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1 Introduction

Traditionally, matchmaking algorithms [15, 11, 2] used in service discovery components consider
only one service as a suitable candidate satisfying a service request while combinations or com-
positions of services are not considered. This is motivated by requirements service discovery
components need to fulfill: service registries are expected to store large numbers of services and
at the same time the best matching set of services for a given query has to be retrieved in a
timely manner (ideally, in order of milliseconds). Such a combination of requirements makes it
difficult to employ full-fledged composition algorithms [19, 1, 14] during the discovery process
simply because their time complexity is unacceptable for the discovery purposes (composition
algorithms usually assume a much smaller number of services and operate in order of seconds or
minutes). In this report, we focus on addressing this problem by enriching discovery algorithms
with basic composition capabilities in a controlled manner that guarantees (1) the same flexibil-
ity as the one of classical matchmaking of individual services and (2) a modest time complexity
increase compared to individual services matchmaking.

Specifically, we modify the matchmaking conditions for individual services as introduced by
Paolucci et. al. in [15] to allow a combination of several services as an acceptable match for
a given service request. This has to be done carefully though, since allowing combinations of
services can lead to efficiency problems, as identified in [3] where Benatallah et. al. show that
finding an optimal combination of services covering the request can be NP-hard under certain
conditions. We explore a similar direction by allowing the combination of services satisfying the
request to be returned as a relevant match — we call it a combined match. While a combined
match addresses the situation when a single service matching a given request does not exist, it
also introduces new problems. Since one combined match can consist of several services that
together are able to satisfy the service request, various collisions between those matching services
have to be taken into account. For example, one single effect (e.g., a booked plane ticket) might
be delivered by more than one service in the combined match leading to an undesirable situation.
Similarly, undesired side-effects can be produced by the combined match — e.g., if a flight
reservation is provided only in a package with a hotel reservation, the hotel reservation might be
an unwanted side-effect for a requester who needs a flight ticket only. Finally, two services can
produce contradictory effects (such as making and canceling a reservation). Depending on the
requester’s needs each of these situations might cause a problem and thus making a combined
match useless. Therefore, the discovery component has to be able to avoid collision in matches.

Retrieving all matching service combinations can be a problem because of the possibly big
size of such a set. To deal with this problem we devise an algorithm for retrieval of the best top k
matching combinations with respect to an aggregate ranking function that computes the overall
matching degree of service combinations. We show, that if the overall ranking function is mono-
tonic and monotonic in all its parameters, the retrieval of top k service combinations without
undesired and contradictory effects can be performed with the time complexity O((m log m) ·n)
worse than the time complexity of the individual service retrieval for a request with n outputs
or effects, with m being the maximum number of advertisements able to produce some out-
put or effect in the request. We also show that retrieving service combinations without effect
duplications is NP-hard.

The contributions of this report are the following. We give a formal characterizations of the
combined match and of the possible collisions that need to be avoided building mainly on OWL-
S concepts of inputs, outputs, preconditions and effects. We discuss the problem of aggregate
ranking function for combinations of services. Further, we present an efficient matching algo-
rithm to support a collision-free combined match and we show that under many circumstances
the combined match can be computed in about the same time as the basic individual service
match (with an exception of the case where effect duplications need to be avoided). We do
not consider computation of full-fledged service compositions (employing chaining of services),
and we address the service matchmaking on the types level only while not considering instance
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Figure 2.1: Process mediation problem demonstrating the need for a combined match

ConceptsUserID, PasswordCity, FromCity, ToCity, DateTime, USDateTime, USDepTime, USRetTime, ISODateTime,

ISODepTime, ISORetTime, FlightsList, FltNr, ItineraryNr, AvailStatus, LoggedIn, AirportCode, AirportFromCode,

AirportToCode

ISA

rela-

tions

USDateTime v DateTime, USDepTime v USDateTime, USRetTime v USDateTime, ISODateTime v DateTime,

ISODepTime v ISODateTime, ISORetTime v ISODateTime, FromCity v City, ToCity v City,

AirportFromCode v AirportCode, AirportToCode v AirportCode

Figure 2.2: Fragment of the flights domain ontology with concepts and ISA-relations displayed
only

(data) level matchmaking.
The rest of the report is structured as follows. In Section 2, we motivate the problem

by an example from the process mediation domain. Section 3 introduces the basic discovery
terminology which is followed by definitions of matching conditions of individual services in
Section 4. In Section 5, we introduce formally a combined match, effects collisions and we
discuss the problem of ranking combined matches. In Sections 6 and 7 we devise the naive and
the top-k algorithms for retrieval of combined matches. Section 8 studies the time complexity
of the combined matching problem and in Section 9 we introduce optimization techniques of the
top-k algorithm. Finally, in Sections 10 and 11 we discuss the related work, conclusions and
future directions.

2 Motivating Example

We demonstrate the matching sets of services on the problem of process mediation where it
arises very naturally. In the process mediation, the goal is to achieve interoperability of two or
more possibly incompatible processes. Figure 2.1 presents an example of the mediation problem
between a hypothetical requester (Figure 2.1a) and a provider (Figure 2.1b) from the flights
booking domain.

The requester’s process starts with the Login atomic process that has two inputs, ?userId4

which is an instance of the UserID class and ?password of Password type, one output ?logResult
of boolean type and a conditional effect expressing that the predicate LoggedIn(?userID) will
become true if the value of ?logResult equals to true. Similarly the process continues by execut-
ing other atomic processes. Input and output types used in processes refer to a simple ontology
showed in Figure 2.2.

The interoperability of both process models is hindered by incompatibilities or missing pieces
of information. Dashed arrows between parts (a) and (b) of Figure 2.1 represent symbolically

4In our notation, variable names are distinguished by a question mark.
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possible mappings between requester’s and provider’s processes. Often the identified data in-
compatibilities or missing pieces of information require external services to be used in order to
construct a meaningful mapping between processes.

Consider, for example, the requester’s SearchFlight atomic process and the provider’s Search-
FlightOne process. The requester has the following inputs

ISearchF light = { (?from,FromCity), (?to,ToCity), (?depTime, USDepTime), (?ret-
Time,USRetTime) },

while the provider expects the inputs

ISearchF lightOne = { (?from, AirportFromCode), (?to, AirportToCode), (?depTime,
ISODepTime), (?retTime, ISORetTime) }.

The mapping cannot be constructed directly, since the input types of processes do not match
according to the ontology defined in Figure 2.2. For example, in the ontology, there is no
relationship between the FromCity and AirportFromCode types, similarly there is no relationship
between the ToCity and AirportToCode types; also no match can be found between USDepTime
and ISODepTime, etc.

Differences between ISearchF light and ISearchF lightOne define an information gap that can
be used to construct a query for the discovery service. An ideal service which would bridge
the identified gap has to consume ISearchF light as its inputs and produce ISearchF lightOne as its
outputs. Clearly, it is extremely unlikely that there would ever exist one single service satisfying
such a requirement. However, if combinations of services are allowed to be matched, the chances
of a successful match are much higher. In our particular case, a combination of external services
AirportCityToCode and USTimeToISO can be used as a match bridging the gap as shown in
Figure 2.1. After the discovery service returns such a set of services as a valid match, the
process mediation component can use a composition algorithm to construct the sought mapping
by employing the newly discovered services.

An important fact to notice is that even in our relatively simple example the need for some
kind of match allowing service combinations arises. Such a need is universal for almost any
composition scenario which has to be realized in open changing environments.

3 Service Advertisements and Requests

When publishing service capabilities to the discovery service, a service advertisement is used,
while a service request is used when searching for a service providing required capabilities. In
OWL-S a Service Profile is used to describe a service for discovery purposes — the Service Profile
is used as an advertisement when publishing the service capabilities and as a service request
when searching for a service. Most importantly, the Service Profile describes the service from
the functional perspective by means of its inputs, outputs, precondition and effects (IOPEs).

For purposes of this report we consider only inputs, outputs, preconditions and effects in
service advertisements and requests.

Definition 1 (Service Advertisement): A service advertisement A is a tuple A = 〈I, O, P, E〉,
where I and O are sets of typed input and output parameters of the advertised service, i.e.,
I = {(?v, T ) | ?v ∈ V ar, T ∈ Types}, O = {(?v, T ) | ?v ∈ V ar, T ∈ Types}, and P and E are
sets of preconditions and effects respectively. V ar is a set of input and output names (we assume
each input and output name to be unique) and Types is a set of types (either primitive XSD
types or DL concepts defined in some ontology).

We use V arI = {?v | (?v, .) ∈ I} and V arO = {?v | (?v, .) ∈ O} to denote the set of input
names and output names respectively. V arFree is used to denote free variables which are not
used in V arI or V arO, i.e. V arFree ∩ (V arI ∪ V arO) = ∅.
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Similarly, we define a basic service request.

Definition 2 (Basic Service Request): A basic service request R is a tuple R = 〈I, O,E〉, where
I and O are sets of typed input and output parameters of the requested service, E is a set of
required effects. The set of inputs I contains parameters the requester has readily available and
wants them to be used by the requested service in order to produce requested outputs O and effects
E.

