
Towards a Process Mediation Framework for Semantic Web Service

Vaculı́n, Roman
2008

Dostupný z http://www.nusl.cz/ntk/nusl-40646

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 10.04.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-40646
http://www.nusl.cz
http://www.nusl.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

Towards a Process Mediation
Framework for Semantic Web
Services

Roman Vacuĺın, Roman Neruda, Katia Sycara

Technical report No. 1048, November 2008

Pod Vodárenskou věž́ı 2, 182 07 Prague 8, phone: +420266 051 111, fax: +420286 585 789,
e-mail:ics@cs.cas.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

Towards a Process Mediation
Framework for Semantic Web
Services1

Roman Vacuĺın2, Roman Neruda, Katia Sycara3

Technical report No. 1048, November 2008

Abstract:

The ability to deal with incompatibilities of service requesters and providers is a critical factor for achieving
interoperability in dynamic open environments. We focus on the problem of process mediation of semanti-
cally annotated process models of the service requester and the service provider. We propose an Abstract
Process Mediation Framework identifying the key functional areas that need to be addressed by process
mediation components. Next, we present algorithms for solving the process mediation problem in two sce-
narios: (a) when the mediation process has complete visibility of the process model of the service provider
and the service requester (complete visibility scenario), and (b) when the mediation process has visibility
only of the process model of the service provider but not the service requester (asymmetric scenario). The
algorithms combine the AI planing and semantic reasoning with recovery techniques and the discovery
of appropriate external services such as data mediators. Finally, the Process Mediation Agent (PMA) is
introduced, which realizes an execution infrastructure for runtime mediation.

Keywords:
process mediation, semantic web services, agents and web services, automated planning

1This research was partially supported by the the Czech Ministry of Education project ME08095 and “Information
Society” project 1ET100300517. This research was supported in part by Darpa contract FA865006C7606 and in part
by funding from France Telecom.

2Roman Vacuĺın, Roman Neruda – Institute of Computer Science, Academy of Sciences of the Czech Republic
({vaculin,roman}@cs.cas.cz)

3Katia Sycara – The Robotics Institute, Carnegie Mellon University (katia@cs.cmu.edu)

1 Introduction

One of the main promises of Web Services standards is to enable and facilitate smooth interoperability
of diverse applications and business processes implemented as components or services. The most of
existing web services are programmed to exchange data according to some protocol. In addition to
that, individual web services serve as building blocks in process models that prescribe control and
data flows and thus define functionalities of more complex applications. However, as business needs
change, processes could get reconfigured, replaced by new providers, or additional components and
services may need to be added. As a result of these changes, the existing processes must become
interoperable with the new ones. The possibility of achieving interoperability of existing processes
without actually modifying their implementation and interfaces is therefore desirable.

Current Web Services standards provide a good basis for achieving some level of interoperability.
WSDL [12] standard allows to declaratively describe operations, the format of messages, and the data
structures that are used to communicate with a web service. BPEL4WS [3] adds the possibility to
combine several web services within a formally defined process model, and so to define the interac-
tion protocol and possible control flows. However, neither of these two standards goes beyond the
syntactic descriptions of web services. Newly emerging standards for semantic web services such as
SAWSDL [17], OWL-S [24] and WSMO [21] strive to enrich syntactic specifications with rich semantic
annotations to further facilitate flexible dynamic web services invocation, discovery and composition
[23]. However, this is not enough for achieving the interoperability in dynamic environments, at least
for two reasons.

First, service providers and requesters do not typically share the same data models, interaction
protocols and oftentimes even not the basic standards for WS specification. As a result, we have
to deal with incompatibilities on different levels among service providers and requesters [29]. Second,
due to the dynamic nature of the internet and rapid, unpredictable changes of business needs, also the
existing web services change very often. The ability to adapt to changing environments is therefore
crucial. In such cases, interoperability can be achieved by applying a process mediation component
which resolves all possible incompatibilities and generates appropriate mappings between these pro-
cesses. Implementing the process mediation component is complicated and costly, since it has to
address many different types of incompatibilities on the data, service and process levels. As part of
the process mediation, it is also necessary to deal with possible failures and unexpected behaviors of
services. In open environments the process mediation component might also need to interact with
other middle agents, such as discovery agents.

In this paper we address the problem of automatic mediation of process models consisting of
semantically annotated web services. We are focusing on the situation where the interoperability of
two components, one acting as the requester and the other as the provider, needs to be achieved.
Usually, both the requester and provider adhere to some relatively fixed process models. The process
models can either correspond to a particular existing implementation or they can be default (generic)
process models that for example generalize a business processes of some specific problem domain (e.g.,
flights booking requester or provider). We analyze the problem of process mediation and we propose
an Abstract Process Mediation Framework (APMF) that identifies the key functionalities which need
to be involved to allow a successful process mediation in dynamic environments. In addition to process
mediation, data mediation and service invocation, we introduce the notion of semantic monitoring and
semantic recovery, which are novel to the process mediation and to the semantic web services area as
well. The process mediation context also brings a new perspective and new problems to the service
discovery. We discuss each of these functional areas from the process mediation perspective and we
introduce technical solutions developed in the context of OWL-S semantic web services.

The problem of process mediation as well as the suitable solutions to it depend on various con-
ditions. We study the problem with respect to the openness of the operating environment and with
respect to visibility of involved process models to the mediation component. We have identified these
two characteristics as important factors with a direct impact on design of effective process media-
tion architectures and algorithms. With respect to the environment openness, we distinguish three
prototypical environment types: (1) a relatively closed corporate intranet environment in which de-
velopment of all components can be controlled by one authority; (2) a semi-open environment with

1

a controlled registration in which software components are controlled and developed by independent
authorities but the system maintainer / owner can define policies specifying how components are
added and removed; (3) a dynamic open environment in which software components of independent
vendors can be added, modified and removed arbitrarily.

With respect to visibility of involved process models, for a given process model we distinguish
three cases, depending on the amount of information that the mediation component has about the
process model:

1. complete visibility (white box model): the mediation component can see the complete process model
2. partial visibility (gray box model): the mediation component can see only definitions of available

operations (i.e., atomic processes in the OWL-S terminology), while the interaction protocol is not
disclosed

3. no visibility (black box model): the mediation component does not have any information about the
process model, other than knowing the address of the endpoint; so that only exchanged messages
can be observed during the mediation process

By applying specific visibility options to the mediation scenario of one requester and one provider,
we obtain nine possible mediation configurations. We analyze these scenarios and propose mediation
techniques and architectures for two cases: (a) when the mediation component has complete visibility
of the process model of the service provider and the service requester (complete visibility scenario),
or (b) when the mediation component has visibility only of the process model of the service provider
but not the service requester (asymmetric scenario). In both cases, our solution combines the AI
planing to generate appropriate mappings between processes, and semantic reasoning with the dis-
covery of appropriate external data mediators and suitable recovery techniques. These two scenarios
are representative since they are both very realistic in current conditions and the proposed techniques
can be applied to the remaining scenarios as well. The scenario (a) represents a typical situation for
closed or semi-open environments of intranet or B2B applications. On the other hand, the scenario
(b) represents a mediation problem usual in open environments in which clients are concerned about
privacy and therefore do not wish to disclose their process models.

The main idea of this paper is that in dynamic environments agent technologies together with
explicitly defined semantics of web service based process models are the key enablers for dynamic
interoperability in service oriented architectures. We believe, that software agents — employing
techniques such as reasoning and planning combined with approaches like dynamic discovery and
recovery from failure — is the best choice available today that can offer an alternative to dealing with
problems of incompatibilities and adaptivity manually. It is very likely, that as the web services will
be expected to operate in a more and more autonomous fashion, we will see the transition of some of
these technologies into conventional WS infrastructure.

The rest of the paper if structured as follows. In Section 2 we introduce the process mediation
problem and the characteristics of closed, semi-open and open environments. Section 2.1 starts with
introducing the abstract process mediation framework and it continues with description of technical
solutions of each of the functional areas of the framework. In Section 3.2 we analyze modalities of
the process mediation problem derived from visibility of process models by the process mediation
component. In Section 4 we describe two concrete architectures addressing the problem in the com-
plete visibility scenario and the asymmetric scenario. Section 5 discusses discovery of new mediation
services. Finally in Section 6 we briefly review the related work and we conclude in Section 7.

2 Process Mediation Problem

When requesters and providers use fixed, incompatible communication protocols interoperability can
be achieved by applying a process mediation agent (component) which resolves all incompatibilities,
generates appropriate mappings between different processes and translates messages exchanged during
run-time.

2

Interoperability of a requester and a provider might be complicated by diverse types of incompat-
ibilities. In the context of process mediation the following types of mismatches can be identified:

1. Data level mismatches :

(a) Syntactic / lexical mismatches : data are represented as different lexical elements (numbers,
dates format, local specifics, naming conflicts, etc.).

