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”real” or ”float”. The basis of the program is a modification of the countingsort algorithm for reals (instead
of integers). It uses a comparison-type sorting for small part of data set given. The time complexity of
this part of program can be bounded by linear function of n and thus, the total time complexity is also
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Abstract

In this report we present a program for sorting data structures with sorting keys as real numbers, i.e. of type ”real” or ”float”.
The basis of the program is a modification of the countingsort algorithm for reals (instead of integers). It uses a comparison-
type sorting for small part of data set given. The time complexity of this part of program can be bounded by linear function
of n and thus, the total time complexity is also O(n) for n data items.

Keywords: Sorting; linear time; time complexity.

I. INTRODUCTION

The theme of fast sorting with noninteger (real, float) sorting keys is dominated by the quicksort algorithm that exists
in uncountable number of versions. Note that a big advantage of the quicksort is a small and constant space complexity.
There is also a proof that for rational numbers keys generally the best time complexity of comparison-based sorting is
given by n log n [1].

In this work we consider numerical sorting keys as real (in fact, rational) numbers that can be sometimes the same,
sometimes very close one to another. The target of this work is to present a modification of the counting sort for reals as
sorting keys. It often happens that several items sorted fall into one cell (bucket). These items are unsorted. We propose
to sort them using a comparison sort, e.g. bubble sort or quicksort. It can be found that the number of items faling into
one bucket is very small not exceeding several tens in practice. At the same time, also the number of cells with such
multiplicities is also limited. Based on upper estimations of multiplicities and their probabilities it can be prooved the
linear time complexity of the algorithm.

II. BACKGROUND

A. the computational complexity

The computational complexity of algorithm is the amount of time, storage or other resources necessary to execute them.
Most often the computational complexity is meant as the time complesity. There is the space complexity that gives

the amount of memory needed. Some other criteria are
Stable sorting.
In place sorting.
The number of data moves.

III. RESULTS

A. The algorithm outline

The algorithm uses exactly n buckets, bins. Similarity to the counting sort is in that to each sample its position is derived
from the value of the sorting key. After such an assignment some buckets (bins) are occupied by exactly one sample. Sice
that time the relative position of such a sample to other samples is final. Some bins are empty and some bins are occupied
with several samples. We call this a multiplicity. This is similar to the bucket sort. Samples in these buckets must be sorted
and (with exception of one sample) assigned to nearest bins, one sample a bin. This way a sorted array is obtained. There
is mostly very small number of samples in a bin. We found that this small number is limited to at most several tens for
very large number of samples of order 1015. The time demand for sorting one sample in a bin with multiple samples can
be limited to a constant.

The upper margin of the time complexity to sort all samples in bins with multiple samples is proportional to their total
number and a constant mentioned. Thus, the upper margin of the time complexity of the algorithm is proportional to the
total number of samples sorted independently of algorithm used for sorting samples in bins with several samples.
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B. The algorithm description

In more detail - it is supposed that sorting key has known minimum and maximum, sm and sM . Let the value of a key
of a sample be κ. The key is of type ”real” or ”float”, in fact a rational number. An index i is computed as

i = b(n− 1)
κ− sm
sM − sm

c . (1)

The algorithm consists of four, eventually five loops of fixed length and needs three integer arrays of length n named
rank1, rank2, and rank. We suppose array rank1 initiated with zeroes. Note that array rank2 can be omited later. We
call an element of an array a bin.

In the first loop index i is computed for each sample according to (1) and the content of bin i of array rank1 is increased
by 1. Thus in array rank1 an histogram arises. One can find that some bins are empty, lot of them contain 1 corresponding
to exactly one particular sample, and some more, the multiplicities of samples.

In the second loop array rank2 is filed with partial sums (from the beginning) of values gained in rank1 array during
the previous loop. Thus, in fact, an empirical distribution function of keys arises.

In the third loop array rank is filled so, that empty bins of rank1 array are skipped, and to bins of rank1 array with
multiplicities a corresponding number of bins in rank3 array are assigned. Bins of array rank3 are filled with initial
ranks of sorted samples (i.e. with pointers to unsorted array of samples). In groups of bins that correspond to multiplicties
samples are usually not in the proper oder and must be sorted.

In the fourth loop these groups of bins in array rank are scanned and items are sorted by any comparison based
algorithm. These groups are usually small and their sorting fast. It holds even if the bubble sort algorithm is used. This
results in that array rank contains indexes of samples ranked according to the sorting key.

During the fifth loop samples can be arranged in the output sequence.
Example 1: Let there be 10 samples to sort as shown in Table I in the second column. The third and fourth column

shows computation of indexes of individual samples.

