and that all values σ satisfying |σ| ≤ 1/2 with a suitable sign
give very good results. We can deduce from Theorem 3.1 and the following lemma that
a good choice is to use the sign of sT y−.

Lemma 3.1. Let Hy− = s− and let f be quadratic function f(x) = 1
2
(x−x∗)T G(x−x∗),

x∗ ∈ RN , with a symmetric positive definite matrix G. If vectors s, s− are linearly
independent and update HNB

+ of matrix H is given by (3.1) then choice σ = sT y−/
√

bb−
satisfies b̄ > 0, σ ∈ (−1, 1), %̄ = 1 and HNB

+ y− = s−.

Proof. For σ = sT y−/
√

bb− we have b − b σ2 = b − (sT Gs−)2/b− > 0 by the Cauchy
inequality and linear independency of s, s−, therefore |σ| < 1. Further, we get b̄ =

s̄T y = b − σ sT
−y

√
b/b− = b − sTy− · sT

−y/b− = b − (sT Gs−)2/b− = b − b σ2, thus b̄ > 0
and %̄ = 1.

6



In view of s̄T y− = sT y− − σ
√

b/b− b− = 0 and s̄T y− = s̄T Gs− = sT
−ȳ we obtain by

(3.1) HNB
+ y− = V̄ HV̄ T y− = V̄ Hy− = V̄ s− = s− . 2

Note that we need not calculate value sT y−. We use only the sign of sT y−, therefore
in view of the following lemma we can utilize the value sT

−g, computed during the line
search procedure, in spite of the fact that assumption d = −Hg is not appropriate to
LM updates, see Section 1. In Section 4 we describe a choice of the sign of σ in details.

Lemma 3.2. Let matrix H be nonsingular, Hy−=s−. If d = −Hg then sT y−= −tsT
−g.

Proof. We obtain sTy− = sT BHy− = sT Bs− = −t sT
−g. 2

Taking account of Theorem 3.1 and Lemma 3.1, we will choose such parameter
σ ∈ (−1, 1) that corresponding b̄ is positive and not too small in comparison with b
in a sense that b̄ ≡ b(1 − σ sT

−y/
√

bb− ) ≥ b(1 − λ), λ ∈ (0, 1), which is equivalent to
σ sT

−y ≤ λ
√

bb−. The following lemma shows that in case that b̄ < b(1 − λ) for some
σ ∈ (−1, 1), we can replace this σ by a more appropriate value.

Lemma 3.3. Let σ sT
−y > λ

√
bb− for some λ ∈ (0, 1). Then sT

−y 6= 0 and value
σ̂ = λ

√
bb−/|sT

−y| > 0 satisfies ±σ̂ sT
−y ≤ λ

√
bb− (for both signs) and σ̂ < |σ|.

Proof. Relation sT
−y 6= 0 follows directly from σ sT

−y > λ
√

bb− and bb− > 0. Further,
we have −σ̂|sT

−y| ≤ σ̂|sT
−y| = λ

√
bb− and σ̂|sT

−y| = λ
√

bb− < σ sT
−y = |σ| |sT

−y|. 2

4 Application to limited-memory methods

In this section we use theory from the previous sections to implement five variants of
methods based on the quasi-product form of update, similar to (1.2).

We again define matrices Hk+1
0 and Hk+1 = Hk+1

m̃+1, m̃ = min(k, m−1), m ≥ 1,
k ≥ 0, by relations similar to (1.3) and (1.4). Instead of matrices Hk, only m̃ + 1 ≤ m
couples (or triplets for Algorithm 4.1) of vectors are stored here, together with some
auxiliary numbers, to compute the direction vector dk+1 = −Hk+1gk+1, using the Strang
recurrences, see [6] (or another vector in case of Algorithm 4.4), which requires little
modifications here - using transformed nonquadratic correction parameter (see [4]) for
algorithms 4.2 -4.5 or more both arithmetic and memory operations for Algorithm 4.1
due to structure of matrix Ṽ . Furthermore, another vector Hkyk, k ≥ 0, is computed
by the Strang recurrences (except for Algorithm 4.4 and Algorithm 4.5).

We shall now state the first three variants of methods in details. For simplicity,
we omit stopping criteria. Algorithm 4.1 is based on the quasi-product form (2.1) of
the Broyden class update, Algorithm 4.2 on the transformation given in Theorem 2.1,
Algorithm 4.3 on the transformation given in Theorem 2.2. In Algorithm 4.2 and
Algorithm 4.3, we give only two changed steps.

Algorithm 4.1 (Direct approach)

Data: The number m of VM updates per iteration, line search parameters ε1 and ε2,
0 < ε1 < 1

2
, ε1 < ε2 < 1.
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Step 0: Initiation. Choose the starting point x0 ∈ RN , define starting matrix H0 =
H0

0 = I and direction vector d0 = −g0 and initiate iteration counter k to zero.

Step 1: Line search. Compute xk+1 = xk + tkdk, where tk satisfies (1.1), gk+1 =
∇f(xk+1), yk = gk+1 − gk, bk, Hkyk (by the modified Strang recurrences, using

matrices {Hk
i }min(k,m)

i=0 ) and ak.

Step 2: Update preparation. Choose parameter ηk ≥ 0 of the Broyden class update and
define Ṽk by (2.1).

Step 3: Update definition. Set m̃ = min(k, m − 1) and define Hk+1
0 = (bk/|yk|2) I and

Hk+1 ≡ Hk+1
m̃+1 by

Hk+1
i+1 = (1/bj)sj sT

j + ṼjH
k+1
i Ṽ T

j , j = k − m̃ + i, 0 ≤ i ≤ m̃ . (4.1)

Step 4: Direction vector. Set k := k + 1 and compute dk = −Hkgk by the modified
Strang recurrences, using matrices {Hk

i }min(k,m)
i=0 , and go to Step 1.