(b) Structural Data mismatches: data are represented in different datastructures (arrays, records,
sets, etc.)

(c) Ontology mismatches : the same information is represented as different concepts

i. in the same ontology (subclass, superclass, siblings, no direct relationship)
ii. or in different ontologies, e.g., (Customer vs. Buyer)

2. Service level mismatches:

(a) a requester’s service call is realized by several providers’ services or a sequence of requester’s
calls is realized by one provider’s call

(b) requester’s request can be realized in different ways which may or may not be equivalent (e.g.,
different services can be used to to satisfy requester’s requirements)

(c) reuse of information: information provided by the requester is used in different place in the
provider’s process model (similar to message reordering)

(d) missing information: some information required by the provider is not provided by the requester
(e) redundant information: information provided by one party is not needed by the other one

3. Protocol / structural level mismatches: control flow in the requester’s process model can be realized
in very different ways in the provider’s model (e.g., sequence can be realized as an unordered list
of steps, etc.)

We assume that both the requester and the provider behave according to specified process models
and that both process models are expressed explicitly using OWL-S ontologies [24]. In OWL-S, the
elementary unit of process models is an atomic process, which represents one indivisible operation that
the client can perform by sending a particular message to the service and receiving a corresponding
response. Processes are specified by means of their inputs, outputs, preconditions, and effects (IOPEs).
Types of inputs and outputs are defined as concepts in an ontology or as simple XSD data-types.
Processes can be combined into composite processes by using control constructs such as sequence,
any-order, choice, if-then-else, split, loops, etc. In OWL-S, syntactic and lexical level mismatches
(category 1a) are handled by the service Grounding which defines transformations between syntactic
representation of web service messages and data structures and the semantic level of the process
model. The Grounding provides mechanisms (e.g., XSLT transformations) to map various syntactic
and lexical representations into the shared semantic representation. Finally, we assume that both
process models share the same domain ontology and target conceptually the same problem.

2.1 Abstract Process Mediation Framework

We have defined an abstract process mediation framework (APMF) that identifies and separates critical
functional areas which need to be addressed by mediation components in order to effectively solve the
process mediation problem.

Figure 2.1 shows the abstract process mediation framework. The three key functionalities, namely
process mediation, data mediation and service invocation, are displayed as horizontal layers. The
process mediation layer, realized by process mediators, is responsible for resolving service level and
protocol level mismatches (categories 2 and 3 defined in Section 2). The data mediation layer, realized
by data mediators, is responsible for resolving data level mismatches (category 1 defined in Section
2). Typically, when trying to achieve interoperability, process mediators and data mediators are
closely related. A natural way is to use data mediators within the process mediation component to
resolve “lower” level mismatches that were identified during the process mediation. Finally, the service
invocation layer is responsible for interactions with actual web services, which include the services of
the requester, provider and possibly other external services.

In addition to the key functionalities, other areas might need to be covered depending on the
environment characteristics. Specifically, since we assume that environments are dynamic and might
be open, the monitoring and recovery functionalities must be included in the APMF. We display these

3

Figure 2.1: Abstract Process Mediation Framework

functionalities as vertical layers intercepting the horizontal layers because monitoring and recovery
are intertwined with the key mediation functionalities and both need to be performed on all different
levels. Clearly, on different levels requirements on and techniques of monitoring and recovery are
different, which we discuss later in this section. Finally, we also consider the discovery of external
services functionality as closely related to the process mediation problem in dynamic environments.
For example, when an incompatibility such as a missing piece of information is identified between two
processes, an external service might need to be discovered which is capable of delivering the required
information. Interestingly, the requirements for discovery motivated by process mediation [27] are
somewhat different when compared to traditional approaches such as [19].

2.2 Process Mediation Overview

The problem of process mediation can be seen as finding an appropriate mapping between requester’s
and provider’s process models. The mapping can be constructed by combining simpler transforma-
tions representing different ways of bridging described mismatches. We need to decide if structural
differences between process models can be resolved. Assuming that the requester starts to execute its
process model, we want to show that for each step4 of the requester the provider with some possible
help of intermediate translations represented by data mediators or built-in conversions can satisfy the
requester’s requirements (i.e., providing required outputs and effects) while respecting its own process
model. If no such a mapping can be found by using the known data mediators, we would like to know
what are the reasons, or more specifically, what is the information gap that impedes the mediation.

In general, the process mediation layer has to address three problems: (1) finding mappings between
processes, (2) identifying possible information gaps that impede the mediation, and (3) providing
suitable mechanisms for the runtime mediation.

Various approaches can be applied to process mappings provision ranging from manual to fully
automatic techniques. In some cases the suitable mappings can be computed automatically either
prior to the mediation itself or during the runtime. In Sections 4.3 and 4.1 we present mechanisms
based on AI planning for computing the mappings. In our approach the developed algorithms are also
able to identify the information gaps and transform those gaps into the matchmaker queries.

In the minimalistic scenario, during the runtime mediation process the suitable / discovered map-
pings (transformations) has to be applied to the interactions between the requester and the provider.
In the more elaborate scenario, also the monitoring and recovery mechanisms has to be incorporated
to achieve a reliable and robust execution. In other words, the process mediation layer controls and
integrates the other remaining layers.

Because the problem of process mediation is complex and extensive, we focus primarily on the
process level mismatches while we address the data mediation only in a very limited way. We assume
that data mediators have the form of external services which can be discovered and used by the process
mediation component. Furthermore, in our system data mediators can have a form of converters that

4In the following text the word step stands for an atomic process executed by the requester. If we refer to the
provider’s atomic processes, we mention it explicitly.

4

Figure 2.2: Process models of the requester and provider and possible mappings between them.

are built-in to the system. Currently, built-in converters support basic type conversions such as up-
casting and down-casting based on reasoning about types of inputs and outputs. By up-casting or
down-casting we mean a conversion of an instance of some ontology class to a more generic or more
specific class respectively. For details related to data mediation see for example [22, 9, 26].

2.3 Motivating Example

Figure 2.2 presents an example of the mediation problem between a hypothetical requester and
provider from the flights booking domain. Specifically, Figure 2.2a depicts a fragment of the process
model of the requester while the provider’s process model fragment depicted in Figure 2.2b represents
a more elaborate scenario that allows the requester to book either the whole itinerary or to pick the
departure and return flights separately.

The requester’s process model starts with the Login atomic process that has two inputs, userId
which is an instance of the UserID class and password of Password type, one output logResult of
boolean type and a conditional effect expressing that the predicate (LoggedIn userID) will become
true if the value of logResult equals to true. Similarly the process continues by executing other atomic
processes. Inputs and outputs types used in process models refer to a simple ontology showed in
Figure 2.3.

Concepts UserID, PasswordCity, FromCity, ToCity, DateTime, USDateTime, USDepTime, USRetTime, ISODateTime,

ISODepTime, ISORetTime, FlightsList, FltNr, ItineraryNr, AvailStatus, LoggedIn, AirportCode,

AirportFromCode, AirportToCode

ISA-relations USDateTime ⊑ DateTime, USDepTime ⊑ USDateTime, USRetTime ⊑ USDateTime,

ISODateTime ⊑ DateTime, ISODepTime ⊑ ISODateTime, ISORetTime ⊑ ISODateTime, FromCity ⊑ City,

ToCity ⊑ City, AirportFromCode ⊑ AirportCode, AirportToCode ⊑ AirportCode

Figure 2.3: Fragment of the flights domain ontology with only concepts and ISA-relations displayed.

The example demonstrates several types of inconsistencies that the PMA has to deal with and two
possible mappings between both process models.Dashed arrows between parts (a) and (b) of Figure 2.2
represent symbolically possible mappings between requester’s and provider’s process models that can
be found by the process mediation algorithm. Sometimes, the mapping can be achieved without the
use of any help of other services, such as in the case of requester’s Login atomic process. However, often

5

the identified data incompatibilities or missing pieces of information require external services to be
used in order to construct a meaningful mapping between process models. Consider, for example, the
requester’s SearchFlight atomic process and the provider’s SearchFlightOne process. In this particular
case, a combination of external services AirportCityToCode and USTimeToISO can be used to bridge
the gap as shown in Figure 2.2. The process mediation algorithm must be able to identify such gap and
possibly be able to transform the the identified gap into a query for the discovery service or agent,
which eventually might discover the suitable candidate external services. After that, the process
mediation component uses a composition algorithm to construct the sought mapping by employing
the newly discovered services.