We represent preconditions and effects as expressions in the form of conjunction of description
logic atoms enriched with XSD datatypes. An expression is a conjunction of atoms. An atom
can be one of the following expressions: C(s) (concept atom), Po(s, t) (object property atom),
Pd(s, d) (datatype property atom), where C is an OWL class name, Po is an OWL object
property, Pd is an OWL datatype property, s and t are variables or OWL individuals and d is
a variable or an OWL data value. In preconditions variables from V arI ∪ V arFree can be used,
while in effects variables from V arI ∪ V arO ∪ V arFree are allowed.

To better support matchmaking in contexts such as composition and process mediation, we
introduce a notion of the requester’s state in the service request. The purpose of the requester’s
state is to provide more information to the matchmaker about the state of the world as seen by
the requester. Specifically, the requester’s state might contain set of valid facts about the world
in the time when the request is made, and the set of additional available data which might be
possibly used by the requested service. Thus, the requester’s state is a tuple S = 〈F,D〉, where
F is a set of valid facts as seen by the requester, and D is a set of additional typed data that the
requester has available. Notice, that the requester’s state does not need to describe the state of
the requester entirely, on the contrary, typically it can contain only a fragment of the the entire
state which the requester finds relevant for the discovery.

We define a state enhanced service request by adding the requester’s state to the basic service
request.

Definition 3 (State Enhanced Services Request): A state enhanced service request is a tuple
R = 〈I, O,E, S〉, where where I and O are sets of typed input and output parameters of the
requested service, E is a set of required effects, and S is the requester’s state, S = 〈F,D〉, where
F is a set of valid facts as seen by the requester, and D is a set of additional typed data that the
requester has available..

Example 1: Considering the situation of the requester in Figure 2.1 for the SearchFlight atomic
process, the requester’s state could look like as follows:
SSearchFlight = 〈

F = {LoggedIn(?userId)},
D = {(?userId, UserID), (?password, Password),

(?logResult, boolean), (?sessionID, SessionID)}〉
The requester’s state SSearchF light captures that, as a result of some previous actions, the

fact LoggedIn(?userId) is valid, and that some more data, such as (?sessionID, SessionID),
is available to the requester. Such an information can be employed by the matchmaker to make
a more informed match.

4 Individual Services Matching

The matchmaking problem for a single service can be formulated as follows: given the service
request R and a set of published service advertisements Advertisements, find the set Match,
Match ⊆ Advertisements such that each A ∈ Match represents a service capable of satisfying
the request R. The matching algorithm should be flexible, efficient and should minimize false
positives and false negatives. In [15] the ability of service to satisfy a request is defined by means
of relations between input and output types of advertisements and requests. A service can satisfy

4



a request, if it produces at least all requested outputs and does not need any other inputs than
those provided by the requester. The following definition gives a precise characterization of
match for a basic service request and the OWL-S service advertisement.

Definition 4 (IOs Matching Conditions for Individual Services): For a basic request R =
〈IR, OR, ER〉 and a service advertisement A = 〈IA, OA, PA, EA〉 the following conditions need
to hold for A to satisfy R:

1. ∀(?or, Tor) ∈ OR ∃(?oa, Toa) ∈ OA such that Tor ≈ Toa

2. ∀(?ia, Tia) ∈ IA ∃(?ir, Tir) ∈ IR such that Tia ≈ Tir

The matching conditions are defined by means of a relation ≈ which defines a match between
too types.

Definition 5: The types Tor ∈ Types and Toa ∈ Types are in a relation ≈ (written as Tor ≈ Toa)
if one of the following conditions hold:

1. Tor = Toa or Tor subclassOf Toa ( exact match)
2. Toa subsumes Tor ( plug in match)
3. Tor subsumes Toa ( subsume match)

There is no match (or match failed) if none of the conditions holds for two types.

The three possible conditions of the ≈ relation can be seen as degrees of match with the
decreasing quality. An exact match is the most preferable, followed by the plug in match and
subsume match. In [15] the characterization of match from Definition 4 is used for computing the
overall degree of match between the request R and an advertisement A and also for computing
the set Match ordered according to the degree of match.

The original work in [15] does not take effects and preconditions into account. Adding effects
is actually quite easy. Naturally, in terms of effects, a service is able to satisfy a given request
if it can produce such a set of effects that implies at least all requested effects.

Speaking of preconditions, the advertised service should be matched against the request,
only when the requester is able to satisfy all preconditions of this services. Otherwise, it would
not make a sense to match a service since the requester would not be able to execute it because
of failed preconditions. The problem with preconditions evaluation in the matchmaker is that in
order to evaluate the preconditions, the provider has to provide the matchmaker with its state
or at least part of it (the requester’s state). This might be a problematic issue in many scenarios
which maybe explains why service preconditions are very often completely ignored during the
discovery.

The following definition summarizes our short discussion and gives the matching conditions
for an individual service including preconditions and effects.

Definition 6 (IOPEs Matching Conditions for Individual Services): For a state enhanced re-
quest R = 〈IR, OR, ER, SR〉, where SR = 〈FR, DR〉, and a service advertisement A = 〈IA, OA, PA, EA〉
the following conditions need to hold for A to satisfy R:

1. ∀(?or, Tor) ∈ OR ∃(?oa, Toa) ∈ OA such that Tor ≈ Toa

2. ∀er ∈ ER ∃ea ∈ EA such that SR |= ea ⇒ er

3. ∀(?ia, Tia) ∈ IA ∃(?ir, Tir) ∈ (IR ∪DR) such that Tia ≈ Tir

4. ∀pa ∈ PA SR |= pa

Preconditions and effects evaluation in the IOPEs matching conditions relies on knowing the
requester’s state SR. In particular, preconditions cannot be properly evaluated without knowing
SR (only tautologies would satisfy the condition 4 without knowing SR, which is not very useful).
For effects, the situation is quite different. In case of not knowing SR, we can assume SR to be
empty in which case the condition 2 from Definition 6 transforms into the form

2’. ∀er ∈ ER ∃ea ∈ EA such that |= ea ⇒ er
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This form allows us to derive useful conclusions even without knowing the requester’s state as
we show in Section 6. For example, consider the Login atomic service and the LoginStep2
in Figure 2.1. Login requires the LoggedIn(?userID) effect and the LoginStep2 produces
LoggedIn(?user). After variables unification condition 2’ holds for these two services.

Knowing the SR in the matchmaker also allows a slight modification of the condition 3
for inputs compared to the Definition 4 (condition 2). Specifically, the inputs required by the
advertised service can either be taken from inputs specified in the IR of the request (which is a
preferable solutions) or to be taken from the set of additional data DR.

In the following text we will often refer to the match defined in Definition 6 as to the
individual service match.

5 Combined Match

In this section we formally define a combined match, possible effects collisions and a method for
ranking combined matches. It is straightforward to extend matching conditions for an individual
service so that sets of services can be considered as a valid match. The idea is to extend
matching conditions for a single service so that sets of services can be considered as a valid
match. Basically, a set of advertisements satisfies a service request, if together all advertisements
from the set are able to produce outputs and effects required by the requester, while using only
inputs specified in the request and while the preconditions of all services hold. By allowing sets
of advertisements, new issues need to be considered.

First of all, efficiency is a big concern. Discovery components generally, should avoid heavy
computations so that a timely response to the requester can be guaranteed. To solve the problem
of finding the right balance between the response time and the quality of results, we define the
combined match (a less computationally expensive match).

Next, various collisions between effects produced by services contained in the match can
make the match unacceptable. Finally, the ranking of sets of services has to be defined so that
it is possible to retrieve only the best combined matches. In the following definitions, we define
a combined match, while we consider possible collisions and service ranking in the following
section.

We assume that the requester’s state is available to the matchmaker. Such an assumption
might be either unrealistic or undesirable in many scenarios. We consider also situation when the
requester’s state is not available, however, the definitions with the requester’s state assumption
and preconditions evaluation included are more general and can be easily modified for situations
when only a basic service request is considered.

To simplify the notation a combined match definition we first define the notion of an effect
implied by an advertisement.

Definition 7 (Implied Effect): Let SR be a requester’s state, e an effect and A = 〈IA, OA, PA, EA〉
an advertisement. We say that e is implied by an advertisement A and write SR |= A ⇒ e if
∃ea ∈ EA such that SR |= ea ⇒ e.

In essence, the combined match is just a set of service advertisements which are able to
produce required effects and outputs. In the combined match no service chaining is allowed.
Thus, every advertisement in the combined match can use only inputs provided by the service
requester. The same holds for preconditions.

Definition 8 (Combined Match): Let R = 〈IR, OR, ER, SR〉 be a state enhanced request, SR =
〈FR, DR〉. We call a set of service advertisements M = {A | A = 〈IA, OA, PA, EA〉} a combined
match satisfying R if the following conditions hold:

1. ∀(?or, Tor) ∈ OR ∃A ∈ M ∃(?oa, Toa) ∈ OA such that Tor ≈ Toa

2. ∀er ∈ ER ∃A ∈ M such that SR |= A⇒ er
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Figure 5.1: Combined Match

3. ∀A ∈ M ∀(?ia, Tia) ∈ IA ∃(?ir, Tir) ∈ (IR ∪DR) such that Tia ≈ Tir

4. ∀A ∈ M ∀pa ∈ PA SR |= pa

All conditions 1–4 are basically just reformulations of conditions from Definition 6 in the
context of the combined match.