Algorithm 4.2 (Simple transformation)

Step 2: Transformation. Choose parameter ηk ≥ 0 of the Broyden class update satis-
fying µk ≥ 0. Using Theorem 2.1, compute αk and ŝk and define V̌k (with the
minus sign in αk and V̌k).

Step 3: Update definition. Set m̃ = min(k, m − 1) and define Hk+1
0 = (bk/|yk|2) I and

Hk+1 ≡ Hk+1
m̃+1 by

Hk+1
i+1 = (ηj/bj)ŝj ŝ

T
j + V̌jH

k+1
i V̌ T

j , j = k − m̃ + i, 0 ≤ i ≤ m̃ . (4.2)

Algorithm 4.3 (Full transformation)

Step 2: Transformation. Choose parameter ηk ≥ 0 of the Broyden class update satis-
fying µk > 0. Using Theorem 2.2, compute αk, b̂k, ĉk, βk, ŝk, ŷk and %̂k and
define V̂k.

Step 3: Update definition. Set m̃ = min(k, m − 1) and define Hk+1
0 = (bk/|yk|2) I and

Hk+1 ≡ Hk+1
m̃+1 by

Hk+1
i+1 = (%̂j/b̂j)ŝj ŝ

T
j + V̂jH

k+1
i V̂ T

j , j = k − m̃ + i, 0 ≤ i ≤ m̃ . (4.3)

We saw in Section 2 that one matrix by vector multiplication can be saved if we
express the next direction vector d+ as a linear combination of vectors s, Hy. But since
assumption d = −Hg of Lemma 2.1 is not appropriate to LM updates, see Section 1,
this approach cannot be used for our methods directly. If we calculate vector Hy
by the modified Strang recurrences, then (2.11) gives only a poor approximation of
td+. It is interesting that we get much better results when we instead of Hy calculate
vector Hg+ (or almost any combination of Hy, Hg+) and use them to approximate
Hy = Hg+ −Hg ≈ Hg+ + d.

But it is necessary to realize that a such approximation of vector Hy and value
a = yT Hy obtained in this way need not possess the same properties as true Hy and
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a in VM methods, e.g. a > 0, ac ≥ b2, etc. Similarly, the value dT
+g+ could be positive

occasionally. To have direction vector d+ descending, we can use Theorem 2.3, which
guarantees dT

+g+ < 0 even in case that we approximate value pTy by any positive
number.

We can see from the second expression of −d+ in (2.16) that value t pT y has
influence only on the scaling of η−1. Thus, if the calculated value of pT y is negative or
near to zero, we can replace it by some suitable number. Our numerical experiments
indicate that the choice of the lower bound for t pT y is not critical and that this
approach is not suitable for Algorithm 4.3, but with Algorithm 4.2 gives very good
results, see Section 6.

Efficiency of this family of methods can be increased by introducing a scaling param-
eter for initiation of matrix H+. It can be readily verified that the standard Broyden
class update of matrix H with parameter η can be expressed in the interesting form

H+ = (1/b)ssT + V H̄V T , H̄ = H + [(η − 1)/a]HyyT H,

i.e. as the BFGS update of matrix H̄. Since recommended scaling parameter for the
BFGS update of H̄ is (see [4]) b/yT H̄y = (1/η)[ b/yT Hy], we scale Hk

0 by 1/ηk in Step 3
of the next algorithm for ηk ≤ 1, while for ηk > 1, value (ηk + 1/ηk)/2 appears to be
more suitable than 1/ηk.

To distinguish between approximate and true quantities, we will denote
≈
H y an

approximation of Hy (matrix
≈
H alone is never used and need not be defined),

≈
a an

approximation of a and similarly as in (2.2) and Theorem 2.1

≈
ω= 1+

≈
a

b
η,

≈
µ= η + (1− η)

b
≈
a
,

≈
α=

η−
√

≈
µ

≈
ω

,
≈
s= s− ≈

α
≈
Hy,

≈
V = I−

√
≈
µ

b

≈
syT . (4.4)

Now we state the corresponding procedure in details. Note that matrix H is replaced
here by H̃ to indicate that it is not used to calculation of the direction vector.

Algorithm 4.4 (Simple transformation, approximate direction vector)

Data: The number m of VM updates per iteration, line search parameters ε1 and ε2,
0 < ε1 < 1

2
, ε1 < ε2 < 1.

Step 0: Initiation. Choose the starting point x0 ∈ RN , define starting matrix H̃0 =
H0

0 = I and direction vector d0 = −g0 and initiate iteration counter k to zero.

Step 1: Line search. Compute xk+1 = xk + tkdk, where tk satisfies (1.1), gk+1 =
∇f(xk+1), yk = gk+1 − gk, bk and sT

k gk+1.

Step 2: Approximation. Compute pk = H̃kV
T
k gk+1 by the modified Strang recurrences,

using matrices {Hk
i }min(k,m)

i=0 , and set δk = max(tkp
T
k yk, bk). Define

≈
Hk yk =

−(pk + sk/tk)bk/s
T
k gk and

≈
ak= −(δk + bk)bk/(tks

T
k gk).