3 Means of Process Mediation

3.1 Operating Environments Characteristics

Depending on the nature of the environment in which the interoperability has to be achieved, dif-
ferent approaches must be considered. A relatively closed corporate intranet environment in which
development of all components can be controlled by one authority allows high built-in interoperability
of components. An agreement on the syntax and semantics of exchanged data and communication
protocols is possible in advance. Typically, either both the client and the provider can be developed
to cooperate together or the client is specifically developed to interact with some particular provider
service. In a closed environment it is also much easier to develop ad-hoc mediation components for
individual pairs of services, because limited number of components can interact with each other and
all protocols and all incompatibilities are known.

However, the environment in corporations cannot always be considered as entirely closed because
services of many diverse contractors and subcontractors are used as part of organizations’ business
processes. We call such an environment as semi-open. In semi-open environments, software compo-
nents are controlled and developed by independent authorities which engenders both data and protocol
incompatibilities. Semi-open environments are dynamic with a controlled registration, i.e., new com-
ponents can be added, removed or replaced, there can be several interchangeable components (from
several contractors) that solve the same problem. The system can define policies specifying how
components are added and removed. Semi-open environments typically imply some level of trust
among contractors. Contractors are motivated to publish descriptions of interaction protocols of their
components to allow interoperability with other components.

The above mentioned characteristics of semi-open environments make the mediation a much harder
problem. It is simply impossible to assume that various requesters and providers will interoperate
smoothly without any mediation or that a one purpose mediation component can be developed for
each new service provider or requester. However, since it is reasonable to assume that each component
provides a description of its interaction protocols and since mechanisms of registering components
into the system can be controlled, it is possible (1) to analyze in advance if interoperability of some
components is possible and if it is (2) to use mechanisms that utilize results of the analysis step to
perform an automatic runtime mediation.

Dynamic open environments add more complexity to the mediation problem. Since components
can appear and disappear completely arbitrarily, it is necessary to incorporate appropriate discovery
mechanisms. Also it is not possible to perform an analysis step in advance because requesters and
providers are not known in advance. In open environments requesters typically concern about their
privacy aspects and do not wish to fully reveal their process models. Therefore the automatic media-
tion process must rely only on run-time mediation and on the limited knowledge of requester’s process
model.

3.2 Visibility and Means of Process Mediation

As we mentioned in introduction, we distinguish three possible degrees of visibility for a given process
model. Complete visibility (white box model) means that the mediation component can see the com-
plete process model, including all relevant operations (atomic processes) definitions and the complete

6

interaction protocol (control and data flows). In case of partial visibility (gray box model), the medi-
ation component can see only definitions of available operations, i.e., atomic processes in the OWL-S
terminology, while the interaction protocol is not disclosed. There might be various motivations for not
disclosing the complete interaction protocol, such as privacy concerns, or its non-existence. Finally,
in case of no visibility (black box model), the mediation component does not have any information
about the process model, other than knowing the address of the endpoint. Again, such a situation
is motivated either by non-existence of any specifications, or by privacy concerns. During the run-
time mediation process, the mediation component can observe the messages exchanged between the
requester and the provider. Exchanged messages can be annotated and provide additional semantic
information, such as the format of expected response to a given message.

Assuming the problem of process mediation of one requester and one provider, nine scenarios are
possible depending on visibility of each participating process model. Table 3.1 summarizes all these
scenarios in the form of a visibility matrix. In the heading of each column and each row of the matrix,
short characterization of visibility types for the provider and the requester are given. For some less
obvious cases, we explicitly describe for what environments a given scenario is relevant. The matrix
describes all nine cases of possible visibility settings in terms of a basic characterization, available
means of process mediation, and in terms of how realistic and useful given scenario is.

The visibility matrix identifies boundary cases and means of mediations in these situations. If we
assume that the interaction sessions with a certain requester or provider might repeat, the mediation
component could use machine learning techniques to learn the process models control and data flows.
Specifically, learning the process model would allow transition from black and gray box visibility
model to the white box model. Various techniques such as workflow mining [1, 14], plans recognition
or MDPs can be used for learning the model of provider’s or requester’s process model. In the following
subsections we discuss various means of process mediation.

3.3 Off-line Analysis

We start with the situation, when the mediation component has a perfect information about partici-
pating process models of the requester and the provider, which is the case IX in the visibility matrix.
Such a situation can be usually encountered in enterprise or B2B integration scenarios, typically in
closed or semi-open environments. Usually, both process models are available and visible to the pro-
cess mediation not only during the runtime, but also before the runtime mediation starts. This allows
an off-line analysis to be performed before the runtime mediation starts. During the off-line analysis,
possible mismatches between the process models can be identified and corresponding mappings using
available data mediators for bridging these mismatches can be computed. The mappings can be com-
puted either fully automatically, or a human assistance can be used for resolving possible problems.
Techniques such as AI or automatic code synthesis can be used for the off-line analysis. We devel-
oped a solution based on analysis of possible requester’s execution paths and their mappings to the
provider’s process model by employing planning techniques [29] which we present in the next section.
Discovered mappings are used later during the runtime meditation to perform necessary translations.

Next, the availability of the provider’s process model can be utilized for purposes of recovery
analysis. By this we mean the process of enriching the process model with recovery statements on the
level of individual services. In other words, it is possible to compute compensation or undo actions
for world affecting services included in the provider’s process model and add those statements to
the original process model if no recovery statements were available in it. Such technique increases
robustness by allowing undoing of executed parts of the provider’s process model. For example,
Eiter et. al. in [16] describe algorithms for computing reversing actions for existing plans / actions.
Recovery analysis is available in scenarios in which at leas some visibility of provider’s process model
is guaranteed, i.e., cases II, III, V, VI, VIII, and IX.

3.4 Reactive Mediation

In the situation when the interaction protocol of the requester is not visible and only the operations
are known in advance (case VI), the off-line analysis can be used as well. However since the protocol
of the requester is not known, the mediator has to assume that the requester can call any of the

7

Requester /
Provider

Black Box Provider

• No specification available in
advance, only the endpoint
address
• Provider either responds

correctly or fails

• Motivation: privacy;

definitions do not exist

Gray Box Provider

• Only operations visible, e.g.,
WSDL, OWL-S atomic
processes

• Motivation: full PM spec.

does not exist; does not want

to disclose interaction protocol

White Box Provider

• Operations and the process
model are visible

• Motivation: enterprise,

B2B integration; open

environments: providers

motivated to publish PMs

Black Box Requester

• No specification available
in advance
• Environments: open,

e.g., mobile requesters
• Motivation: privacy;

specs. do not exist

• Options of request /

response: (1) response

spec. not available; (2)

request annotated with

spec. of response format

I. Black Req. - Black Prov.

• only messages can be
observed by the mediator
• passive mediation: forward

messages + observe results,
based on failures
interpretation deduce
possible actions (type
casting, etc.)

• useful for pre-defined

mediation: format

translation, data

conversions

II. Black Req. - Gray Prov.

• matchmaking: mediator might
be able to select the best
matching operation of the
provider for request
• possible mediation actions

computed during run-time
• possibly incomplete

information in the request –
only inputs (i.e., no mediation
on outputs possible)

• realistic: WSDL provider,

unspec. req.

III. Black Req. - While Prov.

• reactive mediation: for
request mediate request
against the PM
• e.g. runtime planning
• complete analysis of

provider’s PM possible

• very realistic: open

environments, mobile

clients, commercial

providers

Gray Box Requester

• Operations are visible,
e.g., e.g., WSDL, OWL-S
atomic processes

• Motivation: WSDL

exists while a full PM

spec. does not; does not

want to disclose an

interaction protocol

entirely

IV. Gray Req. - Black Prov.

• similar to I : messages can
be observed, format of
responses to the requester
is known

• mediation: forward

messages to provider +

automatic runtime

mediation of responses

V. Gray Req. - Gray Prov.

• off-line analysis: find
mappings for each requester’s
operation
• analysis possibly based on

matchmaking
• runtime mediation: similar to

II , except IO(PE)s of the
provider are known
• recovery analysis –

compensation & recovery
actions can be precomputed

• very realistic: WSDL on both

sides

VI. Gray Req. - White Prov.

• any request from a specified
set of requester’s set can
come at any time
• possibility: calculate

mappings for all
combinations of requester’s
& provider’s operation
(expensive, get a lot of
garbage)
• solution: similar strategy as

in III , e.g. reactive
mediation

• very realistic

White Box Requester

• Operations and the
process model are visible
• Environments:

semi-open, closed

• Motivation: enterprise,

B2B integration, e.g.,

semantic web services

challenge

VII. White Req. - Black Prov.

• similar to IV : messages can
be observed, format of
responses to the requester
is known

• mediation: forward

messages to provider +

automatic runtime

mediation of responses

(have better knowledge of

provider than in IV)

VIII. Black Req. - Gray Prov.

• off-line analysis: use, e.g.,
requester’s execution paths
exploration [29] + matching of
provider’s operations
(provider’s PM is
unconstrained), or
non-deterministic planning
[25]