TABLE I
THE FIRST ASSIGNMENT OF RANKS TO SAMPLES.

sample sample ix= index
number x (n− 1) x−min

max−min
(first rank)

0 0.263 2.55 2
1 0.582 6.28 6
2 0.407 4.24 4
3 0.088 0.51 0
4 0.815 9 9
5 0.044 0 0
6 0.603 6.25 6
7 0.249 2.39 2
8 0.232 2.19 2
9 0.641 6.95 6

min 0.044
max 0.815

Table II shows in the second column the histogram of indexes computed in the previous table. The third column shows
in each bin a sum of contents of corresponding bin and of previous bin of array rank1. There is an exception, the first bin
remains zero. (Thus, in array rank2 the empirical distribution function of keys appears.) The number 0 in row 0 of the
third column (array rank2, first item) says that the group of samples starts at 0. The number of samples is given by the
difference of the next bin of array rank2 (second item, 2) and the first item (0), that gives 2, then the bucket corresponds
to two samples, see the fourth column of Table II. Initially array rank is empty. The indexes of samples (in the original
unsorted order) are used again. First, there is sample No. 0 with index 2. Then its number (0) is written to the first free
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TABLE II
HISTOGRAM AND FIRST RANKING OF SAMPLES. NOTE TWO MULTIPLICITIES IN THE HISTOGRAM.

array array size array before
bin rank1 rank2 of rank sort

number histogram indexes group samp.no. sample
0 2 0 0 3 0.088
1 0 2 2 5 0.044
2 3 5 3 0 0.263
3 0 5 0 7 0.249
4 1 6 1 8 0.232
5 0 6 0 2 0.407
6 3 9 3 1 0.582
7 0 9 0 6 0.603
8 0 9 0 9 0.641
9 1 10 1 4 0.815

position of array rank that corresponds to number 2 in array rank2. In this case it is row number 3. In the sixth column
of the Table a value of the item is shown (0.263). This way array rank is filled in. It is apparent, that groups of samples
that have the same index, need not be in a proper order. Note that here samples are in the same order as they were in
the beginning. The algorithm is stable and remains stable if the algorithm used for sorting groups is also stable. Table III
shows the sorting of the first group (rows 0 and 1, in bold), and then the sorting of the second group in rows No. 2, 3,
and 4 (in italics). There are no other multiplicities and then we have resultig sequence of numbes of samples. In the last
column of the table samples after sorting are shown.

TABLE III
SORTING GROUPS AND RESULTING RANKS IN ARRAY RANK3.

arr rank arr rank RESULT
bin first group sorted second group sorted
No. index sample index sample
0 5 0.044 5 0.044
1 3 0.088 3 0.088
2 8 0.263 0 0.232
3 7 0.249 7 0.249
4 0 0.232 8 0.264
5 2 0.507 2 0.507
6 1 0.582 1 0.582
7 6 0.603 6 0.603
8 9 0.641 9 0.641
9 4 0.815 4 0.815

Note 1: In the program the number of arrays used is reduced. Instead of rank1 and rank2 arrays a single array rank1
suffice.

Note 2: In the third loop indexes according to (1) are computed again. We found that otherwise a new array would be
necessary for storing indexes i computed in the first loop, and, moreover, in the whole, it can take a more time.

Note 3: Samples sorted can each represent a data structure, not only individual floating point number. In such a case it
is advantageous to have an array of pointers to samples in sorted order and to leave samples stored as they are. In this case
the fifth loop of the algorithm is omitted. Technically, if there is an unsorted array of samples samples[i], i = 1, 2, ...n,
the sorted array is samples[rank[j]], j = 1, 2, ...n.
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C. algorithm implementation

The algorithm written in c++ is attached in the Appendix. It does not use the fifth loop, the sequence of indexes of
array sorted is stored in array rank. The same is assumed about the quicksort called with name IquickSort. Eventually a
bucket sort can be used instead.

When sorting groups, these groups are divided to groups of two samples and to larger groups. Pairs of samples are tested
and eventually exchanged. For sorting larger groups an external procedure is called.

IV. PRACTICAL IMPLICATIONS

A. Space complexity

The algorithm uses an input array of rational numbers of length n and output integer array of the same length of indexes
of numbers in the sorted order, see Note 3.

Inside of the algorithm one other working integer array is needed, an array for histogram of sorted numbers. The length
of this array is n + 1. It is also supposed that the algorithm used for comparison sort of bins with multiplicities has
negligible space demand as the bubble sort or the quicksort.

B. Data moves

The other criterion for efficiency of an algorithm is the total number of data moves. A data item, a sample, is moved if
its position in array is changed.

The first move for each sample happens in the third loop of the algorithm, where each bin of array rank is assigned to
a sample. There is estimated to n moves as a negligible small portion of data remain in the same position in the array.