Step 3: Transformation. Choose parameter ηk > 0 of the Broyden class update satis-

fying µk ≥ 0. Using (4.4), compute
≈
αk and

≈
sk and define

≈
V k. If ηk ≤ 1 set

γk = 1/ηk, otherwise set γk = (ηk + 1/ηk)/2.
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Step 4: Update definition. Set m̃ = min(k, m−1) and define Hk+1
0 = γk(bk/|yk|2) I and

H̃k+1 ≡ Hk+1
m̃+1 by

Hk+1
i+1 = (ηj/bj)

≈
sj (

≈
sj)

T +
≈
V j Hk+1

i (
≈
V j)

T , j = k − m̃ + i, 0 ≤ i ≤ m̃ . (4.5)

Step 5: Direction vector. Compute dk+1 by the first relation in (2.13) and then set
k :=k+1. Go to Step 1.

Finally we give the procedure based on Section 3. As we mentioned there, we
choose the sign of σ in accordance with the sign of −tsT

−g ≈ sT y−, see Lemma 3.1 and
Lemma 3.2. Since sT y− = sT

−y for f quadratic, see the proof of Lemma 3.1, we prefer
the sign of sT

−y in case that |tsT
−g| is too small in comparison with |sT

−y| (constant 20
in Step 2 was found empirically). Using Lemma 3.3, we bound |σ| to have b̄ not too
small, compared with b.

Algorithm 4.5 (Preceding vectors used)

Data: The number m of VM updates per iteration, upper bound σ ∈ (0, 1) for |σk|,
safeguard parameter λ ∈ (0, 1) and line search parameters ε1 and ε2, 0 < ε1 < 1

2
,

ε1 < ε2 < 1.

Step 0: Initiation. Choose the starting point x0 ∈ RN , define direction vector d0 = −g0

and initiate iteration counter k to zero.

Step 1: Line search. Compute xk+1 = xk + tkdk, where tk satisfies (1.1), gk+1 =
∇f(xk+1), yk = gk+1 − gk and bk.

Step 2: Update preparation. If |sT
−y| > 20t|sT

−g| set νk = sgn(sT
−y), otherwise set νk =

−sgn(sT
−g). Choose parameter σ̌k ∈ [0, σ] and set σk = νk σ̌k. If σk sT

−y >
λ
√

bb− set σk=λνk

√
bb−/|sT

−y|. Using Theorem3.1, compute b̄k, s̄k and %̄k and
define V̄k.

Step 3: Update definition. Set m̃ = min(k, m − 1) and define Hk+1
0 = (bk/|yk|2) I and

Hk+1 ≡ Hk+1
m̃+1 by

Hk+1
i+1 = (%̄j/b̄j)s̄j s̄T

j + V̄jH
k+1
i V̄ T

j , j = k − m̃ + i, 0 ≤ i ≤ m̃ . (4.6)

Step 4: Direction vector. Set k := k + 1 and compute dk = −Hkgk by the modified
Strang recurrences, using matrices {Hk

i }min(k,m)
i=0 , and go to Step 1.

5 Global convergence

In this section we establish global convergence of our methods, excepting Algorithm 4.1,
which is the least efficient, see Section 6. Note that no our new LM method belongs
to the Broyden class, see Section 2 and Section 3, therefore the usual approach must
be modified. The following general lemma plays basic role.

Lemma 5.1. Let matrix A be symmetric positive definite, ϑ > 0, τ 6= 0, u ∈ RN and
v ∈ RN . Then update A+ given by

A+ = τ 2ϑuuT +
(
I − τ uvT

)
A

(
I − τ vuT

)
(5.1)
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is positive definite and satisfies

Tr(A+) ≤ τ 2ϑ|u|2 + Tr(A)
(
1 + |τ |(|u||v|)

)2
, (5.2)

Tr(A−1
+ ) ≤ Tr(A−1) + |v|2/ϑ. (5.3)

Proof. (i) Positive definiteness of A+ follows directly from (5.1): Let q ∈ RN , q 6= 0.
If qT u 6= 0 then qT A+q ≥ τ 2ϑ(qT u)2 > 0, otherwise qTA+q = qTAq > 0.

(ii) Relation (5.1) can be rewritten in the form

A+ = A + τ 2
(
ϑ + vTAv

)
uuT − τ

(
AvuT + uvT A

)
(5.4)

= A + (τ/φ)
[
(φu− Av)(φu− Av)T − AvvT A

]
, (5.5)

where φ = τ(ϑ + vTAv). From (5.4) we get (5.2) by

Tr(A+) ≤ Tr(A) + τ 2(ϑ + Tr(A)|v|2)|u|2 + 2|τ |Tr(A)(|u||v|).
(iii) The form (5.5) of update enables us to use identity

(
I+ (ū−v̄)(ū−v̄)T− v̄v̄T

)−1 = I +
v̄v̄T

1−|v̄|2 −
(ū− θv̄)(ū− θv̄)T

|ū|2 + θ2(1−|v̄|2) , θ =
1−ūTv̄

1−|v̄|2 , (5.6)

for |v̄| 6= 1, |ū|2 + θ2(1−|v̄|2) 6= 0. Setting ū =
√

τφ A−1/2u and v̄ =
√

τ/φA1/2v, we

have 1 − |v̄|2 = 1 − (τ/φ)vTAv = (τ/φ)(φ/τ − vTAv) = (τ/φ)ϑ > 0, therefore we can
see from (5.6) that Tr(A−1

+ )− Tr(A−1) consists of one positive and one negative term,
which leads to Tr(A−1

+ )−Tr(A−1) ≤ |A−1/2v̄|2/(1−|v̄|2) = (τ/φ)|v|2/[(τ/φ)ϑ] = |v|2/ϑ.
2

First we will investigate update (4.2) with the minus sign in α and V̌ , see Theo-
rem 2.1, in the simplified form - we omit index j and write Ḧ and Ḧ+ instead of Hk+1

i

and Hk+1
i+1 :

Ḧ+ = (η/b)ŝŝT +
[
I −

(√
µ/b

)
ŝyT

]
Ḧ

[
I −

(√
µ/b

)
yŝT

]
, ŝ = s− αHy. (5.7)

We will use the following assumptions, where η̄ > 1 and ∆> 1 are given constants
and ηSR1 = b/(b− a) is the value of the Broyden class parameter for the SR1 method,
see [4].