• mediation: employ mappings

during runtime & local

recovery

IX. White Req. - White Prov.

• perfect knowledge of PMs
• off-line analysis: find

mappings, e.g., requester’s
execution paths exploration
[29] + provider’s PM
simulation
• runtime mediation: employ

mappings & local + global
recovery

• very realistic: enterprises,

B2B integration

Table 3.1: The visibility matrix

8

specified operations at any time. On the other hand, since the process model of provider is known,
the only reasonable solution is to pre-compute mappings for all possible combinations of requester’s
and provider’s operations. Such a solution might be viable for simple processes with small number
of operations. An alternative choice is to give up an off-line analysis and to rely only on the analysis
during the runtime. We call such a solution a reactive mediation. The reactive mediation means
that any reconciliations of mismatches are calculated during the runtime only. The reactive mediation
presents the only possible solution in cases when the requester’s process model is not known. Consider,
e.g., the case III where the provider’s process model is fully visible while the requester’s process model
is completely invisible. Only at the run-time the mediation component starts to receive messages from
the requester which need to be mapped to the provider’s process model on the fly. For example, a
restricted version of the run-time planning can be used to find meaningful mappings. Since such a
scenario makes a sense mostly in open environments, advanced recovery and discovery mechanisms
need to be incorporated.

3.5 Mediation as Matchmaking

In cases when the provider’s interaction protocol is not know (i.e., cases II, V, VIII), it is important to
realize that for the process mediation component it means that no operations orderings are specified
by the provider. This means that any operation can be possibly called by the requester at any
time. Thus, given the requester’s request, the process mediator needs to select such an operation of
the provider that matches the request the best and possible identify necessary translations for this
operation. In other words, the process mediation in such cases translates to the service matchmaking
problem known from the literature (e.g., [19]). Small variations apply between cases II, V, VIII as
described in the visibility matrix. While cases II and V will be more usual for open environments
and only the runtime mediation will be possible, case VIII might allow an off-line analysis similar to
case IX with the main difference being the lack of the provider’s interaction protocol. The solution
for case VIII can be based on combining analysis applied in the case IX (white box requester - white
box provider) with the matchmaking of for selecting the best available operation of the provider.

3.6 Passive and Pre-defined Mediation

Finally, cases I, IV and VII cover situations in which no specifications of the provider are available in
advance (black box provider). If also no information about the requester is available (case I), mediation
component can basically only observe the exchanged messages and to employ fault handling to identify
possible failures. We call such an approach a passive mediation. Assuming the observed failures provide
enough information to allow identification of failure causes, next time a similar message is observed,
the identified cause can be used for guiding the mediation actions. Semantic monitoring and fault
handling introduced in [28, 31] provide a good basis for failures interpretation. However, we did not
researched the passive mediations and learning yet. As the amount of available information increases
in cases IV and VII, the passive mediation can be enhanced with the reactive mediation mechanisms.

In addition to off-line analysis, passive and reactive mediation, also pre-defined mediation is impor-
tant. By that we mean transformations or translations of exchanged messages which can be defined
in advance and which do not require any complicated reasoning during the runtime. Such transfor-
mations may include translations between different formats (i.e. the mediator can play a role of an
adapter), providing additional security by encrypting or signing the messages, known data format con-
versions, adding transactions support, etc. The passive mediation corresponds to functionalities know
from traditional middleware. Pre-defined mediations do not typically depend on visibility heavily and
therefore it can be applied to all scenarios identified in the visibility matrix.

4 Concrete Process Mediation Architecture

In this section we describe a concrete agent architecture and mediation techniques for (1) a complete
visibility scenario when the mediation component has complete visibility of the process model of the
service provider and the service requester (case IX defined in Table 3.1), and for (2) an asymmetric

9

Figure 4.1: Mediation of process models by the Process Mediation Agent (PMA): problem setting and
the PMA architecture

scenario when the mediation component has visibility only of the process model of the service provider
but not the service requester (case III defined in Table 3.1). These two scenarios stand out in some
sense compared to the other possible visibility configurations because they represent two important
business integration cases. The complete visibility scenario is a typical situation for closed or semi-open
environments of intranet and B2B applications, while the asymmetric scenario represents a mediation
problem usual in open environments in which clients are concerned about privacy and therefore do not
wish to disclose their process models. In addition to that, the scenario (1) is a perfect candidate for
offline analysis techniques, while the scenario (2) can be solved by applying reactive mediation. Thus,
by addressing these two scenarios we devise mediation mechanisms covering two most challenging
mediation classes which can be later combined e.g. with matchmaking to deal with the remaining
visibility settings.

In both cases, our solution employs a process mediation middle agent (PMA) for runtime mediation.
In case of the complete visibility scenario, an offline analytical module is employed for computing
mappings between process models of the requester and the provider. The PMA uses these precomputed
mappings during the runtime mediation process. In case of the asymmetric scenario the PMA has to
compute available mappings during the runtime, since the requester’s process model is not available.
The PMA uses external services (external data mediators) to deal with data incompatibilities and
missing pieces of data together with planning techniques to find the appropriate mappings by combing
available external data mediators. Since the PMA operates in dynamic open environments, it needs
to interact with an appropriate discovery service. In our case, the PMA uses an external OWL-S
Matchmaker service [19] to take care of the discovery of data mediators. Finally, the PMA integrates
comprehensive monitoring and recovery mechanisms which were introduced in [28, 31].

4.1 Runtime mediation: The PMA Overview and Architecture

The architecture of the PMA is designed to support either the mediation in the strictly reactive mode in
which all mappings must be computed only during the runtime, or in the mode when it uses mappings
precomputed for example by the offline analytical module. Figure 4.1 shows an architecture of the
PMA. The server port is used for interactions with the requester and the client port for interactions
with the provider. The client port uses the OWL-S Virtual Machine (OVM) [18] to interact with
the provider. The OVM is a generic OWL-S processor for execution of OWL-S services with built-
in advanced features such as support for execution monitoring [30] and recovery [31]. Specifically,
the OVM executes the Process Model of a given service by going through the Process Model while
respecting the OWL-S operational semantics [4] and invoking individual services represented by atomic
processes. During the execution, the OVM processes inputs and outputs of executed services, realizes
the control and data flow of the composite Process Model, and uses the Grounding to invoke WSDL
based web services when needed. Another instance of the OVM is used to execute external data
mediation services if necessary.

The Execution Monitor is the central part of the PMA. It executes the mediation algorithm and

10

links all the other components together. Specifically, the Execution Monitor maintains the execution
state and stores information received from the requester and provider in a Knowledge Base. Further-
more, the Execution Monitor interacts with the Discovery Service when new data mediators need to
be found during the runtime. The Plans Library is used to store reconciliation plans (defined later in
this section) that were either provided as an output by the offline analytical module, or that were used
successfully in the previous mediation sessions. Also information about discovered data mediators is
cached in the Plans Library.

The PMA tries to remember and reuse information that it gained from previous interactions with
requesters and a discovery service. Only when no historical or precomputed information is available,
the PMA explores the search space to find an appropriate mapping by simulating the execution of
the provider’s process model. Since interactions with external web services can fail, and also some
choices made by the PMA can lead to failure, the PMA tries to recover from failures and possibly use
backtracking if more mappings are available for a given execution state.

Definitions

Before describing details of analysis algorithms we introduce notions of execution state, reconciliation
plans and the provider’s ability to satisfy the requester.

Definition 1: The execution state for given requester’s and provider’s process models at a given time
is a tuple S = 〈V, F, RH, EH〉, where V is a set of data (variables with their values and types) received
from the requester, provider and external services, F is a set of valid expressions (e.g., produced as
effects of service calls), RH is a requester’s history (sequence of requests, i.e., atomic processes,
executed by the requester), and EH is the execution history (sequence of services executed within
one mediation session including atomic process of the provider and mediation services). We use a dot
notation to access individual parts of a given state (e.g., S.V stands for data available in S).

The execution state can be used during the mediation execution or during the simulated execution
which is part of the off-line analysis. Since during simulation services are not executed, we cannot
use values of inputs and outputs in the set V . Therefore, during the simulation we only names and
types of available variables are stored in V while during the execution values are stored as well. For
example, an expression (Available(?userId, UserID)) means that a variable ?userId of type UserID

is available and can be used as an input of some process. Similarly, preconditions and effects cannot
be always fully evaluated during the simulation because of missing variable values. However, if an
effect or a precondition does not depend on variable values, it can be evaluated, such as, e.g., in case
of the effect (LoggedIn?userId) of the LoginStep2 atomic process from Figure 2.2.

