
An Algorithm for Solving the Absolute Value Equation: An Improvement

Rohn, Jiřı́
2010

Dostupný z http://www.nusl.cz/ntk/nusl-41158

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 29.09.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-41158
http://www.nusl.cz
http://www.nusl.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

An Algorithm for Solving the
Absolute Value Equation:
An Improvement

Jǐŕı Rohn

Technical report No. V-1063

20.01.2010

Pod Vodárenskou věž́ı 2, 182 07 Prague 8, phone: +420 266 051 111, fax:
+420 286 585 789, e-mail:e-mail:ics@cs.cas.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

An Algorithm for Solving the
Absolute Value Equation:
An Improvement

Jǐŕı Rohn1

Technical report No. V-1063

20.01.2010

Abstract:

Presented is an algorithm which for each A,B ∈ Rn×n and b ∈ Rn in a finite number of
steps either finds a solution of the equation Ax + B|x| = b, or finds a singular matrix S
satisfying |S − A| ≤ |B|.

Keywords:
Absolute value equation, algorithm, singularity.

1Supported by the Czech Republic Grant Agency under grants 201/09/1957 and 201/08/J020,
and by the Institutional Research Plan AV0Z10300504.

1 Introduction

In our earlier paper [1] we presented an algorithm (Fig. 3.1 below) which for each
A,B ∈ Rn×n and b ∈ Rn in a finite number of steps either finds a solution of the
absolute value equation

Ax + B|x| = b, (1.1)

or states existence of a singular matrix S satisfying

|S − A| ≤ |B|, (1.2)

and, in most cases, also finds such an S. The cases when existence of a matrix S
satisfying (1.2) is stated, but S itself is not found, are extremely rare, but they still
exist. Among 100,000 randomly generated 5× 5 examples, the author has found only
one example of such type, namely the one given in Section 5. In this paper we present
an improvement of the previous algorithm (Fig. 4.1) which eliminates occurrences of
the above-described situations. The improved algorithm for each data A,B ∈ Rn×n,
b ∈ Rn in a finite number of steps either finds an x satisfying (1.1), or finds a singular
matrix S satisfying (1.2). As we shall see, an essential redesigning of a part of the
algorithm was necessary to achieve this purpose.

We use the following notations. Ak• and A•k denote the kth row and the kth column
of a matrix A, respectively. Matrix inequalities, as A ≤ B or A < B, are understood
componentwise. The absolute value of a matrix A = (aij) is defined by |A| = (|aij|).
The same notations also apply to vectors that are considered one-column matrices.
I is the unit matrix, ek is the kth column of I, and e = (1, . . . , 1)T is the vector of all
ones. Yn = {y | |y| = e} is the set of all ±1-vectors in Rn, so that its cardinality is 2n.
For each x ∈ Rn we define its sign vector sgn(x) by

(sgn(x))i =

{
1 if xi ≥ 0,

−1 if xi < 0
(i = 1, . . . , n),

so that sgn(x) ∈ Yn. For each y ∈ Rn we denote

Ty = diag (y1, . . . , yn) =

y1 0 . . . 0
0 y2 . . . 0
...

...
. . .

...
0 0 . . . yn

 .

2 Auxiliary result

The following result gives an explicit way how to construct a required singular matrix
S under circumstances that may occur during the algorithm.

2

Proposition 1. Let

(A + BTz′)x
′ = (A + BTz′′)x

′′

hold for some z′, z′′ ∈ Yn and x′ 6= x′′ such that for each `, z′`z
′′
` = −1 implies x′`x

′′
` ≤ 0.

Then for x = x′ − x′′ the matrix

S = A− Ty|B|Tz, (2.1)

where y is given by

yj =

{
(Ax)j/(|B||x|)j if (|B||x|)j > 0,
1 if (|B||x|)j = 0

(j = 1, . . . , n) (2.2)

and

z = sgn(x), (2.3)

is a singular matrix satisfying |S − A| ≤ |B| and Sx = 0.

Proof. From the proof of Proposition 2.4 in [1] it follows that under our assumptions
on z′, x′, z′′, x′′ there holds

|Ax| ≤ |B||x|,
where x = x′ − x′′, and Corollary 2.3 in [1] implies that the matrix S constructed by
(2.1), (2.2) and (2.3) is singular and satisfies |S − A| ≤ |B| and Sx = 0. 2

3 The former algorithm

In [1] we proposed the signaccord algorithm (Fig. 3.1). It was supported there by
the following theorem.

Theorem 2. For each A,B ∈ Rn×n and each b ∈ Rn, the signaccord algorithm
(Fig. 3.1) in a finite number of steps either finds a solution x of the equation (1.1), or
states existence of a singular matrix S satisfying (1.2) (and, in most cases, also finds
such an S).

As we shall see in Section 5, the possibility of stating existence of a singular matrix
without actually finding such a matrix is not excluded. This may happen if the
condition

log2 pk > n− k (3.1)

is satisfied at some step; then the algorithm terminates in the fourth if ... end state-
ment without having constructed a singular matrix S satisfying |S−A| ≤ |B| (although
its existence is guaranteed).