Figure 5.1 depicts a symbolic example of service advertisements forming the combined match.
Circles labeled A, B and C in the bottom part stand for inputs specified in the request R. Circles
labeled X and Y in the top part stand for requested outputs and effects. The combined match
in Figure 5.1 consists of two advertisements, A0 consuming A, B and producing X, and A1

consuming C and producing Y.
Let us mention relations between the combined match and the individual service match.

The individual service match can be seen as a special case of the combined match with one
advertisement only. This close relations allow us to reuse the theory of the individual service
match to compute the combined match.

Finally, we introduce the notion of an incomplete combined match.

Definition 9 (Inclomplete Combined Match): Let R = 〈IR, OR, ER, SR〉 be a state enhanced re-
quest with SR = 〈FR, DR〉. We call a set of service advertisements M = {A | A = 〈IA, OA, PA, EA〉}
an incomplete combined match if all conditions of Definition 8 hold except for conditions 3 and
4, i.e., some inputs required by advertisements in M are not provided in the service request R
or some preconditions are not guaranteed to hold. We define the incompleteness degree of M as
the number of inputs and preconditions that are not provided or not valid.

We use definitions of incomplete matches in matching algorithms in the next sections. Of-
tentimes even an incomplete match might be of use for the requester. This might be the case
when the requester does not want to disclose its state. In such a situation it might be possible
that the requester has more information available than those pieces of information explicitly
specified in the request and thus even an incomplete match could be of use for the requester.

5.1 Effect Collisions

By allowing sets of advertisements as a valid match, new issues need to be considered which are
typically ignored in case of individual service matching. Specifically, since a combined match
can contain several advertisements, effect duplications, contradictory and unwanted side-effects
must be taken into account. In this section we formally define the collisions.

By duplicate effects we mean a situation when two or more advertised services in a combined
match produce the same effect. Such a situation might need to be avoided, since an effect means
a change in the real world and we assume that the requester wants to achieve a given effect
only once. As an example, imagine a situation when a flight ticket would be booked twice with
two different providers. For outputs, this is generally not such a big problem, since outputs
present only new information and the duplication should not matter in most cases. Of course,
there might be situations when even outputs duplication is a problem — for example when the
requester has to pay for use of each services. Essentially, the problem of duplicate outputs can
be solved in a similar fashion as for duplicate effects. The following definition introduces an
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effects duplicate free combined match.

Definition 10 (Effect Duplication): Let R = 〈IR, OR, ER, SR〉 be a state enhanced request
and M = {A | A = 〈IA, OA, PA, EA〉} a combined match satisfying R. M contains no effect
duplications if the following holds:
∀er ∈ ER ∀Ai, Aj ∈ M ((SR |= Ai ⇒ er) ∧ (SR |= Aj ⇒ er))⇒ Ai = Aj

The previous definition guarantees that each required effect is implied by only one adver-
tisement in the combined match.

Another problem is presented by unwanted side-effects. An unwanted side-effect is such an
effect produced by some advertisement which was not required to be produced by the service
requester. An example can be a service providing both a flight and a hotel reservation, while
the requester wants only a flight reservation.

Definition 11 (Unwanted Side-Effects): Let R = 〈IR, OR, ER, SR〉 be a state enhanced request
and M = {A | A = 〈IA, OA, PA, EA〉} a combined match satisfying R. M produces no unwanted
side-effects if ∀A ∈ M ∀ea ∈ EA ∃er ∈ ER such that SR |= ea ⇒ er.

In other words, a combined match does not produce any unwanted side-effects only if all
effects produced by advertisements in the match imply some of the requested effects.

Finally, by contradictory effects we refer to a situation when a combined match produces
both some effect and its negation as well (e.g. LoggedIn and ¬LoggedIn effects). Clearly, this
is not acceptable, especially when the particular effect is part of requested effects.

Definition 12 (Contradictory Effects): Let R = 〈IR, OR, ER, SR〉 be a state enhanced request
and M = {A | A = 〈IA, OA, PA, EA〉} a combined match satisfying R. M contains no contradic-
tory effects if ∀A ∈ M ∀e ∈ ER SR 6|= A⇒ ¬e.

The previous definitions are independent on each other and it depends on the requester
if all of the defined collisions are unacceptable or if only some collision needs to be avoided.
We discuss in subsequent sections the implications of avoiding each introduced collision in the
retrieval algorithm.

5.2 Combined Matches Ranking

A ranking of combined matches presents another important topic. Generally speaking, the
ranking of matching advertisements has to express how well does a given match satisfy a given
request. For example, Paolucci et. al. [15] use the matching degree (as expressed by the ≈
relation in the Definition 1) between individual parameters of an advertisement and a request
as a basic criterion. The overall match of the whole advertisement is computed as the worst
match of all matching outputs while matching degrees between inputs are used as a secondary
matching criterion. A different approach presented more recently by Binder et. al. in [5]
proposes a ranking based on a numeric expression provided as part of the request. Essentially,
the expressions support a combination of arithmetic operators such as min, max, +, −, etc., and
set operators such as union, intersection, etc. operating on sets of inputs and outputs of the
advertisement and the request. While the approach of Binder et. al. is very flexible and allows
a requester to specify a specific type of ranking, the expressions are somewhat non-intuitive.

In our approach, we propose a compromise solution. We use the matching degree between
individual parameters of an advertisement and a request as an elementary ranking function. For
the elementary ranking function we assume that it returns a value from the numeric interval
〈bestMatch, worstMatch〉 with bestMatch standing for the best match (i.e., an exact match)
and the worstMatch standing for the match failed. An elementary ranking function is always
applied to the matched pair of parameters (inputs and outputs), effects or preconditions. For
inputs and outputs we use the≈ relation from the Definition 1 as an elementary ranking function.
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For preconditions and effects we use a simple elementary ranking function returning bestMatch
if the effect is satisfied and worstMatch if it cannot be satisfied. We use sets mInputs, mOutputs,
mPreconditions, mEffects for sets of pairs of matched inputs, outputs, preconditions and effects
respectively. For example, for a request R = 〈IR, OR, ER, SR〉 and a combined match M =
{A | A = 〈IA, OA, PA, EA〉} a set mOutputs = {〈outR1 , outA1 〉, . . . , 〈outRn , outAn 〉} such that outRi ∈
OR, outAi ∈ OA, A ∈ M and outAi is the best match for outRi (i = 1, . . . , n). The other sets are
defined in the similar fashion.

To compute an overall ranking for a combined match we use an aggregate ranking func-
tion AG which aggregates the values of elementary rankings for pairs from mInputs, mOutputs,
mPreconditions, mEffects. The only requirement we have for the AG function is that it is mono-
tonic (i.e., non-decreasing or non-increasing) and monotonic in each parameter (i.e., in each pair
from mInputs, mOutputs, mPreconditions, mEffects). This constraint allows us to retrieve the
top-k combined matches efficiently as is presented in the next section. Examples of suitable
aggregate matching functions include functions such as min, max, sum, avg, etc. For example,
the overall matching degree of the work of Paolucci et. al. [15] can be modeled as a minimum
over the values of elementary matching function for pairs from the set mOutputs.

6 Naive Algorithm for a Combined Match Retrieval

Definitions of a combined match from the previous section present conditions that service adver-
tisements need to fulfill in order to match a given request. In this section we use these conditions
to define the matchmaking algorithms which are used in the discovery service. We defined the
combined match with efficiency in mind, however, still relatively heavy computations might
hinder the efficient processing. Compared to matching individual services, the main source of
additional complexity is the fact that possible combinations have to be considered during the
retrieval. A quick analysis reveals that in the worst case the time complexity of retrieval of all
combined matches can be exponential in number of effects and outputs of the service request.
Let R = 〈IR, OR, ER, SR〉 be a request, assuming |OR ∪ ER| = n, and let us assume that for
each effect or output oe ∈ OR ∪ ER there are m different advertisements A ∈ Advertisements
that are able to produce oe. Then there exist mn combined matches which are potentially able
to satisfy the request R.

To avoid such an exponential complexity we can exploit the fact that typically the requester
is not interested in retrieving all possible matches, but instead wants to retrieve the best match
or the best k matches (where k is specified by the requester). Thus instead of retrieving all
possible combined matches we can focus on an efficient retrieval of top k combined matches
with respect to an aggregate ranking function AG. In this section we present a naive retrieval
algorithm which is derived from the basic logic of the algorithm for the retrieval of individual
services, and in the following section we present an algorithm specifically designed for an efficient
retrieval of top k combined matches.