We represent mappings between provider’s and requester’s processes as reconciliation plans. The
reconciliation plan for a request r and execution state S specifies which actions in what order need to
be executed to perform the translations between r and provider’s process in the state S. Furthermore,
the reconciliation plan can also represent what queries need to be asked to the discovery service to
find new data mediators so that the plan can be executed.

Definition 2: The reconciliation plan M for a request r and execution state S is a tuple M = 〈P, Q〉,
where P is a partially ordered plan consisting of atomic processes from PA, internal mediation actions
(such as built-in converters), external service calls (such as data mediators), and unbound abstract
processes, and Q is a possibly empty set of query templates. The reconciliation plan M = 〈P, Q〉 is
called executable if there are no abstract processes in P , and Q is empty. Otherwise, the plan is called
unbound.

An abstract process in the plan is a place-holder for another plan which needs to be specified
later. Abstract process is associated with some query template in Q which can be used for finding the
executable plan (such as a sequence of atomic processes) that will be used in the place of the abstract
process.

A query template q is a tuple q = 〈I, O, E, S〉 where I is a set of available inputs, O is a set of
required outputs, E is a set of required effects and S is the execution state. We use query templates
to represent discovery requirements for the discovery service (details in Section 5).

11

Next, we introduce the notion of the provider’s ability to satisfy the requester. We start on the level
of atomic processes and subsequently we extend the definition to requester’s execution paths and to
whole process models.

Definition 3: We say that the request r can be satisfied by the atomic process p in the execution
state S and write satisfied(r, p, S) if all inputs of p are either provided by r or are available in S, all
preconditions of p are satisfied in S and all outputs and effects required by r are produced by p or are
available in S. Formally, this can be expressed as the following conditions:

1. ∀(?ip, Tip
) ∈ p.inputs ∃(?ir, Tir

) ∈ (r.inputs ∪ S.V) such that Tip
subsumes Tir

2. ∀(?or , Tor
) ∈ r.outputs ∃(?op, Top

) ∈ (p.outputs ∪ S.V) such that Tor
subsumes Top

3. ∀pp ∈ p.preconditions S.F |= pp

4. ∀er ∈ r.effects ∃ep ∈ p.effects such that S.F |= ep ⇒ er or S.F |= er

Conditions 1–4 of Definition 3 are usual compatibility requirements (see e.g. [19]). In conditions 1
and 2 subsumes relation is a standard subsumption from description logic.

When incompatibilities do not allow a request r to be satisfied directly by provider’s process p, a
reconciliation plan can be used.

Definition 4: We say that the request r can be satisfied by the reconciliation plan M in the execution
state S and write satisfied(r, M, S) if M can be executed in S and if all outputs and effects required
by r are produced by M , i.e. are available in the execution state S′, where S′ = simulateP lan(M, S).
The simulateP lan function returns a new execution state which is a result of simulating a given
reconciliation plan in a given state.

The previous definition can be easily extended to requester’s paths and whole process models. The
requester’s execution path can be satisfied by the provider’s process model P if all steps of the path
can be satisfied during a proper execution of both process models by possibly applying available
translations.

Definition 5: We say that the requester’s execution path pathR = (r1, . . . , rn) can be satisfied by
the provider’s process model P and write satisfied(pathR, P) if there exists a set of reconciliation
plans {M1, . . . , Mn} and a sequence of execution states (S0, S1, . . . , Sn) such that satisfied(ri, Mi, Si)
holds, Si = simulateP lan(Mi, Si−1), for all i = 1, . . . , n, where S0 is an initial state of P and Sn is a
final state of P .

Definition 6: If satisfied(pathR, P) holds for all requester’s execution paths pathR of model R, we
say that the requester’s process model R can be satisfied by the provider’s process model P and write
satisfied(R, P).

We use definitions of the satisfied predicates in our algorithms and in the discussion of their correct-
ness. Finally, we define the Next function for getting the set of provider’s atomic processes that can
be executed at a given execution state.

Definition 7: Let Next be a function Next : S → P(PA), where S is the set of possible execution
states, PA is the set of atomic processes in the provider’s process model and P stands for a power set
of a given set.

For example, in the running example in Figure 2.2, if the last executed provider’s call was Search-
FlightOne, the Next function would return a set of two atomic processes
{ChooseDepF lght, ChooseItineraryOne}.

Runtime Mediation Procedure

The logic of the mediation procedure is the following. For each requester’s request the PMA calls
the processRequest procedure until requester or provider finishes successfully or the execution fails.
Algorithm 1 shows high-level steps of the processRequest procedure. In this procedure, the least
time consuming mediation options are considered first, and only if they fail other possibilities are
considered.

12

Algorithm 1 Procedure processRequest

1. Receive a requester’s atomic process call requesterCall via the server port
2. Store inputs of requesterCall in the state S and required results in the KB
3. Find the best available mediation actions:

3.1 if A = {a | a ∈ Next(S) ∧ satisfied(requesterCall, a, S)} 6= ∅ then

// Exact match: no data mediation needed

• foreach a ∈ A do

– if execute(a,S) fails then localRecover(a, S) and continue

– else return success

3.2 if exists reconciliation plan P in the Plans Library for requesterCall and S

// Reusing existing plan

• if execute(P,S) fails then localRecover(P, S) and continue

• else return success

3.3 if reactiveMode ∧ reconciliationP lans = reconcileRequestCall(requesterCall,S) 6= ∅ then

// Planning was used to find the mapping

• foreach executable reconciliation plan P ∈ reconciliationP lans do

– if execute(P,S) fails then localRecover(P, S) and continue

– else store P in the Plans Library and return success

• foreach unbound reconciliation plan P ∈ reconciliationP lans do

// If no directly executable plan found, use discovery service

– if P ′ = bindP lan(P) succeeds then

∗ if execute(P ′) fails then localRecover(P ′, S) and continue

∗ else store P ′ in the Plans Library and return success

3.4 if globalRecover(S) fails then // Nothing worked, undo and pick a another branch

• return failed

After the PMA receives the request it first tries to match it to some provider’s atomic process
available in the given execution state (step 3.1).

If no such process exists or execution of all of them fails, reconciliation plans from the Plans Library
are considered (step 3.2). Notice, that plans can be either remembered from previous mediation
sessions or pre-computed from the off-line analysis phase.

If the PMA is running in the reactive mode, as the next step (3.3), the planning algorithm is used
(reconcileRequestCall procedure, for details see Section 4.2) that tries to find new reconciliation plans
by combining known data mediators or proposing queries to the discovery service which would allow
to bridge gaps (mismatches) identified during the reconciliation. If some executable plan is found and
successfully executed it is stored in the Plans Library. Otherwise, if only unbound plans are found, the
discovery service needs to be used to bind the plan in the bindP lan procedure (see details in Section
5).

Finally, if none of the mediation alternatives succeeds, there still might be a chance that in some
previous phase a wrong branch in the provider’s process model was taken which does not allow the
mediation to be finished while another branch might work. The globalRecover procedure in step 3.4
tries to deal with such a situation.

The execute(P, S) procedure executes the reconciliation plan P by executing every action a ∈ P .
If a is a provider’s process the client port is used, while if a is a data mediator the OVM for external
services is used.

4.2 Computing Reconciliation Plans In PMA (Open World)

The purpose of the runtime reconciliation procedure for a given requester’s request r and an execution
state S is to find possible reconciliation plans that can be used to reconcile the mismatches between
the request r and the current state of the provider’s process model. The reconciliation procedure uses

13

a planning algorithm that tries to combine known data mediators to find necessary transformations.
If no combination of known data mediators can be found, the reconciliation procedure produces an
unbound plan associated with query templates which can be used later to discover new data mediators
and to bind the plan.

In principle, the reconciliation procedure transforms missing pieces of information (inputs, outputs,
preconditions and effects) into goals that need to be satisfied. Then a classical backward chaining
planning algorithm is employed with data mediators and providers atomic processes used as planning
operators. In order to guarantee timely termination of the planning algorithm, the maximal length of
the plan is constrained externally. During the planning, the operations are only simulated (services
are not executed) with respect to the initial execution state S.

Algorithm 2 reconcileRequestCall(r, S), r a request call, S execution state

1. Initialize:

• foreach i ∈ r.inputs do add (Available i.name i.type) (V alue i.name i.value) to S

• foreach o ∈ r.outputs do add (RequesterGoal (Available o.name o.type)) to S

• foreach effect ∈ r.effects do add (RequesterGoal effect) to S

• plans = ∅

2. foreach p ∈ Next(S) do reconcileAtomicProcess(r, p, S, plans, ∅, maxP lanLength)
3. return plans

Algorithm 2 takes care of the planner initialization (step 1) and starting the reconciliation for every
provider’s atomic process available in S (step 2). The core of the reconciliation algorithm is performed
by the reconcileAtomicProcess procedure displayed in Algorithm 3. This procedure is trying to find
a plan for reconciliation of request r and process p. First, it must guarantee that all inputs and
preconditions of p are available (step 2), and afterwards that all outputs and effects required by r

were produced (step 3). In both cases the solveGoals procedure implementing a backward chaining
algorithm is tried first to achieve missing goals by means of known data mediators. If solveGoals

does not succeed (i.e., some goals cannot be satisfied), the query template q for the discovery service
is suggested that would allow a discovery of new data mediators needed for finishing the plan.