Assumption 5.1. The objective function f : RN → R is bounded from below and
uniformly convex with bounded second-order derivatives (i.e. 0 < G ≤ λ(G(x)) ≤
λ(G(x)) ≤ G < ∞, x ∈ RN , where λ(G(x)) and λ(G(x)) are the lowest and the
greatest eigenvalues of the Hessian matrix G(x)).

Assumption 5.2. Parameter η of the Broyden class update is always chosen in such
a way that η ∈ [ηmin, ηmax] and

|ŝ| ≤ |s|∆ , (5.8)

where ηmin = max(1/η̄, 1/[1 + (η̄ − 1)a/b]) ∈ (0, 1), ηmax = η̄ for b ≤ a, ηmax =
min(η̄, ηSR1) otherwise.
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Note that we can always choose η such that (5.8) is satisfied, e.g. by the choice
η = 1, when we have ŝ = s. Our numerical experiments indicate that condition (5.8)
has only negligible influence in practice - we have tested a great number of updates,
using a collection of relatively difficult problems with N = 1000, and found that value
|ŝ|/|s| was very rarely greater than 10.

Lemma 5.2. Let objective function f satisfy Assumption 5.1. Then G ≤ b/|s|2 ≤
|y|2/b ≤ G.

Proof. Setting GI =
∫ 1
0 G(x + ξs)dξ, q = G

1/2
I s, we obtain y = g+− g = GIs and thus

yT y

sT y
=

qT GIq

qT q
=

∫ 1

0

qT G(x + ξs)q

qT q
dξ ∈ [ G, G ]

by Assumption 5.1. Similarly, b/|s|2 = sT GIs/s
T s =

∫ 1
0 sT G(x + ξs)s/sTs dξ ∈ [ G,G ]

and the rest follows from the Schwarz inequality. 2

Lemma 5.3. Let parameter η satisfy Assumption 5.2. Then µ/η ∈ [ 0, η̄ ].

Proof. Let b > a. From η ∈ [ηmin, ηmax] ⊂ [1/(1 + (η̄ − 1)a/b), b/(b− a)] we obtain

µ

η
= 1− b

a
+

b/a

η
∈

[
1− b

a
+

b− a

a
, 1− b

a
+

b

a

(
1 + (η̄ − 1)

a

b

)]
= [ 0, η̄ ]

by (2.2). If b≤a then obviously µ/η>0 and in the same way as above we get µ/η ≤ η̄ .2

Theorem 5.1. Let objective function f satisfy Assumption 5.1 and parameter η satisfy
Assumption 5.2. Then Algorithm 4.2 generates a sequence {gk} that either satisfies
lim
k→∞

|gk|= 0 or terminates with gk=0 for some k.

Proof. (i) By Assumption 5.2, Lemma 5.2 and Lemma 5.3 we get |ŝ|2/b ≤ ∆2/G ,
µ = (µ/η)η ≤ η̄2, |y|2/b ≤ G. Applying Lemma 5.1 to (5.7) with A = Ḧ, u = ŝ, v = y,
τ =

√
µ/b and ϑ = ηb/µ, we obtain

Tr(Ḧ+) ≤ η|ŝ|2
b

+ Tr(Ḧ)
(
1+

√
µ(|ŝ||y|)/b

)2≤ η̄

G
∆2+ Tr(Ḧ)

(
1+ η̄ ∆

√
G/G

)2
, (5.9)

Tr(Ḧ−1
+ ) ≤ Tr(Ḧ−1) + (|y|2/b)(µ/η) ≤ Tr(Ḧ−1) + η̄G. (5.10)

(ii) Let gk 6= 0 and Bk+1
i = (Hk+1

i )−1, k ≥ 0, 0 ≤ i ≤ m̃ + 1, where m̃ =
min(k,m − 1). Since Bk+1

0 = (|y|2k/bk)I and |y|2k/bk ≤ G by Lemma 5.2, we get by
(5.10)

Tr(Bk+1) = Tr(Bk+1
m̃+1) ≤ (N + mη̄) G

∆
= C1, k ≥ 0. (5.11)

Similarly, denoting C0 =
(
1+ η̄ ∆

√
G/G

)2
, C3 = η̄∆2/G and C4 = N/G, we have

Tr(Hk+1
0 ) = Tr

(
(bk/|y|2k)I

)
≤ C4 by Lemma 5.2, therefore by (5.9) we obtain

Tr(Hk+1) = Tr(Hk+1
m̃+1) ≤ C4C

m
0 + C3(1 + C0 + . . . + Cm−1

0 )
∆
= C2,
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k ≥ 0. From this and (5.11) we get

(sT
k Bksk)

2

|sk|2|Bsk|2 =
sT

k Bksk

|sk|2
sT

k Bksk

|Bsk|2 ≥ 1

C2C1

, (5.12)

k > 0, which implies lim
k→∞

|gk|= 0, see [2]. 2

As regards Algorithm 4.3, we investigate update (4.3) also in the simplified form,
which respects the fact that matrix H contained in ŝ differs from current VM matrix
Ḧ (and similarly for B in ŷ and Ḧ−1)

Ḧ+ =
%̂

b̂
ŝŝT +

(
I− 1

b̂
ŝŷT

)
Ḧ

(
I− 1

b̂
ŷŝT

)
, ŝ = s−αHy, ŷ = y−βBŝ, (5.13)

where α, β, b̂ and %̂ are defined in Theorem 2.2. To establish global convergence, we
use an additional assumption.