The matchmaking algorithm works in two phases. In the registration phase, a service adver-
tisement is registered with the matchmaker. During this phase the advertisement is saved in the
main data structure, Advertisements, which is basically a look-up table (an inverted index) in
which advertisements together with some auxiliary data structures are stored. Stored advertise-
ments are indexed by classes (types) to support a fast retrieval of advertisements which produce
or consume a given class. In addition to input and output types, the advertisements can be also
retrieved by using atoms appearing in advertisements effects and preconditions. Advertisements
are stored together with precomputed degree of match for each relevant class. In the look-up
phase, the Advertisements structure is used for finding the set Match for a given service request
R. Algorithm 1 is used for finding the combined match. Since the main computation burden
is carried out during the registration phase, the retrieval of matching individual advertisements
can be done relatively efficiently.
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Algorithm 1 combinedMatch(R = 〈IR, OR, ER, SR〉)
1. for each (?or, Tor) ∈ OR

1.1 retrieve all A = 〈IA, OA, PA, EA〉 from Advertisements for which ∃(?oa, Toa) ∈ OA such
that Tor ≈ Toa (Def. 8, C. 1)

1.2 add all such A to PreMatch

2. for each er ∈ ER

2.1 retrieve all A = 〈IA, OA, PA, EA〉 from Advertisements for which SR |= A⇒ er (Def. 8,
C. 2)

2.2 add all such A to PreMatch

3. for each A ∈ PreMatch

3.1 if A is a complete single service match (Def. 6, C. 1–4) then add A to Match; delete A
from PreMatch; continue;

3.2 if ∃(?ia, Tia) ∈ IA ∀(?ir, Tir) ∈ (IR ∪DR) such that Tia 6≈ Tir (Def. 6, C. 3 fails) then
mark A as incomplete

3.3 if ∃pa ∈ PA SR 6|= pa (Def. 6, C. 4 fails) then mark A as incomplete

4. add to Match results of generateCombined(PreMatch)
5. return sort(Match)

When answering a combined match query (Algorithm 1), the discovery service first finds a
set of services that together produce the required outputs (step 1) and effects (step 2) (i.e., any
service producing some of required outputs or effects is a good candidate). In the next step,
out of these candidates, those advertisements that constitute a complete single service match
(as defined in Definition 6) are added to the final results set Match (step 3.1). In steps 3.2 and
3.3, the remaining advertisements are possibly labeled as incomplete if some of their inputs or
preconditions are missing. As the next step (step 4), all possible combined matches are generated
out of the matched candidate advertisements (PreMatch) by employing the generateCombined
procedure. The generateCombined procedure is basically quite a simple procedure which uses
a brute force algorithm to generate all possible advertisement combinations compliant with the
combined match definition. Finally, the resulting matches are sorted according to their degree
of match.

The overall degree of match is computed based on the discussion in Section 5.2 which is
essentially a conservative extension of the single service matching degree (see [15] for details).
The main difference is implied by the fact that the combinedMatch can return also incomplete
matches. An incomplete match is considered worse than an exact, plugin and subsume match
and is penalized accordingly. Still, the incomplete match can be useful. Either it can be used
directly by the requester who might try to get required pieces of information from some other
source, or it can serve as a starting point to compute the composed match (i.e., a match based
on a full fledged service composition).

An interesting thing, is the fact that implementation of the combinedMatch procedure re-
quired relatively minimal modifications to the single service matching procedure. The most
visible modification was addition of the generateCombined procedure, which also has the possi-
ble biggest impact on the time complexity. We will discuss this issue in more detail in the next
section.

If requested, the combinedMatch procedure generates only collision free matches. The prob-
lem of duplicate effects is tackled in the generateCombinedMatch procedure by checking if an
advertisement that is being added to a newly generated combined match collides with adver-
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tisements already presented in the match. This can be done very efficiently by pre-computing
the list of implied effects for each matched advertisement and by testing if any effect of the
considered advertisement is not already generated by the constructed combined match. For
avoiding unwanted side-effects we are using the pre-classified taxonomy of effect types (classes)
which allows us to determine presence of side-effects by simply accessing a hash-set once for each
effect in an advertisement. Similarly, to test the presence of contradictory effects in a combined
match we maintain a set of positive effects implied by each advertisement and a set of implied
negative effects. Again, this allows us to perform the test simply by accessing the hash-set once
for each effect in the advertisement.

With respect to properties of the naive algorithm, the algorithm always terminates and
always returns the list of combined matches ordered by their aggregate ranking. This is a direct
consequence of the fact, that the algorithm simply generates all possible combined matches and
that the set of combined matches is finite. However, the time complexity is exponential because
of the exponential number of all combined matches.

7 Top-k Retrieval Algorithm

Quite clearly the main drawback of the naive algorithm is the fact that to be able to retrieve
top k combined matches, all combinations have to be generated and ranked first. Considering
that the number of combinations grows exponentially with the number of effects and outputs
in requests, such approach can become unacceptable for service requests with many effects and
outputs. The top-k algorithm presented in this section does not attempt to generate all possible
combined matches, but instead attempts to generate the possible combined matches directly in
the ascending order, starting with the best combined match and continuing until top k matches
are found. In order to allow such an approach we defined the aggregate ranking function as a
monotonic and monotonic in all its parameters which allows the matching algorithm to search
the search space starting from the potentially lowest point with the best ranking and continuing
towards matches with a worse ranking.

The basic idea of the algorithm is to retrieve advertisements for each requested output or
effect separately and for each such an output/effect sort the retrieved advertisements based on
the matching degree of the advertisement with respect to the requested output/effect. Having
the basic relevant advertisements retrieved and sorted, in the next phase the search space of
combined matches built out of these retrieved advertisements is traversed in such a way that
guarantees the increasing order of generated combined matches. The following paragraphs de-
scribe the algorithm in detail.

Similarly to the naive algorithm, the top-k retrieval algorithm first finds a set of services
that can together produce the required outputs and effects (i.e., any service producing some
of required outputs or effects is a good candidate). The candidate service advertisements are
stored in a structure PreMatch. Compared to the naive version where the PreMatch structure
was just a list of matching advertisements, in this case we represent the PreMatch structure as
an array indexed by effects/outputs of the request. Each field in the PreMatch array contains
advertisements that are able to produce the given effect/output ordered by the elementary
degree of match for the given effect/output. The PreMatch structure can be formally defined
as follows.

Definition 13 (Ordered PreMatch): Let R = 〈IR, OR, ER, SR〉 be a state enhanced request,
n = |OR ∪ ER|, oei ∈ OR ∪ ER, i, . . . , n. An ordered PreMatch is a tuple PreMatch =
〈E1, . . . , En〉, Ei = 〈Ai1 , . . . , Aimi

〉, such that every advertisement in Ei implies oei, i.e. ∀Aj ∈
Ei SR |= Aj ⇒ oei, and advertisements in Ei are ordered by the elementary degree of match for
the given effect/output oei for all i = 1, . . . , n.
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OR/ER e1 e2 e3

1. A5 F 8 E6

2. B6 B10 C9

3. F 8 C20 D21

Figure 7.1: Example PreMatch structure

Algorithm 2 populatePreMatch(oer, P reMatch), oer ∈ OR ∪ ER

1. if oer ∈ OR, oer = (?or, Tor ) then
retrieve advertisements A = 〈IA, OA, PA, EA〉 from Advertisements for which ∃(?oa, Toa

) ∈ OA such
that Tor

≈ Toa
(Def. 8, C. 1)

2. if oer ∈ ER then retrieve advertisements A = 〈IA, OA, PA, EA〉 from Advertisements for which
SR |= A⇒ oer (Def. 8, C. 2)

3. add all retrieved A to PreMatch[oer]
4. for each A ∈ PreMatch do

4.1 if A is a complete individual service match (Def. 6, C. 1–4) then add A to Match; delete A
from PreMatch; continue

4.2 if ∃(?ia, Tia
) ∈ IA ∀(?ir, Tir

) ∈ (IR ∪DR) such that Tia
6≈ Tir

(Def. 6, C. 3 fails) then delete A
from PreMatch; continue

4.3 if ∃pa ∈ PA SR 6|= pa (Def. 6, C. 4 fails) then delete A from PreMatch; continue

5. return PreMatch

Example 2: Figure 7.1 shows an example PreMatch structure for a request with three effects /
outputs e1, e2, e3. In each column advertisements producing a corresponding effect are showed.
For example, the effect e1 can be produced by either of the advertisements A, B, F . The top
index at each advertisement stands for the matching degree computed by the elementary ranking
function for the given advertisement and the corresponding effect/output5. Thus, for example,
A5 in the column of e1 means that the advertisement A matches the effect e1 with the matching
degree 5. By analyzing the PreMatch structure we can for example derive that combined match
consisting of advertisements in the first row, i.e. advertisements A, F , E is not collision free,
since the effect e1 is produced twice (by A and F ), while the combined match consisting only of
advertisements F and E does not produce duplicate effects and produces all required effects (F
produces e1 and e2 while E produces e3). Also the combined match {F, F, E} is the best combined
match with respect to any aggregate function AG assuming it is monotonic (non-decreasing in
this case) in each parameter. If for example sum is used as an aggregate ranking function the
combined match {F, F, E} will have the overall ranking equal to 22 (8 + 8 + 6).