4.3 Computing Mappings in the Complete Visibility Scenario (Semi-open Environment)

In the complete visibility scenario both process models are completely visible. Such a scenario is usual
for example in semi-open corporate environments. From the point of view of process mediation several
characteristics of semi-open environments are important:

1. Components are not controlled by one authority.
2. Components can be added to the system, removed or replaced dynamically.
3. There can be several interchangeable components (from several contractors) that solve the same

problem.
4. The registration of a new component to the system can be controlled.
5. Typically some level of trust among contractors is necessary which allows us to assume that all

components can publish descriptions of their interaction protocols to allow interoperability with
other components.

These characteristics allow us to perform the offline analysis to find possible mappings between
provider’s and requester’s process models, or to identify incompatibilities that cannot be reconciled
with given set of available data mediators and external services. Mappings computed during the offline
analysis are later used in the PMA for the runtime mediation.

Execution paths analysis approach

The off-line analysis to find possible mappings between provider’s and requester’s process models can
be achieved by exploring possible sequences of steps (execution path) that the requester can execute.
Requester’s execution path is any sequence of atomic processes which can be called by the requester in
accordance with its process model, starting from the process model first atomic process and ending in

14

Algorithm 3 reconcileAtomicProcess(r, p, S, plans, plan, maxP lanLength), r a request call, p provider’s

atomic process, S execution state, plans a set of all plans, plan current plan, maxP lanLength maximal

allowed length of generated plans

1. if |plan| ≥ maxP lanLength then return
2. Reconcile inputs and preconditions of p:

• if (∀i ∈ p.inputs available in S) and (∀prec ∈ p.preconditions satisfied in S) then

– simulate p (add outputs and effects of p to S); add p to plan

• else

– Goals= transform missing inputs of p and unsatisfied preconditions of p to goals
// e.g., missing toCode input =¿ (Goal(Available toCode AirportT oCode))

– if solveGoals(Goals, S, plan, maxP lanLength) then simulate p; add p to plan

else

∗ create query template q = 〈I, O, E, S〉, and corresponding abstract process pq where I =
r.inputs, O =missing inputs of p, E =unsatisfied preconditions of p

∗ simulate pq in S; add q and pqto plan

3. Reconcile outputs and effects of r:

• if (∀o ∈ r.outputs available in S) and (∀effect ∈ p.effects satisfied in S) then

– add plan to plans // the reconciliation of r and p is finished

• else

– Goals= transform missing outputs & effects to goals
// e.g., (RequesterGoal goal) =¿ (Goal goal)

– if solveGoals(Goals, S, plan, maxP lanLength) then add plan to plans

else

∗ duplicate the plan and continue with another process in the providers model

· newP lan = plan

· foreach a ∈ Next(S) do
reconcileAtomicProcess(r, a, S, plans, newP lan, maxP lanLength)

∗ create an unbound plan

· create query template q = 〈I, O, E, S〉, and corresponding abstract process pq where
I =outputs produced by plan, O =missing outputs of r, E =unsatisfied effects of r

· add q and pqto plan; add plan to plans

15

one of the last atomic processes of the process model. An atomic process is last in the process model
if there is no next atomic process that can be executed after it (respecting the control constructs, as
e.g. loops).

Since any of all possible requester’s execution paths can be chosen by the requester, we need to
show that each requester’s execution path can be mapped into the provider’s process model with help
of intermediate translations represented by data mediators or built-in conversions . If there exists a
possible requester’s execution path which could not be mapped to any part of the provider’s process
model, we would know that if this path were chosen, the mediation would fail. Thus the existence
of a mapping for each possible requester’s execution path is a necessary precondition of successful
mediation. Indeed, it is only a necessary condition of successful process mediation for the following
reason. Since the possible mappings are being searched before actual execution, some of them can
turn out not to work during execution (e.g., because of failing preconditions of some steps). Still, by
analyzing requester’s execution paths and trying to find mappings for them, we can partially answer
the question of mediation feasibility.

Finding possible mappings means to explore the search space generated by combining allowed
execution paths in the provider’s process model with available translations (data mediators in our
case). We explore the search space by simulating the execution of the provider’s process model with
possible backtracking if some step of the requester’s path cannot be mapped or if more mappings are
possible. During the simulation, data mediators are used to reconcile possible mismatches.

The following procedure provides a top-level view of our offline analysis approach to compute
mappings between process of the requester and the provider:
1. Generate requester’s paths: based on the process model of the requester, possible requester’s
paths are generated (see Section 4.3)
2. Filter out those requester’s paths that need not be explored: as the result we get the
minimal set of requester’s paths. (see Section 4.3)
3. Find all appropriate mappings to the provider’s process model for each requester’s
path from the minimal set of paths and store them in the mappings repository : if for
a path no mapping is found, user is notified with pointing out the part of the path for which the
mapping was not possible5. (see Section 4.3)

Generating the minimal set of requester’s execution paths

When generating requester’s execution paths we potentially have to deal with combinatorial explosion
caused by chains of branching in the requester’s process model. We want to find out what reconciliation
actions are available or necessary in given state of execution which depends on possible combinations
of available variables and valid expressions in this state. Because the current state depends on actions
performed preceding this state, we might be in principle interested in every possible requester’s path.
In [29] we describe heuristics for pruning those paths that provide no additional information. The
path pruning also reduces the number of requester’s execution paths for which appropriate mappings
to the provider’s process model need to be found.

Finding mappings for the requester’s path

In order to find all the mappings for a given requester’s path we simulate the execution of the provider’s
process model and try to map each step of the requester’s path to some part of the provider’s model
(atomic process or several atomic processes) with help of data mediators. The mappings are con-
structed during the simulation and are represented as a sequence of reconciliation plans (as defined in
Section 4.1) that the PMA can execute during the runtime mediation (see Figure 4.2 for an example
of a mapping).

Algorithm 4 presents the recursive reconcileSequence method which constructs mappings for one
requester’s execution path. This method simulates step by step all requests in the given requester’s
execution path and for each of them finds all possible reconciliation plans. After executing the
reconcileSequence method, only all those reconciliation plans leading to successful mediation are

5At this point service discovery could be used to find a service capable of resolving the mismatch.

16

stored in the plansLibrary. We use the same methods as those introduced for the runtime recon-
ciliation planning. In addition to that we also introduced method simulateP lan that returns a new
execution state which is a result of simulating a given reconciliation plan in a given state. Compared
to the runtime reconciliation planning the main difference is that in the offline analysis we are not
constrained by the time. Therefore, we do not constraint the maximal length of reconciliation plan
during the offline analysis in the reconcileAtomicProcess method. This gives us a guarantees of
completes.

Algorithm 4 reconcileSequence(stepsSequence, S, plansLibrary), stepsSequence a requester’s exe-
cution path, S execution state, plansLibrary a reconciliation plans library

1. if |stepsSequence| = 0 then return true // termination condition: all steps reconciled
2. Intitialization: request← remove first request from stepsSequence; returnStatus← false

3. newP lans← reconcileRequestCall(request, S)
4. if newP lans = ∅ then return false

5. foreach plan ∈ newP lans

• newState← simulateP lan(plan, S)
• if reconcileSequence(stepsSequence, newState, plansLibrary) then

– store (request, S, plan) in plansLibrary

– returnStatus← true

6. return returnStatus

4.4 Algorithms Properties

The correctness and the completeness of introduced algorithms can be defined in terms of the satisfied

predicates defined in Section 4.1. We discuss these properties with respect to the single request r

reconciliation (i.e., satisfied(r, M, S) property in Definition 4), with respect to the requester’s path
pathR reconciliation (i.e., satisfied(pathR, P) property in Definition 5), and with respect to the whole
process models reconciliation (i.e., satisfied(R, P) property in Definition 6).

For the complete visibility scenario the reconcileAtomicProcess procedure defined in Algorithm 3
is sound and complete with respect to the satisfied(r, M, S), i.e., for every executable reconciliation
plan the predicate satisfied(r, M, S) holds and the procedure finds all executable reconciliation plans
satisfying this predicate. The soundness and the completeness are derived from the fact that the
reconcileAtomicProcess procedure is designed to make the satisfied(r, M, S) predicate true by em-
ploying the planning procedure solveGoals which is sound and complete (basically it uses a backward
chaining best first search algorithm for achieving goals

Consequently, the reconcileSequence procedure is sound and complete with respect to the satis-
fied(pathR, M) (all possible plans are considered). Finally, the whole mediation procedure as de-
scribed in Section 4.3 is sound and complete with respect to the satisfied(R, P) predicate, since the
set of requester’s paths generated as described in Section 4.3 is minimal and complete. It is important
to notice, that in all cases soundness and completeness are defined with respect to static mismatches
only (misstatic) while the runtime mismatches are not considered.