Assumption 5.3. Parameter η of the Broyden class update always satisfies

|ŷ| ≤ |y|∆ . (5.14)

Note that condition (5.14) is satisfied e.g. for η = 1, when ŷ = y. Using a collection
of relatively difficult problems with N = 1000, our numerical experiments indicate that
influence of condition (5.14) in practice will be even smaller than for condition (5.8).

Theorem 5.2. Let objective function f satisfy Assumption 5.1 and parameter η satisfy
Assumption 5.3 and Assumption 5.2. Then Algorithm 4.3 generates a sequence {gk}
that either satisfies lim

k→∞
|gk|= 0 or terminates with gk=0 for some k.

Proof. (i) First we find the bound for
√

µ%̂. From (2.7) we get by the Schwarz
inequality

√
µ%̂ = η −√µαβ = η + α2b/ĉ ≤ η + α2ba/(ŝTy)2 = η + (b/a) [αa/(b− αa)]2. (5.15)

Using relations (2.6) and (2.9), we obtain αa/(b − αa) = (η − 1)/(1+
√

µ). Since we
always have |η− 1| < η̄ (for η < 1 by η̄ > 1), we can use Lemma 5.2 to get from (5.15)

√
µ%̂ ≤ η + (b/a) (η − 1)2 ≤ η̄ + (|y|2/a)(b/|y|2)η̄2 ≤ η̄ + η̄ 2Tr(B)/G . (5.16)

(ii) By Lemma 5.2, Assumption 5.2, Lemma 5.3 and Assumption 5.3 we get |ŝ|2/b ≤
∆2/G , µ = (µ/η)η ≤ η̄2 and |ŷ|2/b ≤ ∆2G. Applying Lemma 5.1 to (5.13) with A = Ḧ,
u = ŝ, v = ŷ, τ = 1/b̂ =

√
µ/b and ϑ = %̂b̂ = (

√
µ%̂)b/µ ≥ ηb/µ by (5.15), we obtain by

(5.16) and Lemma 5.3

Tr(Ḧ+) ≤ √
µ%̂|ŝ|2/b + Tr(Ḧ)

(
1 +

√
µ(|ŝ||ŷ|)/b

)2

≤
(
η̄ + η̄2 Tr(B)/G

)
∆2/G + Tr(Ḧ)

(
1 + η̄ ∆2

√
G/G

)2
, (5.17)

Tr(Ḧ−1
+ ) ≤ Tr(Ḧ−1) +

|ŷ|2
%̂b̂

≤ Tr(Ḧ−1) +
µ

η

|ŷ|2
b
≤ Tr(Ḧ−1) + η̄∆2G. (5.18)
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(iii) Let gk 6= 0 and Bk+1
i = (Hk+1

i )−1, k ≥ 0, 0 ≤ i ≤ m̃ + 1, where m̃ =
min(k,m− 1). In view of (5.18), Bk+1

0 = (|y|2k/bk)I and |y|2k/bk ≤ G by Lemma 5.2 we
have

Tr(Bk+1) = Tr(Bk+1
m̃+1) ≤

(
N + mη∆2

)
G

∆
= C1, k ≥ 0. (5.19)

Similarly, denoting C0 =
(
1 + η̄ ∆2

√
G/G

)2
, C3 =

(
η̄ + η̄2 C1/G

)
∆2/G and C4 =

N/G, we have Tr(Hk+1
0 ) = Tr

(
(bk/|y|2k)I

)
≤ C4 by Lemma 5.2. Using (5.17) together

with (5.19), we get lim
k→∞

|gk|= 0 as in the proof of Theorem 5.1. 2

In case of Algorithm 4.4, we will first investigate update (4.5) in the form

Ḧ+ = (η/b)
≈
s (

≈
s)T +

[
I −

(√
≈
µ/b

)≈
syT

]
Ḧ

[
I −

(√
≈
µ/b

)≈
syT

]T
, (5.20)

which is update (5.7) with µ, ŝ replaced by
≈
µ,

≈
s, see (4.4). Besides, the direction

vector d+ is computed by the first relation in (2.13) with p=H̃V Tg+, which we can be
interpreted as

d+ = −H+g+, H+ = (1/b)ssT + [(b + ηδ)/(b + δ)] V H̃V T , (5.21)

i.e. d+ can be obtained from the scaled BFGS update of H̃, see [4] (note that Theo-
rem 2.3 implies that the direction vector for every update of H from the Broyden class
can be obtained from the suitable scaled BFGS update of H, if condition d = −Hg is
satisfied).

Theorem 5.3. Let objective function f satisfy Assumption 5.1 and parameter η satisfy
Assumption 5.2 with

≈
a and

≈
s instead of a and ŝ. Then Algorithm4.4 generates a

sequence {gk} that either satisfies lim
k→∞

|gk|=0 or terminates with gk=0 for some k.

Proof. (i) Obviously
≈
a> 0. Since γ = 1/η for η ≤ 1, γ = (η + 1/η)/2 for η > 1 and

1/η̄ ≤ η ≤ η̄ by Assumption 5.2, we always have 1/η̄ ≤ γ ≤ η̄.