C. The trick

We proved linear time complexity of the algorithm under assumptions of uniform or exponential distribution of values
of sorting keys that are assumed to be ”reals”, in fact, rational numbers. We use histograms with as many bins as there
are samples. Both proofs use finding that data with distributions mentioned have in this histogram bins with small number
of samples (at most several tenths) even for unrealistically large number n of samples. It can be supposed that a similar
behavior appears also for other light-tailed distributions.

Heavy-tailed distributions of sorting keys does not have this feature. With heavy-tailed distributions there appear one or
several bins containing nearly all samples that are sorted with comparison sort. It causes finally that sorting takes more
time than direct use of the comparison sort alone.

We use the fact that data can be transformed using arctg function. The arctg function applied to keys with Cauchy
distribution causes uniform distribution of sorting keys. For beta-prime and other distributions the resulting distributiom
may be rather strange. We found that this transform works well also for light-tailed distributions including uniform and
exponential. However, it brings no advantage and also no disadvantage (with exception of some computation more).

V. CONCLUSION

In the sort algorithm presented in this report we use a combination of the counting sort and comparison sort. The essence
of the algorithm is start as a counting, ev. bucket sort with the number of bins or buckets equal to the number of samples
sorted. Samples in buckets with two samples exchange if necessary. Samples in buckets of three or more samples sort with
a comparison sort.

The use of the counting sort allows to sort most of samples by direct assignment of rank to samples and eventually
exchange some pairs of samples. This way some 70% samples are ranked properly. The time needed to process this part
of data is proportional to their number. Remaining 30% of samples form groups of three or more samples. We speak about
the multiplicity. The number ev. probability of appearance of these groups lessens rapidly with their size. We found that
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the maximal size of a group (bin) is several tens only even for unrealistic number of samples. This allows to state an upper
margin for sorting these groups by any method in form constant × the number of samples. Total time needed to
sort all samples including those in groups grows linearly with the number of items sorted n. At the same time, the space
needed is equal to n, ev. 3n including input and output arrays. There is also at most 2n data moves, approx. 1.6n data
moves are more probable in practice.
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APPENDIX 1. THE ALGORITHM.
void LS(double* arr, long* rank, long samples, double keymin, double keymax) {

// uses IquickSort and double computation of position
long k,j,i,ix,kx;
double logdd;
long* rank1 = new long [samples+1];
logdd=1.0/(keymax-keymin);
for(k=0;k<=samples;k++) rank1[k]=0;
for(k=0;k<samples;k++){ // FIRST loop to build histogram

j=(long)fabs((double)(samples-1)*(arr[k]-keymin)*logdd );
rank1[j+1]++;

}
for(k=1;k<=samples;k++) rank1[k]+=rank1[k-1];// SECOND loop to build sums.
for(k=0;k<samples;k++) { //THIRD loop fill-in rank.

ix=(long)(fabs((double)(samples-1)*(arr[k]-keymin)*logdd));
kx=rank1[ix];// bin where a segment starts
rank[kx]=k;
rank1[ix]++;//bin for the next time

}
ix=0;kx=rank1[0];
for(k=0;k<samples-1;k++){ //FOURTH loop sort groups by a comparison sort

if(k>0) kx=rank1[k]+(rank1[k-1]==ix?0:1);
i=kx-ix;
if(i>1) {

if(i>2) IquickSort(arr,rank,ix,kx-1);
else{

j=ix;
if(arr[rank[j+1]]<arr[rank[j]]) {//exchange

i=rank[j+1];
rank[j+1]=rank[j];
rank[j]=i;

}
}

}
ix=kx;

}
} // There are indexes in the rank array such that arr[rank[i]] is arranged in ascending order



6

APPENDIX 2. THE QUICKSORT.

Originally published in [2]. We use and cite it here verbatim with small technical changes as follows.

//********** I-QUICKSORT ******************
int Ipartition(double* arr,long* rank,long left,long right){
//http://www.algolist.net/Algorithms/Sorting/Quicksort*/

long i=left,j=right,tmp;
double pivot;
pivot=(arr[rank[left]]+arr[rank[right]])/2;
while(i<=j){

while(arr[rank[i]]<pivot)
i++;

while(arr[rank[j]]>pivot)
j--;

if(i<=j){
tmp=rank[i];
rank[i]=rank[j];
rank[j]=tmp;
i++;
j--;

}
};
return i;

}
void IquickSort(double arr[],long ranks[],long left,long right){ //left, right included!!

long index=Ipartition(arr,ranks,left,right);
if(left<index-1)

IquickSort(arr,ranks,left,index-1);
if(index<right)

IquickSort(arr,ranks,index,right);
}
//******************************************