The PreMatch structure is computed by the procedure populatePreMatch presented in
Algorithm 2. Essentially, the populatePreMatch procedure simply retrieves advertisements for
each required output (step 1) and effect (step 2) and adds them into appropriate part of the
PreMatch structure. In the following steps, out of these candidates, those advertisements that
constitute a complete individual service match (as defined in Definition 6) are added to the
final results set Match (step 4.1), and advertisements with some of their inputs or preconditions
missing are deleted from PreMatch (steps 4.2 and 4.3). Optionally, such matches can be labeled
as incomplete in the same fashion as in the combinedMatch procedure. The populatePreMatch
procedure performs almost the same steps which have to be performed for an individual ser-
vice match and thus does not introduce any complexity other than maintaining the PreMatch
structure.

5For the sake of clarity we use an imaginary elementary ranking function that assigns positive integers as
matching degrees in the example.
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With the PreMatch structure computed we need to generate combined matches in an in-
creasing order. Also, if requested by the requester, only matches without collisions need to be
generated. Since we have constrained the aggregate ranking functions to be monotonic in each
parameter we can simply start with the first item in each column of the PreMatch structure
as with the best possible candidate for a combined match (there cannot be any other combined
match with a better overall ranking). The subsequent candidates will be generated by traversing
the PreMatch in the downwards direction (as showed in Figure 7.1). During the traversing we
need to test if each candidate match is collision free. To define the notion of traversing the
PreMatch structure formally, we have to introduce a definition of a direct successor of a com-
bined match with respect to the PreMatch structure and a definition of a index function of a
combined match with respect to the PreMatch structure.

Definition 14 (Combined Match Index): Let R = 〈IR, OR, ER, SR〉 be a state enhanced request,
n = |OR∪ER|, and M = {Ai, i = 1, . . . , n} a combined match satisfying R, and let PreMatch =
〈E1, . . . , En〉, Ei = 〈Ai1 , . . . , Aimi

〉, i = 1, . . . , n.
We define a function index of a combined match M in the structure PreMatch as follows:

index(M, P reMatch) = 〈k1, . . . , kn〉, such that Ai = Aiki
, Ai ∈ M, Aiki

∈ Ei, Ei ∈PreMatch
for every i = 1, . . . , n.

The index function of a combined match simply returns the position of the match in
PreMatch as a tuple of coordinates. For example, given the PreMatch structure in Figure
7.1 the index of the match {A, F , E} is 〈1, 1, 1〉, since all advertisements A, F , E are in the
position 1 in their corresponding columns. The index of the best collision free combined match
{F, F, E} is 〈3, 1, 1〉.

Given the index function, we can compare combined matches with respect to their indexes
in PreMatch.

Definition 15 (<PreMatch): Let Mr and Ms be combined matches based on an ordered PreMatch
structure for some state enhanced request R, and let index values for Mr and Ms be

index(Mr, P reMatch) = 〈r1, . . . , rn〉

index(Ms, P reMatch) = 〈s1, . . . , sn〉

We write Mr <preMatch Ms if and only if ∃i ∈ 〈1, n〉 such that ri < si and ∀j ∈ 〈1, n〉 rj ≤ sj.

Definition 16 (Direct Successor): A combined match Ms is a direct successor of a combined
match Mr with respect to the PreMatch structure if Mr <preMatch Ms and there exists no
combined match Mp such that Mr <preMatch Mp <preMatch Ms.

In our example in Figure 7.1 members of the set {{B6, F 8, E6}, {A5, B10, E6}, {A5, F 8, C9}}
are the only direct successors of the match {A5, F 8, E6}. Notice, that none of these matches is
collision free. Similarly to Definition 16 a collision free direct successor can be defined by simply
requiring the successor to be collision free.

We introduced the notion of a direct successor because of its straight-forward relation to
the ordering of combined matches with respect to the aggregate matching function AG. Let us
assume that we have found some combined match (e.g., the match {A5, F 8, E6}) and that we are
searching for another combined match that would follow right behind the already found one in
the totally ordered sequence of matches ordered by the value of AG. Quite clearly, because each
column in the PreMatch structure is ordered and because the AG is monotonic and monotonic
in all its parameters, the next match has to be one of the direct followers of the already found
match. I.e., for the match {A5, F 8, E6} with the overall ranking equal to 19, the next match
is {B6, F 8, E6} with the overall ranking equal to 20. Thus we can use the direct successors as
means of traversing the search space of combined matches in the ascending order.
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Algorithm 3 combinedMatchTopK(R = 〈IR, OR, ER, SR〉, k, AG)
1. for each oer ∈ OR ∪ ER do

populatePreMatch(oer, P reMatch)
2. candidatesQueue = ∅
3. firstCandidate = generateF irstCandidate(PreMatch)
4. candidatesQueue.add(firstCandidate, AG)
5. while candidatesQueue 6= ∅ and |Match| < k do

5.1 bestCandidate = candidatesQueue.removeF irst()

5.2 if collisionFree(bestCandidate, PreMatch) then add bestCandidate to Match

5.3 newCandidates = directSuccessors(bestCandidate, PreMatch)

5.4 for each candidate ∈ newCandidates do

if candidate 6∈ candidatesQueue then candidatesQueue.add(candidate, AG)

6. return Match

Algorithm 3 presents the combinedMatchTopK procedure. First, it populates the PreMatch
structure by calling the populatePreMatch in step 1. Next, it traverses the PreMatch struc-
ture and maintains the combined match candidates in a priority queue candidatesQueue which
stores possible combined matches ordered by their overall ranking computed by the AG function.
The queue is initialized with the first possible candidate (step 4) — in case of our example in
Figure 7.1 it is the combination {A5, F 8, E6}. In the following steps, the best current candidate
is tested for collisions (step 5.2) — {A5, F 8, E6} produces duplicate effect (e1) — and if it is
collision free it is added to the final results set Match. In step 5.3 the direct successors of
the current candidate are generated by the directSuccessors method. In our example the set
{{B6, F 8, E6},{A5, B10, E6},{A5, F 8, C9}} is generated for the initial candidate {A5, F 8, E6}.
As it can be seen, none of these newly generated candidates is collision free. Alternatively, the
direct collision free successors can be generated (for clarity we present a basic version of our
algorithm that generates successors which might contain collisions). Finally, in step 5.4 only
new candidates are added to the queue.

The top-k algorithm always terminates since the directSuccessors method can generate
altogether only a finite number of successors. If the aggregate ranking function AG is monotonic
and monotonic in each parameter, Algorithm 3 is guaranteed to return the best k collision free
combined matches.

The implementation of the method collisionFree for testing the collisions is rather straight-
forward and can be done very efficiently. For avoiding duplicate effects we use the PreMatch
structure — only one advertisement out of each column can be present in the combined match.
Avoiding unwanted side-effects and contradictory effects is addressed in the same fashion as in
the naive version of our algorithm.

8 Complexity of the Top-k Algorithm

In this section we discuss properties of the top-k algorithm with the main focus on its time
complexity. With respect to the time complexity, we are most interested in the overhead of
computing the top k combined matches compared to the top k individual services retrieval. Let
R = 〈IR, OR, ER, SR〉 be a request, assuming |OR ∪ ER| = n, and let us assume that for each
output or effect oe ∈ OR∪ER there are at most m different advertisements A ∈ Advertisements
that are able to produce oe. In the following discussion we distinguish two different cases
depending on weather duplicate effects (Definition 10) are allowed in the collision free matches
or not. We show that if duplicate effects are allowed the complexity overhead is O((m log m) ·n)
or O(m · n2) depending on the specific request, while when the duplicate effects need to be
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avoided in combined matches, the problem becomes NP-complete.
We start the discussion with considering the overhead of testing for collisions. For avoiding

unwanted side-effects we are using the pre-classified taxonomy of effect types (classes) which
allows us to determine presence of side-effects by simply accessing a hash-set once for each
effect in an advertisement. Therefore for each matched advertisement at most n tests with the
constant price have to be performed to guarantee that it has no side-effects. If an advertisement
has side-effects it does not have to be considered any more and it does not have to be added
into the PreMatch structure. Thus the overall complexity of avoiding side-effects is O(m · n2).
Notice that to make sure that even a individual service match does not produce side-effects,
exactly the same tests have to be performed. Thus, this step does not add any additional time
complexity compared to the individual service matching. As a result of the discussion we get
the following lemma.

Lemma 1: Let R = 〈IR, OR, ER, SR〉 be a request, |OR ∪ ER| = n, and let m be the maximum
number of advertisements A ∈ Advertisements that are able to produce oe for each oe ∈ OR ∪
ER. The time complexity of avoiding side-effects in combined matches and in individual service
matching is O(m · n2).