(ii) By Lemma 5.2, Assumption 5.2 and Lemma 5.3 with
≈
a,

≈
µ and

≈
s instead of a,

µ and ŝ we get |≈s |2/b ≤ ∆2/G ,
≈
µ= (

≈
µ/η)η ≤ η̄2, |y|2/b ≤ G. Applying Lemma 5.1 to

(5.20) with A = Ḧ, u =
≈
s, v = y, τ =

√
≈
µ/b and ϑ = ηb/

≈
µ, we obtain

Tr(Ḧ+) ≤ η|≈s |2
b

+ Tr(Ḧ)
(
1+

√
≈
µ(|≈s ||y|)/b

)2≤ η̄

G
∆2+ Tr(Ḧ)

(
1+ η̄ ∆

√
G/G

)2
, (5.22)

Tr(Ḧ−1
+ ) ≤ Tr(Ḧ−1) + (|y|2/b)( ≈µ/η) ≤ Tr(Ḧ−1) + η̄G. (5.23)

(iii) Let gk 6= 0, Bk+1
i = (Hk+1

i )−1 and B̃k+1 = H̃−1
k+1, k ≥ 0, 0 ≤ i ≤ m̃ + 1, where

m̃ = min(k, m−1). Since γkB
k+1
0 = (|y|2k/bk)I and |y|2k/(γkbk) ≤ η̄G by Lemma 5.2 and

(i), we get by (5.23)

Tr(B̃k+1) = Tr(Bk+1
m̃+1) ≤ (N + m) η̄G

∆
= C̃1, k ≥ 0. (5.24)

Similarly, denoting C0 =
(
1+ η̄ ∆

√
G/G

)2
, C3 = η̄∆2/G and C4 = Nη̄/G, we have

Tr(Hk+1
0 ) = Tr

(
γk(bk/|y|2k)I

)
≤ C4 by Lemma 5.2 and (i), therefore by (5.22) we

obtain

Tr(H̃k+1) = Tr(Hk+1
m̃+1) ≤ C4C

m
0 + C3(1 + C0 + . . . + Cm−1

0 )
∆
= C̃2, k ≥ 0. (5.25)
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(iv) Denote γ̃ = (b+ηδ)/(b+ δ). By Assumption 5.2 and η̄ > 1 we have η ∈ [1/η̄, η̄]
and in view of δ ≥ b > 0 we obtain γ̃ ≤ η̄ and 1/γ̃ ≤ η̄. Applying Lemma 5.1 to
(5.21) with A = γ̃H̃, u = s, v = y, τ = 1/b and ϑ = b, we obtain by (5.24), (5.25) and
Lemma 5.2

Tr(B+) ≤ Tr(B̃)/γ̃ + |y|2/b ≤ η̄C̃1 + G
∆
= C1,

Tr(H+) ≤ |s|2
b

+ γ̃Tr(H̃)
(
1+ |s||y|/b

)2≤ 1

G
+ η̄C̃2

(
1+

√
G/G

)2 ∆
= C2,

i.e. Tr(Bk) ≤ C1, Tr(Hk) ≤ C2, k > 0, and we get lim
k→∞

|gk| = 0 as in the proof of

Theorem 5.1. 2

Finally we will investigate update (4.6), again in the simplified form (s̄, ȳ and b̄ are
defined in Theorem 3.1)

Ḧ+ = (%̄/ b̄) s̄s̄T + V̄ ḦV̄ T , V̄ = I − (1/ b̄) s̄ȳT , %̄ = (1− σ2) b/b̄. (5.26)

Theorem 5.4. Let objective function f satisfy Assumption 5.1. Then Algorithm4.5
generates a sequence {gk} that either satisfies lim

k→∞
|gk|=0 or terminates with gk=0 for

some k.

Proof. (i) In Section 3 it was shown that safeguarding technique in Step 2 of Algo-
rithm 4.5 according to Lemma 3.3 guarantees b̄ ≥ b(1−λ), which yields %̄ ≤ 1/(1−λ),
and also |σ| ≤ σ̌, thus we always have |σ| ≤ σ. Using Lemma 5.2, we obtain

|ȳ|2/b =
∣∣∣y − σ

√
b/b− y−

∣∣∣
2
/b ≤ 2

(
|y|2/b + σ2|y−|2/b−

)
≤ 2G(1 + σ2) ,

|s̄|2/b =
∣∣∣s− σ

√
b/b− s−

∣∣∣
2
/b ≤ 2

(
|s|2/b + σ2|s−|2/b−

)
≤ 2(1 + σ2)/G .

(ii) Applying Lemma 5.1 to (5.26) with A = Ḧ, u = s̄, v = ȳ, τ = 1/ b̄ and
ϑ = %̄b̄ = b(1− σ2), we obtain by (i)

Tr(Ḧ+) ≤ %̄|s̄|2/b̄ + Tr(Ḧ)
(
1 + (|s̄||ȳ|)/b̄

)2

≤ 2(1 + σ2)

G(1− λ)2
+ Tr(Ḧ)

(
1 + 2

1 + σ2

1− λ

√
G/G

)2

, (5.27)

Tr(Ḧ−1
+ ) ≤ Tr(Ḧ−1) + |ȳ|2/[b(1− σ2)] ≤ Tr(Ḧ−1) + 2G(1 + σ2)/(1− σ2) .(5.28)