For the asymmetric scenario, the reconcileRequestRuntime procedure is sound, but incomplete
with respect to satisfied(r, M, S) because the maximal length of searched reconciliation plans is
constrained. We are aware that constraining the plan length externally is not an ideal solution and
we are working on an anytime version of the runtime reconciliation algorithm. With respect to the
reconciliation of the requester’s path pathR, i.e., satisfied(pathR, P), the reconcileRequestRuntime

might select a wrong solution as we discussed in the previous section, and thus it is not guaranteed
to be correct. This problem cannot be avoided since the runtime mediation algorithm does not have
enough information to be able to make the correct choice. The algorithm becomes correct only if
we assume that all reconciliation plans can be undone. This result has no negative effect on the
correctness of the offline algorithm.

Another important property of generating the process mediator protocol is whether it guarantees
a deadlock free communication of the requester and the provider (assuming that both process models

17

The requester’s path: Login, SearchFlight, ChooseDepFlight, ChooseReturnFlight, ...

A mapping discovered for first two steps of the requester’s path:

I. Reconciliation plan for Login 1. requester-Login s1-userID s1-password
2. provider-LoginStep1 s1-user sessionID

3. provider-LoginStep2 s1-password sessionID logResult
4. mediator-prepare-to-send logResult

5. mediator-send

II. Reconciliation plan for

SearchFlight

1. requester-SearchFlight s2-from s2-to s2-depTime s2-retTime
2. external-AirportCityToCode s2-from apt-code-gener1

3. mediator-explicit-down-casting apt-code-gener1 AirportToCode
4. external-AirportCityToCode s2-to apt-code-gener2
5. mediator-explicit-down-casting apt-code-gener2 AirportToCode

6. external-USTimeToISO s2-depTime iso-time-gener1
7. mediator-explicit-down-casting iso-time-gener1 ISODepTime

8. external-USTimeToISO s2-retTime iso-time-gener2
9. mediator-explicit-down-casting iso-time-gener2 ISODepTime

10. provider-SearchReturnFlight apt-code-gener1 apt-code-gener2 iso-time-gener1 iso-time-gener2
flights flghtCount
11. mediator-prepare-to-send flights

12. mediator-prepare-to-send flghtCount

13. mediator-send

Figure 4.2: Example solution for a requester’s path

are deadlock free). According to [7] a communication is deadlock free if it ends with both protocols in
final states, or the collaboration can continue at any time. In our case, a deadlock in communication
of the requester and the provider can occur only in a situation when one of the partners is waiting
for a message (or data) that the other partner has not sent yet and is not going to send (e.g., because
the seconds partner is also waiting for data which the first partner has not provided). However, such
a situation is identified by the reconcileAtomicProcess procedure at some point as a missing piece of
information (input, output, precondition or effect). As an outcome, the problem can either be resolved
if some of external service is able to produce the required piece of information, or the analysis identifies
such a situation as the one which cannot be resolved and the user is informed about the problem.
This means that the algorithms guarantee a deadlock free communication between the requester and
the provider.

Example mapping

Figure 4.2 shows part of one mapping generated for a requester’s execution path that can be executed
by a requester as defined in Figure 2.2a in Section 2.2. The mapping was generated for a provider’s
process model defined in Figure 2.2b. This example assumes that we have provided the system with the
AirportCityToCode external web service for translating instances of City to instances of AirportCode,
and the service USTimeToISO for translating between US and ISO time formats. Each step name is
prefixed by requester, provider and external to indicate to which component it is related. Requester’s
steps show names of inputs parameters, while for the provider, translators and external services also
output variables are included. This example also illustrates implicit up-casting of types and explicit
down-casting which is enforced by the fact, that AirportCityToCode and USTimeToISO are defined
to work with more generic types than those provided by requester and requested by the provider.
Due to the requirement for explicit down-casting, the user is prompted whether the chosen casting is
allowed or not. In this example all the castings are allowed. See [22] for details on analyzing casting
operations for ontology classes.

5 Data Mediators Discovery

Discovering new data mediators requires two questions to be answered. First, the specific discov-
ery requirement needs to be gained, and second, this requirement must be translated into concrete
queries that will be sent to the discovery service. We use query templates defined in Section 4.1 to
capture discovery requirements. The query template is derived from the specific mismatch between

18

the reconciled requester’s request r and the process p encountered in the execution state S.
Based on the query template, concrete queries which will be sent to the discovery service need to be

formulated in the bindP lan procedure. A straightforward idea would be to use the query template as
it is. However, the vast majority of discovery services implement a matching algorithm in which only
one service is considered as a suitable candidate satisfying a service request while service combinations
are not allowed [19]. Such an assumption makes sense when standalone services need to be discovered.
In our case, however, this assumption is too restrictive since we are not necessarily looking for one
service only. On the contrary, often in the mediation scenario one specific gap identified by the process
mediation algorithm can be bridged only by using a combination of several services.

Consider, for example, a situation in the running example in Figure 2.2 in which the reconcile-
AtomicProcess procedure (in step 2) is trying to find mapping between the SearchFlight request and
the SearchFlightOne process. Assuming that no external services are known to the PMA yet, the
query template would have the following form: q = 〈I = { from - FromCity, to - ToCity, depTime
- USDepTime, retTime - USRetTime}, O = {from - AirportFromCode, to - AirportToCode, depTime
- ISODepTime, retTime - ISORetTime }, E = ∅, S〉. The query template q expresses the fact that
inputs of the requester’s SearchFlight call are the most likely candidates that can be used as input
data for possible data mediators, while the inputs of the provider’s SearchFlightOne call are the most
likely output candidates that need to be produced. Finally, the state S included in q can be used to
access all remaining data available at the given execution state. Clearly, it is very unlikely that there
would ever exist one single service satisfying such a requirement. However, if combinations of services
are allowed to be matched, the chances of a successful match are much higher. In our particular case,
a combination of external services AirportCityToCode and USTimeToISO can be used as a match
bridging the gap as shown in Figure 2.2.

To deal with the problem the matching assumptions need to be relaxed to allow a combination of
several services as an acceptable match for a given service request. Benatallah et. al. in [5] propose an
approach that allows a combination of several services to satisfy the service request. Their algorithm
based on request rewriting guarantees that an optimal combination covering the request will be found
but it is NP-hard. We have decided to go a similar direction by allowing the combination of services
satisfying the request to be returned as a relevant match — we call it a combined match. In the
combined match we do not strictly insist on optimality in order to prevent hard computations. We
prefer the coverage instead, since we assume that, if needed, the composition or planning algorithms
can find the optimal combination in next steps after discovery is done.

When answering a combined match query, the discovery service first finds a set of services that
together produce the required outputs and effects (i.e., any service producing some of required outputs
or effects is a good candidate). In the next step, out of these candidates, if more candidates are
available producing the same outputs, those are preferred that use only inputs specified in the query.
Since no real composition is involved such an approach is very efficient (assuming that appropriate
index structures were precomputed during the service registration with the discovery service). We
implemented the combined match as an extension to the OWL-S Matchmaker. For details see [27].

Assuming the discovery service supports a combined match, the PMA discovers new mediators in
the bindP lan procedure in two steps as shown in Algorithm 5. It starts with an exact query request
in the form of the query template (step 1.1). If some service matching the query is returned, PMA
just binds it in the plan in the place of the corresponding abstract process. Otherwise, the combined
match query in the same form is sent to the discovery service (step 1.2). Returned data mediators
are transformed into planning operators and the solveGoal planning method is re-run with the state
S saved in the query template. The produced plan is plugged in the place of the abstract process.