Similarly, to test the presence of contradictory effects in a combined match we maintain
a set of positive effects implied by each advertisement and a set of implied negative effects
which can be precomputed in the registration phase. Again, this allows us to perform the test
simply by accessing the hash-set once for each effect in the service request, i.e., for each matched
advertisement at most n tests with the constant price have to be performed, leading to an overall
complexity O(m·n2) as in the case of side-effects. If we assume that each registered advertisement
is consistent, by which we mean that it does not produce any contradictory effect on its own
(i.e., no single advertisement implies both e and ¬e for any effect), the test for contradictory
effects does not have to be performed in case of individual service matching. That means the
time overhead imposed by avoiding contradictory effects in combined matches is O(m · n2). On
the on the other hand, if inconsistent advertisements can be registered with the matchmaker,
there would be no time overhead since the same testing would have to be performed as well.

Lemma 2: Let R = 〈IR, OR, ER, SR〉 be a request, |OR ∪ ER| = n, and let m be the maximum
number of advertisements A ∈ Advertisements that are able to produce oe for each oe ∈ OR∪ER.
The time complexity of avoiding contradictory effects in combined matches is O(m · n2).

In order to generate top-k combined matches, we need to populate and traverse the PreMatch
structure. Populating the PreMatch structure involves sorting of each vector of individual
advertisements for each effect/output of the request, thus the time complexity overhead is
O((m log m) · n).

Finally, there is an overhead for traversing the PreMatch structure and generating combined
matches. As we pointed out in previous paragraphs, the PreMatch structure does not contain
advertisements that are producing contradicting effects and side-effects, if this is required by the
requester. This means that while generating combined matches only possible collisions caused
by effect duplications need to be taken into account. Let us start with the case when effect
duplications are allowed in combined matches. In such a case the directSuccessors method
always generates at most n direct successors for a given base combined match. Since effect
duplications are allowed, each new direct successor is obtained from the base combined match
by simply increasing one coordinate of the index of the base combined match. For example,
for the base combined match {A5, F 8, E6} with the index 〈1, 1, 1〉 the combined matches with
indexes 〈2, 1, 1〉, 〈1, 2, 1〉, 〈1, 1, 2〉 (i.e., matches {B6, F 8, E6}, {A5, B10, E6}, {A5, F 8, C9}) are
the direct successors. Since the directSuccessors procedure has to be called exactly k times,
the overall time complexity is O(k · n).
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Lemma 3: Let R = 〈IR, OR, ER, SR〉 be a request, |OR ∪ ER| = n, and let m be the maximum
number of advertisements A ∈ Advertisements that are able to produce oe for each oe ∈ OR∪ER.
The time overhead of generating combined matches in which effect duplications are allowed is
O((m log m) · n) + O(k · n).

Surprisingly, however, for the case when only combined matches without effect duplications
need to be retrieved the problem becomes NP-complete. This can be showed by reducing the NP-
complete monotone one-in-three satisfiability problem (1-in-3 SAT) [17] to finding a combined
match without duplications (CMD problem). We describe the reduction and thus we show that
even a problem of finding any combined match without duplicate effects is NP-complete. This
means that our problem of retrieving top-k instances with respect to the AG ranking function
is also NP-complete.

The monotone 1-in-3 SAT is a variant of a well known 3-SAT problem. In the 1-in-3 SAT
problem a formula is a conjunction of clauses with exactly three literals, every literal in a clause
is simply a variable (i.e., no negations are allowed in clauses) and in each clause exactly one
literal has to be true to make the whole formula satisfied. A solution of a 1-in-3 SAT instance is
an assignment of values 1 or 0 to each variable of the formula that makes the formula satisfied.

Definition 17 (1-in-3 SAT [17]): Let R(x, y, z) be a 3-place logical relation with the truth-table
being {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, and let F = C1 ∧ · · · ∧ Cl be a conjunction of clauses with
each clause Ci = R(x, y, z), x,y,z boolean variables, i = 1, . . . , l. The monotone one-in-three
satisfiability problem is a problem of deciding weather a formula F is satisfiable.

The following formula presents an example instance of the 1-in-3 SAT problem with three
clauses and variables x,y,z,u [17]:

R(x, y, z) ∧R(x, y, u) ∧R(u, u, y) (8.1)

This formula can be satisfied by assigning 1 value to y variable and 0 to the remaining
variables and thus this particular instance has a solution.

Theorem 1: Let R = 〈IR, OR, ER, SR〉 be a request, |OR∪ER| = n, and let m be the maximum
number of advertisements A ∈ Advertisements that are able to produce oe for each oe ∈ OR∪ER.
The problems of finding a combined match without duplications (CMD problem) satisfying a
request R is NP-complete.

Proof. The proof is by reducing the 1-in-3 SAT instance into a CMD instance. The reduction
is straight-forward. Each variable v in the 1-in-3 SAT instance is mapped to a unique service
advertisement Av, and each clause Ci is mapped to a unique effect ei. To each advertisement
Av exactly those effects are added that correspond to clauses in which the variable v appears,
i.e., every clause is mapped to one column of the PreMatch table. The table in Figure 8.1 is
the result of the transformation of the example formula 8.1 into a corresponding CMD instance:

ER e1 e2 e3

Ax Ax Au

Ay Ay Au

Az Au Ay

Figure 8.1: A CMD instance corresponding to the 1-in-3 SAT instance for formula 8.1

Clearly, a combined match without duplications (e.g., {Ay, Ay, Ay}) corresponds to a truth
assignment to corresponding variables that satisfies the original 1-in-3 SAT instance, i.e., 1 will
be assigned to variables whose corresponding advertisements are present in the combined match.
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Since the 1-in-3 SAT is NP-complete and since the described transformation is polynomial the
CMD problem is NP-complete as well.

Table in Figure 8.2 summarizes the complexity discussion of the top-k algorithm for retrieving
collision free combined matches. We assume an individual services matchmaking algorithm
without support for top-k retrieval and for collision avoidance as a base-line. The table shows
time overheads of all discussed collision avoidance procedures compared to this base-line in the
context of individual service matching and in the context of combined matching. It distinguishes
four procedures (each in a separate line): (1) matching with all collisions allowed, (2) unwanted
side-effects avoidance procedure, (3) contradictory effects avoidance procedure, and (4) matching
when effect duplications are not allowed. The first column of the table summarizes overheads
of top-k retrieval of individual services compared to the base-line algorithm (without support
for top-k retrieval). For example, the overhead in the case when all collisions are allowed is
O(m log m) which is caused by the need to order the retrieved service advertisements. When 0
appears in some cell, it means that the corresponding procedure does not have to be performed
in the given configuration.

Individual service matching Combined matching
top-k without
collision avoidance

O(m log m) O((m log m) · n) + O(k · n)

side-effects
avoidance

O(m · n2) O(m · n2)

contradictory effects
avoidance

0 O(m · n2)

effect duplications
avoidance

0 NP-complete

Figure 8.2: Overview of time complexities of the top-k algorithm for collision free combined
matches, compared to individual service matching (for request R = 〈IR, OR, ER, SR〉, |OR ∪
ER| = n, for each oe ∈ OR ∪ ER at most m advertisements A that imply oe)

9 Dealing with Complexity

In the previous section we analyzed the complexity of the top-k combined match retrieval algo-
rithm. We observed that while in many cases the algorithm is tractable, i.e., polynomial in both
the number of outputs/effects in the request and in the number of advertisements, still there
is a case of avoiding duplicate effects when the algorithm becomes exponential (NP-complete).
In essence, this means that potentially we need to deal with a large search space of possible
combined matches and that to find the best k combined matches this search space has to be
searched exhaustively to guarantee completeness. In this section we describe the search strategy
and the domain independent and domain specific optimization techniques. The optimizations
are based on branch and bound pruning and constraints propagation known from constraint
satisfaction problem [16, Ch. 5].

Since the problem of finding a combined match without duplicate effects is NP-hard, the
search space has to be searched exhaustively. The procedure combinedMatchTopK in Algo-
rithm 3 performs an exhaustive search under the assumption that the directSuccessors pro-
cedure finds all direct successors for a given base combined match. In our implementation
we use a variation of this method called directCollisionFreeSuccessors showed in Algorithm
4 which generates all collision free direct successors of a given base combined match Mbase.
The directCollisionFreeSuccessors procedure uses a depth-first search backtracking as a basic
search method which guarantees completeness, i.e. it returns all direct collision-free matches for
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Algorithm 4 directCollisionFreeSuccessors(Mbase, P reMatch, Succ, Mnew, depth)
Inputs: Mbase = {A1, . . . , An} a combined match, 〈k1, . . . , kn〉 = index(Mbase, P reMatch)

PreMatch = 〈E1, . . . , En〉, Ei = 〈Ai1 , . . . , Aimi
〉

Successors a set of found direct successors, initially Successors = ∅
Mnew a constructed combined match, initially Mnew = ∅
depth a position (index) in required outputs/effects and in PreMatch

1. if depth = n + 1 and isDirectSuccessor(Mnew, Mbase, Successors, PreMatch) then

1.1 add Mnew to Successors

1.2 return Successors

2. foreach Aj ∈ Edepth such that j ≥ kdepth// index is bigger than base index

2.1 if collisionFree(Mnew ∪Aj , P reMatch) then
Successors =
directCollisionFreeSuccessors(Mbase, P reMatch, Successors, Mnew ∪Aj , depth + 1)

3. return Successors

a given base combined match Mbase. The listing in Algorithm 4 presents only a basic skeleton
of the procedure without showing technical details or any optimisation discussed in the further
text. The main idea of the procedure is to recurse over all columns in the PreMatch structure
and in each recursion level (depth) to iterate over advertisements of the current column (Edepth,
step 2) and to try to add the advertisement to the newly created combined match Mnew if no
collision is introduced. After some new combined match Mnew is completed (step 1) it is added
to the Successors set only if it is a direct successor of the Mbase match.