(iii) Let gk 6= 0 and Bk+1
i = (Hk+1

i )−1, k ≥ 0, 0 ≤ i ≤ m̃ + 1, where m̃ =
min(k,m − 1). In view of (5.28), Bk+1

0 = (|y|2k/bk)I and |y|2k/bk ≤ G by Lemma 5.2,
this yields

Tr(Bk+1) = Tr(Bk+1
m̃+1) ≤

(
N + 2m(1 + σ2)/(1− σ2)

)
G

∆
= C1, k ≥ 0. (5.29)

Similarly, denoting

C0 =
(
1 + 2

1 + σ2

1− λ

√
G/G

)2

, C3 =
2(1 + σ2)

G(1− λ)2
, C4 = N/G,

we have Tr(Hk+1
0 ) = Tr

(
(bk/|y|2k)I

)
≤ C4 by Lemma 5.2. Using (5.27) together with

(5.29), we get lim
k→∞

|gk|= 0 as in the proof of Theorem 5.1. 2
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6 Computational experiments

In this section we demonstrate the influence of parameters η and σ on the number
of evaluations and computational time, using the collection of sparse and partially
separable test problems from [5] (Test 14, 22 problems each) with N = 1000, m = 10,
λ = 1/2 and the final precision ‖g(x?)‖∞ ≤ 10−6.

Results for all algorithms are given in Table 1, where ’NFE’ is the total numbers of
function and also gradient evaluations over all problems, ’Time’ the total computational
time in seconds and φ is the arithmetic mean of all values for each column.

Alg. 4.1 Alg. 4.2 Alg. 4.3 Alg. 4.4 Alg. 4.5
η NFE Time NFE Time NFE Time NFE Time NFE Time 30σ

0.4 24922 15.39 25571 12.20 26648 12.34 22400 8.72 22522 8.36 0
0.5 24331 14.76 24997 11.73 24951 11.56 22442 8.64 22185 8.25 1
0.6 22024 13.37 23538 11.08 23224 10.84 22654 8.78 21121 7.80 2
0.7 22688 13.73 23010 10.75 23378 10.75 21372 8.37 20751 7.72 3
0.8 22720 13.69 22850 10.61 23057 10.56 22454 8.69 20940 7.82 4
0.9 22590 13.55 22597 10.30 23705 10.93 20806 8.07 20929 7.77 5
1.0 22857 13.46 23034 10.49 22535 10.17 22219 8.64 20144 7.55 6
1.1 21608 12.84 20893 9.54 22530 10.14 21526 8.36 20579 7.62 7
1.2 22301 13.22 21611 9.72 21043 9.36 22131 8.60 22064 8.08 8
1.3 21462 12.55 21183 9.64 22528 10.07 20781 8.02 19854 7.42 9
1.4 22798 13.20 22222 9.99 20741 9.08 21423 8.00 19865 7.36 10
1.5 23139 13.43 20299 9.14 21620 9.39 22393 8.14 20068 7.49 11
1.6 22448 12.80 21074 9.40 21301 9.36 21778 7.94 21359 7.81 12
1.7 21927 12.55 22399 10.00 22757 10.03 22608 8.24 21250 7.82 13
1.8 22022 12.42 22427 9.85 21130 9.38 22073 8.03 20779 7.71 14
1.9 23155 13.07 22590 10.11 22150 9.66 21986 7.99 19754 7.28 15
2.0 21936 12.38 22766 10.07 22129 9.72 22278 8.08 20207 7.39 16
φ 22643 13.32 22533 10.27 22672 10.20 21960 8.31 20845 7.72 φ

L-BFGS: NFE= 22092 Time= 8.91

Table 1. Influence of parameters η, σ for Test 14.

For a better comparison of two the most efficient algorithms with the L-BFGS
method, we performed additional tests with problems from the widely used CUTE
collection [1] with various dimensions N , m = 10, λ = 1/2 and the final precision
‖g(x?)‖∞ ≤ 10−6. The percentage increase of NFV for various values of parameters
η or σ against NFV for the L-BFGS (negative values indicate that our results are
better than for the L-BFGS) is given in Table 2 for Algorithm 4.4 and in Table 3 for
Algorithm 4.5, where NFV is the number of function and also gradient evaluations. In
the last line, the total values over all problems and their percentage increase are given.
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NFV Percentage increase of NFV for η =
Problem N l-bfgs 0.5 0.6 0.7 0.8 1.2 1.3 1.4 1.5 1.6 1.7