3

function [x, S, flag] = signaccord (A,B, b)
% Finds a solution to Ax + B|x| = b, or states
% singularity of [A− |B|, A + |B|].
x = []; S = []; flag = ′singular′;
if A is singular, S = A; return, end
p = 0 ∈ Rn;
z = sgn(A−1b);
if A + BTz is singular, S = A + BTz; return, end
x = (A + BTz)

−1b;
C = −(A + BTz)

−1B;
while zjxj < 0 for some j

k = min{j | zjxj < 0};
if 1 + 2zkCkk ≤ 0

S = A + B(Tz + (1/Ckk)eke
T
k);

x = [];
return

end
pk = pk + 1;
if log2 pk > n− k, x = []; return, end
zk = −zk;
α = 2zk/(1− 2zkCkk);
x = x + αxkC•k;
C = C + αC•kCk•;

end
flag = ′solution′;

Figure 3.1: The former signaccord algorithm from [1].

4 The improved algorithm

Here we describe the improved algorithm absvaleqn (Fig. 4.1) which (in infinite
precision arithmetic) gives a result for any data.

Theorem 3. For each A,B ∈ Rn×n and each b ∈ Rn, the algorithm absvaleqn
(Fig. 4.1) in a finite number of steps either finds a solution x of the equation (1.1),
or finds a singular matrix S satisfying (1.2).

The improvement is placed in between the lines (17) and (25) of the algorithm where
a previously missing singular matrix S is constructed along the lines of Proposition 1.
The newly added variable r provides for finite termination of the algorithm. The proof
is omitted here, but it can be inferred from the proof of Theorem 3.1 in [1].

4

5 Example

The following randomly generated example was mentioned in the Introduction.

A =

78.2134 -31.1765 60.6102 -37.0822 56.8726

58.2907 43.4605 19.6398 -9.8557 78.7528

70.4107 -10.3979 -91.2714 76.0946 63.0426

-87.0915 -40.7813 43.1212 18.4124 66.3227

-15.8190 -97.4141 84.0572 -17.1518 71.9448

B =

48.7043 -11.4057 -45.9936 -32.0912 -48.5738

-17.5735 -30.9182 46.6939 -5.8549 5.7216

34.4625 4.9679 5.6077 -42.2342 -32.9722

27.4187 43.0308 8.4773 38.7742 -6.8549

-45.7192 -18.8891 32.3623 9.3232 -15.2663

b =

34.9380

81.5419

-19.1015

89.3878

-5.9995

Running the former algorithm in MATLAB, we obtain

>> [x,S,flag]=signaccord(A,B,b)

x =

[]

S =

[]

flag =

interval matrix singular

The reason for the premature termination is the fact that after the seventh iteration
we have p5 = 2, hence the condition (3.1) is satisfied and the algorithm exits the while
loop.

On the contrary, the improved algorithm, also after seven iterations, produces a
singular matrix.

5

>> [x,S]=absvaleqn(A,B,b)

x =

[]

S =

29.5091 -19.7708 29.6467 -4.9910 8.2988

75.8642 74.3787 51.0747 -4.0008 84.4744

35.9482 -15.3658 -87.4962 118.3288 30.0704

-114.5102 -83.8121 48.8282 -20.3618 59.4678

29.9002 -78.5250 105.8439 -26.4750 56.6785

We can check that the computed matrix S satisfies (1.2) (up to rounding errors) and
is rank deficient.

>> abs(B)-abs(S-A)

ans =

0 0 15.0301 0 0

0.0000 -0.0000 15.2590 0 0.0000

0 0 1.8325 0 0

0 0 2.7703 0 -0.0000

0 0 10.5756 0 -0.0000

>> rank(S)

ans =

4

6

(01) function [x, S] = absvaleqn (A,B, b)
(02) % Finds either a solution x to Ax + B|x| = b, or
(03) % a singular matrix S satisfying |S − A| ≤ |B|.
(04) x = []; S = []; i = 0; r = 0 ∈ Rn; X = 0 ∈ Rn×n;
(05) if A is singular, S = A; return, end
(06) z = sgn(A−1b);
(07) if A + BTz is singular, S = A + BTz; return, end
(08) x = (A + BTz)

−1b;
(09) C = −(A + BTz)

−1B;
(10) while zjxj < 0 for some j
(11) i = i + 1;
(12) k = min{j | zjxj < 0};
(13) if 1 + 2zkCkk ≤ 0
(14) S = A + B(Tz + (1/Ckk)eke

T
k);

(15) x = []; return
(16) end
(17) if ((k < n and rk > max

k<j
rj) or (k = n and rn > 0))

(18) x = x−X•k;
(19) for j = 1 : n
(20) if (|B||x|)j > 0, yj = (Ax)j/(|B||x|)j; else yj = 1; end
(21) end
(22) z = sgn(x);
(23) S = A− Ty|B|Tz;
(24) x = []; return
(25) end
(26) rk = i;
(27) X•k = x;
(28) zk = −zk;
(29) α = 2zk/(1− 2zkCkk);
(30) x = x + αxkC•k;
(31) C = C + αC•kCk•;
(32) end

Figure 4.1: The improved algorithm absvaleqn.

7

Bibliography

[1] J. Rohn. An algorithm for solving the absolute value equation. Electronic Journal
of Linear Algebra, 18:589–599, 2009.

8