To avoid unnecessary bactracking in the directCollisionFreeSuccessors procedure we ex-
ploit the following ideas:

• Many branches in the search space do not lead to a result because a particular selection of
advertisements producing a subset of required outputs/effects does not allow any other ad-
vertisements to be added to the combined match without introducing any effect duplication.
To reduce the number of such branches forward checking and constraints propagation can be
used to eliminate such advertisements in the PreMatch which necessarily lead to a failure
given a current choice of advertisement in the constructed combined match.
• In Algorithm 4, the columns (Edepth) of the PreMatch structure are ordered arbitrarily.

Instead it proves to be better to start always with a column which contains the least number
of advertisements (i.e., the fewest “legal” values) and thus has the smallest branching fac-
tor. This heuristic is known as a minimum remaining values heuristic (MRV) or a fail-first
heuristic [16, Ch. 5].
• During the search process, some branches can be pruned because every possible newly found

combined match in that branch would

– have a too bad overall ranking with respect to the best k matches found so far (pruning
by overall matching degree best estimate)

– be a non-direct successor of the base combined match Mbase — the matches in the
Successors set are used for pruning such branches (pruning by already found direct
successors)

– produce a duplicate effect since some previous branch with the same set of available
advertisements has failed (pruning by local caching of failed branches)

In the following subsections we discuss the introduced optimization techniques.
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9.1 Forward Checking and Constraint Propagation

In order to reduce unnecessary bactracking, some advertisements can be eliminated temporar-
ily (or “disabled”) given the current state of the search, since they cannot be added to the
match without introducing an effect duplication. The problem of finding collision free combined
matches can be formulated in terms of a constraint satisfaction problem. In constraint satisfac-
tion problems a set of variables each with a domain of possible values is given together with a
set of constraints that need to be satisfied. A solution of the problem is such an assignment of
values to each variable that satisfies all the constraints. We can see each requested output/effect
as a variable, and advertisements able to produce this output/effect as possible values that can
be assigned to this variable. For the example problem in Figure 7.1, there are three variables
e1, e2, e3 with the domains {A, B, F}, {F,B,C} and {E,C, D} in the respective order.

Forward checking is a basic technique that employs constraints during search in order to
delete those values from variable domains that are not consistent with constraints relating the
current variable with other unassigned variables. Consider for example the PreMatch table in
Figure 9.1a. Let us assume that the direcCollisionFreeSuccessors procedure started with the
effect e1 and selected the advertisement A (i.e., A was assigned to e1). To avoid duplication of
the effect e1, all remaining advertisements in the domain of e1 can be removed from domains of
remaining unassigned variables. Thus, the advertisements B and F can be removed from the
domain of e2 (showed with the gray background in Figure 9.1a). For the same reason in Figure
9.1b the advertisement F can be removed from the domain of e2 after B is assigned to e1 in
the next iteration. Additionally, the advertisement C can be removed from the domain of e2

(and subsequently from the domain of e3 as well) since the assignment of B to e1 necessitates
its assignment to e2 as well, which leads to removal of C.

OR/ER e1 e2 e3

1. A F E

2. B B C

3. F C D

(a) A selected for e1

OR/ER e1 e2 e3

1. A F E

2. B B C

3. F C D

(b) B selected for e1

Figure 9.1: Example PreMatch structure after forward checking

At each level of recursion, the forward checking process removes only values from those
variable domains that are directly connected to the currently assigned variable (in our examples
it is the variable e1). Although forward checking is efficient and effective, still many values can
be inconsistent with some constraints that are not directly related to the current variable. This
problem can be addressed by constraint propagation techniques which consider also constraints
than are not directly related to the current variable. Consider again the example in Figure 9.1a
where A is assigned to e1. During forward checking, no value was removed from the domain of
e3. However, if we take additional constraints into account, e.g., constraints between e3 and e2,
we figure out that advertisements E and D can be removed from the domain of e3 (as showed
in Figure 9.2 by cells with the dark gray background). The reason is straight-forward. If E
is assigned to e3, the advertisement C needs to be removed from the domain of e2 (to avoid
duplication of e3). However, after removal of C, the domain of e2 becomes empty and thus there
would be no advertisement available for e2. Therefore E can be safely removed from the domain
of e3 since it leads to emptying of the e2 domain. The same logic applies to the advertisement
D.

In our implementation we use the arc consistency constraint propagation algorithm (a vari-
ation of the AC-3 algorithm [16, Ch. 5.2]). Essentially, the algorithm removes any value from
the domain of some unassigned variable x if there exists no value v in the domain of some
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OR/ER e1 e2 e3

1. A F E

2. B B C

3. F C D

Figure 9.2: Example PreMatch structure after forward checking and constraint propagation, A
selected for e1

other unassigned variable y such that the constraint between x, y is satisfied. In the case of the
PreMatch structure, a value can be safely removed from some column if after applying forward
checking no advertisement will be left in some other column.

Constraint propagation is more powerful than forward checking, however, still it does not
remove every inconsistent value and thus there is a need for other optimizations. Since both
forward checking and constraint propagation dynamically reduce the number of available ad-
vertisements in each column during the search process, it is beneficial to apply the minimum
remaining values heuristic (MRV) for selection of the next unassigned variable (column) at each
recursion level. The MRV heuristics suggests to select a column which contains the least number
of advertisements (i.e., the fewest “legal” values) which constrains the most the available choices
and possibly leads to a failure as soon as possible.

9.2 Pruning

There are several reasons why pruning can help to reduce the search space. First, we noticed
that even after constraint propagation, there can be branches that do not lead to any combined
match without effect duplications. Next, we are not interested in any successor of a given base
combined match in a particular run of the directCollisionFreeSuccessors procedure, but we
want to find only direct successors. Therefore, every branch that cannot contain direct successors
can be pruned. Finally, since we want to retrieve the best k combined matches, branches that
cannot improve the already found results can be pruned.

Pruning by local caching of failed branches

To reduce the need for searching in branches that do not contain any solutions, caching can
be used. Specifically, if some branch was explored without a success and later the direct-
CollisionFreeSuccessors procedure is about to explore a different branch, we can first test if
this new branch has same characteristics as the branch that failed before. If the new branch
is found to be “equivalent” to some of the failed branches it can be pruned. We are using a
local caching instead of caching all failed branches which would require a lot of memory. Each
time the directCollisionFreeSuccessors is called, the new local cache is created. Of course,
this approach is less effective than maintaining a global cache, but it has a benefit of a good
memory control.

To allow the caching to work, we need to define the meaning of equivalence of two branches
with respect to the failure of the search. As a matter of fact we are not interested in an
equivalence but in an implication: having a branch in which the search failed we need to identify
a situation when this branch implies that a different branch will necessarily fail as well. This
can be achieved by comparing the sets of advertisements that were removed from the PreMatch
structure before exploring the particular branch.

Consider the PreMatch table in Figure 9.2 and let us assume for a moment that there
was no solution found for the branch starting with A assigned to e1. In this branch the ad-
vertisements R1 = {F,B,E,D} were removed from PreMatch (i.e., were greyed out in the
figure). Now, imagine that in the next iteration B is assigned to e1 and forward checking is
called which removes some other advertisements. Let R2 be the set of advertisements removed
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from PreMatch for the second branch for which we are not sure if we should explore it or not.
Since any solution can consist only of advertisements that were not removed, we can conclude
that if every advertisement in R1 is also contained in R2 (i.e., in the second branch at least the
same advertisements were removed as in the first branch), the second branch cannot contain any
solution, because if there was some, it would have been found in the first branch as well. This
insight allows us to skip a branch if its set of removed advertisements is a superset of removed
advertisements of some cached branch that failed.

Pruning by already found direct successors

The purpose of the directCollisionFreeSuccessors procedure is to find all direct successors
of the base combined match Mbase. During the search process the found direct matches are
stored in the Successors set. The already found matches in the Successors set can be used to
prune those branches in which every new match will necessarily be a successor of some match
M ∈ Successors (because every new match Mnew which is a successor of M cannot be a direct
successor of Mbase). To test whether some branch can be pruned we simply compare the indexes
of matches M ∈ Successors with the smallest possible index of the newly constructed match
MnewSmallest considering the branch is used. If M <preMatch MnewSmallest for some M ∈ Successors,
the branch can be pruned safely.