BDQRTIC 5000 248 17 6 5 -15 -4 -34 -52 -18 -31 -39
BROYDN7D 2000 3029 -1 -2 -1 -1 1 2 3 6 8 9
CHAINWOO 1000 515 -15 -12 -13 -12 -17 -14 -17 -20 -14 -10
CURLY10 1000 5628 2 7 -1 6 3 -2 14 14 9 14
CURLY20 1000 6852 -4 -7 -4 -6 -8 -4 -6 -3 -7 -1
CURLY30 1000 7222 -4 -5 -4 -2 -3 -2 -3 -5 -5 -2
DIXMAANE 3000 249 -23 -12 -8 1 -6 -4 -3 -6 -6 -7
DIXMAANF 3000 189 79 4 -3 15 3 14 12 3 39 63
DIXMAANG 3000 188 100 2 -9 2 -1 1 0 -3 80 98
DIXMAANH 3000 185 -10 -7 7 -1 8 -4 -1 -8 -8 41
DIXMAANI 3000 881 -37 -38 -44 -62 -19 -29 -36 -42 -43 -34
DIXMAANJ 3000 317 -11 -56 0 -7 -7 9 18 16 1 -57
DIXMAANK 3000 270 16 20 0 10 5 0 -8 3 24 0
DIXMAANL 3000 263 -5 10 13 15 -12 -9 -5 -15 -5 -4
FLETCBV2 1000 944 31 -4 -2 -2 7 0 -2 28 34 -2
FMINSRF2 5625 305 3 -2 -3 1 3 -2 4 5 4 3
FMINSURF 5625 460 -3 11 -4 -3 0 -19 7 3 3 6
GENHUMPS 1000 2223 13 25 19 -7 17 6 2 28 15 7
GENROSE 1000 2393 1 0 0 -1 3 6 8 10 13 15
MOREBV 5000 116 6 6 9 11 2 1 8 1 6 -4
MSQRTALS 529 3622 -7 -8 -8 -8 -17 -6 -7 -11 -22 -10
NCB20 1010 497 2 4 -12 15 16 -6 6 2 -3 11
NCB20B 1000 1792 -9 -5 -11 -22 -8 -9 -4 -11 -12 -9
NONCVXU2 1000 3902 -10 -6 1 4 -14 -15 5 -6 4 -19
NONDQUAR 5000 4244 17 18 7 12 -7 -1 1 -9 2 2
POWER 500 110 -9 -11 -10 -9 -9 -3 -2 -5 -9 -6
QUARTC 5000 236 7 0 0 0 0 0 0 0 2 4
SINQUAD 5000 339 16 5 3 3 -8 0 11 6 14 6
SPARSINE 1000 10680 -19 -21 -13 -12 -11 -24 -18 -17 -11 -17
SPMSRTLS 4999 224 -5 -3 -2 5 0 2 3 2 0 -3
VAREIGVL 500 168 -10 -11 -9 -4 1 -4 -11 -10 -18 -13
All problems 58291 -3.6 -4.4 -4.0 -3.8 -5.3 -7.3 -3.4 -3.6 -2.3 -3.1

Table 2: CUTE - Percentage increase of NFV against L-BFGS for Algorithm 4.4.
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NFV Percentage increase of NFV for σ =
Problem N l-bfgs .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

BDQRTIC 5000 248 -29 -10 -19 -43 -33 -16 -8 -18 5 -26
BROYDN7D 2000 3029 -1 -2 -3 -3 -3 -3 -2 0 2 6
CHAINWOO 1000 515 -8 -13 -19 -14 -18 -13 -20 -17 -15 -14
CURLY10 1000 5628 4 8 8 5 -5 2 -1 3 -7 -3
CURLY20 1000 6852 -6 -7 -6 -9 -9 -7 -10 -9 -7 -10
CURLY30 1000 7222 -3 -5 -5 -7 -10 -10 -5 -9 -13 -7
DIXMAANE 3000 249 -4 -3 -4 6 -4 -4 -10 2 -11 -10
DIXMAANF 3000 189 1 2 14 14 16 14 11 -2 -4 13
DIXMAANG 3000 188 11 17 9 5 10 6 13 6 6 -7
DIXMAANH 3000 185 7 12 15 10 10 7 -6 5 -4 5
DIXMAANI 3000 881 -9 -12 -17 -14 -27 -33 -40 -64 -77 -35
DIXMAANJ 3000 317 -3 -3 -4 -5 0 -9 -6 -16 17 20
DIXMAANK 3000 270 9 -5 -11 -7 7 4 16 7 37 28
DIXMAANL 3000 263 0 -8 -10 -3 -10 -13 -9 8 8 14
FLETCBV2 1000 944 28 1 -6 26 35 35 23 54 37 -4
FMINSRF2 5625 305 5 1 2 2 2 1 2 8 6 3
FMINSURF 5625 460 0 -2 4 13 -6 -18 -4 3 -3 -13
GENHUMPS 1000 2223 8 26 14 17 41 19 27 47 52 48
GENROSE 1000 2393 -2 -2 0 0 2 3 5 8 10 13
MOREBV 5000 116 3 3 -10 -7 -1 -3 -5 -2 0 5
MSQRTALS 529 3622 -22 -9 -22 3 -7 -10 -4 -12 -27 -12
NCB20 1010 497 3 33 28 7 48 10 -5 25 4 3
NCB20B 1000 1792 -5 -23 -5 -5 -8 -9 -9 -12 -9 -6
NONCVXU2 1000 3902 -11 -17 -4 4 -2 -13 -9 0 -16 -39
NONDQUAR 5000 4244 -17 3 1 3 -1 -11 3 13 -16 -10
POWER 500 110 -5 -7 -7 -5 -12 -13 -14 -13 -11 -13
QUARTC 5000 236 0 0 0 0 0 0 0 0 0 0
SINQUAD 5000 339 5 3 3 -3 10 0 1 11 -3 7
SPARSINE 1000 10680 -10 -8 -8 -4 -12 -9 -11 -15 -26 -19
SPMSRTLS 4999 224 1 0 -1 0 -5 -2 1 -2 -2 -3
VAREIGVL 500 168 -3 -4 -3 -10 -10 -15 -5 -8 -9 -11
All problems 58291 -5.6 -3.5 -3.8 -1.2 -4.0 -5.7 -4.2 -2.6 -10.2 -8.1

Table 2: CUTE - Percentage increase of NFV against L-BFGS for Algorithm 4.5.

Our limited numerical experiments indicate that

• the efficiency of Algorithm 4.2 and Algorithm 4.3 is practically the same, Algo-
rithm 4.1 is the least efficient,

• it is possible to generalize limited-memory BFGS method with the same number
both of matrix by vector multiplications and stored vectors,

• the suitable choice of parameter η (or σ) can improve efficiency of limited-memory
methods, substantially for some problems.
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