Pruning by the best estimate of an overall matching degree

Finally, since only the best k combined matches need to be retrieved, an information about the
already found matches and their overall matching degrees can be used to prune those branches
which cannot lead to any improvement of the solution. Let Mk be the k-th best match found
so far in the combinedMatchTopK procedure (Algorithm 3). Notice, that Mk might not be the
overall best k-th solution since some matches with a better overall matching degree than the
one of Mk can have direct successors which will also have a better matching degree. However,
the overall matching degree of Mk, AG(Mk), can be used to prune some branches as follows.
Let B be a branch we are considering to be explored, and let minMatchDegreeB be a lower
bound estimate of all overall matching degrees for matches that can be obtained by using the
branch B. The branch B can be pruned if AG(Mk) < minMatchDegreeB since no match found
by exploring B can have an overall matching degree better than the one of Mk. Thus, the only
problem that remains is to calculate the estimate minMatchDegreeB for a given branch B. This
can be actually done quite easily. Let us assume that we are considering the branch B at the
depth depth in the directCollisionFreeSuccessors procedure (Algorithm 4), and let Mnew be a
combined match that is being constructed by this procedure. The match Mnew already consists
of depth advertisements (each one was added at previous levels of recursion) and there is still
n−depth advertisements to be specified in Mnew to guarantee that all requested n outputs/effects
are produced by the combined match. The remaining n − depth advertisements have to be
taken from the branch B, which actually coincides with unused columns in the PreMatch
structure. We construct a combined match MminMatchDegreeB

simply by using all advertisements
from Mnew and by adding an advertisement with the minimal index from each unused column
Ed ∈ PreMatch, for d ∈ (depth, n〉.6 The combined match MminMatchDegreeB

constructed in this
fashion produces all n requested outputs/effects and for every match MB that can be found in
the branch B the following holds AG(MminMatchDegreeB

) 5 AG(M) since AG is monotonic and
monotonic in all its parameters and since the advertisements with the minimal possible indexes
were added into MminMatchDegreeB

. Thus minMatchDegreeB = AG(MminMatchDegreeB
) can be used

as a lower bound for the branch B.
This concludes our discussion on optimizations of combined match retrieval.

6I.e., if Mbase is the base combined match with the index 〈k1, . . . , kn〉 = index(Mbase, P reMatch), for each
d ∈ (depth, n〉, Akd from Ed is added to MminMatchDegreeB .
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10 Related Work

Traditionally, the Web services discovery field focuses on discovery of individual services, while
our work is targeting the problem of discovering sets of service advertisements. The body of work
in individual service discovery is rather big and therefore we only review some representative
approaches and then we focus on research that is most relevant to discovery of sets of services
or service compositions.

Discovery of individual services

In essence, our work extends the seminal work of Paolucci et. al. [15] which defines the match-
making conditions for Semantic Web services, discusses the requirements for effective and ef-
ficient discovery, and introduces the matchmaking algorithm. The matchmaking is focused on
semantic similarities between the service request and service advertisements, based on matching
degrees between service inputs and outputs (i.e., the functional characteristics of the service),
and it also considers other criteria such as service categorisation. The work of Paolucci et. al.
has its roots in discovery research in agents community. Specifically, some concepts and ideas
originate in the LARKS notation [18] developed for discovery of agents based on their capabili-
ties. The specific matching conditions defined by Paolucci et. al. for Semantic Web services are
derived from matching conditions for generic software components introduced by Zaremski et.
al. [21].

The work of Paolucci et. al. was recently extended in several directions. For example, Klusch
et. al. [12] address the problem of flexible matchmaking by using a hybrid matchmaker which
combines the semantic approach with approaches from the information retrieval field. Recently
Kaufer and Klusch [8] developed a WSMO-MX Matchmaker, which is a hybrid matchmaker for
WSMO services that employs the graph-matching approach combined with syntactic similarity
measurement. Bellur et. al. [2] analyzes the correctness of [15] and suggests an improved
algorithm based on bipartite graph matching.

Another approach to service discovery was developed by Bernstein et al. [4]. The authors
propose to use process ontologies to describe the behaviour of services and then to query such
ontologies using a Process Query Language (PQL).

Discovery of services combinations

The approach to service discovery developed as part of the METEOR-S framework by Verma
et. al. [20] focuses on dynamic binding of services in service workflows represented as composite
service templates. As such the approach can be seen as a step towards dealing with service
combinations or compositions. However, the authors do not attempt to dynamically discover or
synthesize service compositions. Rather, the focus is on selecting services that can instantiate
an abstract workflow while optimizing some global criteria such as an overall cost.

Benatallah et. al. in [3] propose an approach based on request rewriting that allows a com-
bination of several services to satisfy the service request. The hypergraph theory is used in order
to find a combination of Web services that best match the given request. The optimality criteria
is derived from the notion of covering as many outputs of the request as possible and requiring
as little inputs that are not provided by the requester as possible. Although the approach of
Benatallah et. al. is similar to our work, there are several important differences. First, the
matching criteria is different. While Benatallah et. al. allow some outputs or inputs to be miss-
ing, in our case we require all outputs to be produced while using only provided inputs. While
the approach of Benatallah might be more flexible in some situations, our matching conditions
are giving stronger guarantees. Additionally, we consider the problem of effect collisions, which
is not addressed in [3].

Another approach similar to our work was developed by Kster et. al. in [13]. The authors
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propose an integrated approach to service matchmaking and composition in the context of
the DIANE Service Description language. In principle, the authors extend the basic discovery
approach based on the DIANE language [9, 10] so as to allow combinations of services to be
discovered in order to satisfy requests with multiple effects. In terms of combination based
matching, our notion of a combined match is very similar in nature to the concept of multiple
effects matching, however there are several substantial differences between our work and [13].
First of all, the DIANE language is quite different from OWL-S, and also the basic matching
algorithm differs substantially. The DIANE matching is based on graphs matching and fuzzy sets
comparisons, while OWL-S relies primarily on description logic reasoning. Another signifficant
difference is that while we only consider service matching based on types of IOPEs of the service,
Kster et. al. additionally consider so called instance level service retrieval, which means that
services are matched also based on particular values (instances) that they are able to produce. On
the other hand, in our approach we consider possible collisions between service advertisements
and we also focus on the top k retrieval algorithm.

Another thread in the discovery research focuses on discovery of proper service compositions
and on considering behavioral aspects of composite services as a possible matchmaking criterion.
For example, Brogi et. al. in [7] consider both, discovery based on information specified in service
interfaces, and also discovery based on behavioral aspects of service in the form of supported
interaction protocols. The OWL-S workflow of discovered services is tranformed into Petri
net representation which is used during discovery for checking properties such as a deadlock
freedom. In the later work, Bonchi et. al. [6] define a behavioural equivalence of Web services
based on bisimilarity. Although the authors claim that the proposed equivalence can be used
for behaviour-aware discovery purposes, it is not very clear whether such an approach would be
tractable and whether it is possible to develop an efficient discovery algorithm.

With respect to ranking of service compositions, an approach similar to our work was de-
veloped recently by Binder et. al. in [5]. The authors propose a ranking based on a numeric
expression provided as part of the request, and a directory service which supports such user-
defined selection and ranking expression. The expressions support a combination of arithmetic
operators such as min, max, +, −, and set operators such as union, intersection, etc., which
operate on sets of inputs and outputs of the advertisement and the request. While the approach
of Binder et. al. is very flexible and allows a requester to define a specific type of ranking, the
expressions are somewhat non-intuitive.

11 Conclusions and Future Work

In this report we described an efficient mechanism for matchmaking of sets of services. We
defined a combined match and a set of collisions which might make the match problematic for
a requester. We developed an efficient matchmaking algorithm for retrieval of top k combined
matches without undesired and contradictory effects and we showed that the algorithm has
similar time complexity as retrieval of individual services. On the other hand, we proved that
retrieval of combined matches containing no effect duplications is an NP-hard problem and we
developed a top-k retrieval algorithm employing optimization techniques known from constraint
satisfaction problem solving that substantially reduce the search space. The focus on avoiding
collisions and on the efficient retrieval of top k matches distinguishes our work from other
research that considers discovery of sets of services.

Our approach to discovery of service combinations presents an important extension to match-
making methods for discovering individual services. Such an extension finds its use mostly in
dynamic environments in contexts such as service composition or process mediation, where it is
not realistic to assume the perfect knowledge of the environment. We argued that introducing
matches derived from service combinations increases substantially the likelihood of a successful
match. However, at the same time, it turned out that by allowing several services to be a solu-

23



tion for a particular request also a careful attention has to be paid to possible collisions between
services that are constituting the resulting match.

The main problem of the combined match is the fact, that it does not consider proper service
compositions. We plan to explore extensions of our work that will allow service chaining and
thus support discovery of proper service compositions. In terms of efficiency and complexity
of discovering full fledged service composition, expectations are constrained by a known fact
that the problem of service composition is NP-hard. Still, it is meaningful to try to develop
for example an any-time approximation algorithm. Another open research question is related
to aggregate ranking functions of combined or composed matches. As opposed to matching of
individual services, ranking of service combinations is a rather new and open question. Simi-
larly, also questions of evaluation of non-functional parameters such as reliability or security of
combined or composed matches needs to be addressed.
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