6 Related Work

The work in [32] provides a conceptual underpinning for automatic mediation. In [13] Cimpian at. al.
solve the runtime mediation between two WSMO based processes. Besides structural transformations
(e.g., change of message order) also data mediators can be plugged into the mediation process, however,
recovery and discovery are not addressed at all. Aberg et. al. [2] describe an agent called sButler for

19

Algorithm 5 bindP lan(M), M = 〈P, Q〉 unbound reconciliation plan

1. foreach pq ∈ P , pq abstract process, q = 〈I,O, E, S〉 query template associated with pq do

1.1 if mediators = askDiscoveryExact(q) 6= ∅ then
replace pq in P with best matching a ∈ mediators

1.2 elseif mediators = askDiscoveryCombined(q) 6= ∅ then

• transform mediators to planning operators and add them to Plans Library
• Goals = transform q to goals; newP lan = ∅
• solveGoals(Goals, S, plan, maxP lanLength)
• replace pq in P with newP lan

1.3 else return failed

2. return M ′ = 〈P, ∅〉

mediation between organizations’ workflows and semantic web services. The mediation is more similar
to brokering, i.e., having a query or requirement specification, the sButler tries to discover services
that can satisfy it. The requester’s process model is not taken into considerations. OWL-S broker
[20] also assumes that the requester formulates its request as query which is used to find appropriate
providers and to translate between the requester and providers. In [11] and [15] authors describe the
IRS-III broker system based on the WSMO methodology. IRS-III requesters formulate their requests
as goal instances and the broker mediates only with providers given their choreographies (explicit
mediation services are used for mediation). Brambilla at. al. [6] apply a model-driven approach based
on WebML language. Mediator is designed in the high-level modeling language which supports semi-
automatic elicitation of semantic descriptions in WSMO. In [22], data transformation rules together
with inference mechanisms based on inference queues are used to derive possible reshapings of message
tree structures. An interesting approach to translation of data structures based on solving higher-order
functional equations is presented in [9] while [10] argues for published ontology mapping to facilitate
automatic translations.

7 Conclusions and Further Work

In this paper we dealt with process mediation mechanisms of two OWL-S process models operating
in dynamic open environments. We described algorithms based on the analysis of provider’s and
requester’s process models for finding mappings between them, and for performing runtime mediation.
The main advantage of our approach, besides enabling the interoperability of requesters and providers,
is the capability of the process mediation agent to operate in conditions where failures and changes
of the environment must be taken into account. Due to recovery mechanisms employing dynamic
recovery and built-in heuristics, the PMA is able to recover if possible and its performance degrades
gracefully when the environment changes or no simple recovery is possible. Compared to other relevant
recent work, our approach is unique in using ontologies for service specification and matching together
together with behavioral specifications of protocols and automatic synthesis of the mediator process
(compare e.g., with [8]). Also, compared to other approaches (such as the one of [13]) our dynamic
discovery of external (data mediation) services is unique. However, our experiments pointed out some
issues that need to be addressed. Namely the efficiency of our offline analysis algorithm in case of
presence of more branching points in the provider’s process model, and the issue with identifying the
right reconciliation plan if more plans are available.

In the paper, we focused on the process mediation problem itself and we did not discuss many
practical issues such as security, hosting of the PMA, etc. Let us discuss briefly the hosting question.
In general, depending on the particular application domain, the PMA can be deployed either as part
of the provider’s infrastructure, requester’s infrastructure or as part of the middle layer in between.
In all cases, there are very strong incentives for hosting the PMA related to achieving interoperability.
Hosting the PMA on the side of provider might allow new partners to interact with the provider.
From the requester’s perspective, hosting the PMA makes a good sense when some application needs

20

to be extended by adding a new provider or when an existing provider needs to be replaced by a new
one. In such a case the PMA can be used on the requester’s side as a smart adapter to bridge the
possible incompatibilities. Finally, the PMA can find its role in the infrastructure of enterprises such
as mobile operators which provide access to services of third parties to their final customers.

21

Bibliography

[1] W.M.P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and A. J. M. M.
Weijters. Workflow mining: A survey of issues and approaches. Data and Knowledge Engineering,
47(2):237–267, 2003.

[2] Cecile Aberg, , Patrick Lambrix, Juha Takkinen, and Nahid Shahmehri. sButler: A Mediator
between Organizations’ Workflows and the Semantic Web. The World Wide Web Conference
workshop on Web Service Semantics: Towards Dynamic Business Integration, May 2005.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, et al. Business Process Execution Language for Web Services, Version 1.1.
2003.

[4] Anupriya Ankolekar, Frank Huch, and Katia P. Sycara. Concurrent semantics for the web services
specification language DAML-S. In Farhad Arbab and Carolyn L. Talcott, editors, COORDINA-
TION, volume 2315 of Lecture Notes in Computer Science, pages 14–21. Springer, 2002.

[5] Boualem Benatallah, Mohand-Said Hacid, Christophe Rey, and Farouk Toumani. Request
rewriting-based web service discovery. In Dieter Fensel, Katia P. Sycara, and John Mylopou-
los, editors, International Semantic Web Conference, volume 2870 of Lecture Notes in Computer
Science, pages 242–257. Springer, 2003.

[6] Marco Brambilla, Irene Celino, Stefano Ceri, Dario Cerizza, Emanuele Della Valle, and Fed-
erico Michele Facca. A software engineering approach to design and development of semantic
web service applications. In International Semantic Web Conference, volume 4273 of Lecture
Notes in Computer Science, pages 172–186. Springer, 2006.

[7] Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. Journal of the
ACM, 30(2):323–342, April 1983.

[8] Antonio Brogi and Razvan Popescu. Automated generation of BPEL adapters. In Asit Dan and
Winfried Lamersdorf, editors, ICSOC, volume 4294 of Lecture Notes in Computer Science, pages
27–39. Springer, 2006.

[9] Mark Burstein, Drew McDermott, Douglas R. Smith, and Stephen J. Westfold. Derivation of
glue code for agent interoperation. Autonomous Agents and Multi-Agent Systems, V6(3):265–286,
May 2003.

[10] Mark H. Burstein and Drew V. McDermott. Ontology translation for interoperability among
semantic web services. The AI Magazine, 26(1):71–82, 2005.

[11] Liliana Cabral, John Domingue, Stefania Galizia, Alessio Gugliotta, Vlad Tanasescu, Carlos
Pedrinaci, and Barry Norton. IRS-III: A broker for semantic web services based applications.
In Isabel F. Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel Schwabe, Peter Mika,
Michael Uschold, and Lora Aroyo, editors, International Semantic Web Conference, volume 4273
of Lecture Notes in Computer Science, pages 201–214. Springer, 2006.

[12] Erik Christensen, Francisco Curbera, and Greg Meredith Sanjiva Weerawarana. Web Services
Description Language, 2001.

22

[13] Emilia Cimpian and Adrian Mocan. WSMX process mediation based on choreographies. In
Business Process Management Workshops, pages 130–143, 2005.

[14] Ana Karla Alves de Medeiros, Carlos Pedrinaci, Wil M. P. van der Aalst, John Domingue, Minseok
Song, A. Rozinat, Barry Norton, and Liliana Cabral. An outlook on semantic business process
mining and monitoring. In Robert Meersman, Zahir Tari, and Pilar Herrero, editors, OTM
Workshops (2), volume 4806 of Lecture Notes in Computer Science, pages 1244–1255. Springer,
2007.

[15] John Domingue, Stefania Galizia, and Liliana Cabral. Choreography in IRS-III - coping with
heterogeneous interaction patterns in web services. In Yolanda Gil, Enrico Motta, V. Richard
Benjamins, and Mark A. Musen, editors, International Semantic Web Conference, volume 3729
of Lecture Notes in Computer Science, pages 171–185. Springer, 2005.

[16] Thomas Eiter, Esra Erdem, and Wolfgang Faber. On reversing actions: Algorithms and com-
plexity. In Manuela M. Veloso, editor, IJCAI, pages 336–341, 2007.

[17] Joel Farrell and Holger Lausen. Semantic annotations for WSDL and XML schema, 2007.
http://www.w3.org/TR/sawsdl/.

[18] Massimo Paolucci, Anupriya Ankolekar, Naveen Srinivasan, and Katia P. Sycara. The DAML-S
virtual machine. In Dieter Fensel, Katia P. Sycara, and John Mylopoulos, editors, International
Semantic Web Conference, volume 2870 of Lecture Notes in Computer Science, pages 290–305.
Springer, 2003.

[19] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia P. Sycara. Semantic match-
ing of web services capabilities. In Ian Horrocks and James A. Hendler, editors, International
Semantic Web Conference, volume 2342 of Lecture Notes in Computer Science, pages 333–347.
Springer, 2002.

[20] Massimo Paolucci, Julien Soudry, Naveen Srinivasan, and Katia Sycara. A broker for owl-s web
services. In David Martin Lawrence Cavedon, Zakaria Maamar and Boualem Benatallah, editors,
Extending Web Services Technologies: The Use of Multi-Agent Approaches. Kluwer, 2005.

[21] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubn Lara, Michael Stollberg, Axel
Polleres, Cristina Feier, Christoph Bussler, and Dieter Fensel. Web Service Modeling Ontology.
Applied Ontology, 1(1):77 – 106, 2005.

[22] Bruce Spencer and Sandy Liu. Inferring data transformation rules to integrate semantic web
services. In International Semantic Web Conference, pages 456–470, 2004.

[23] Katia Sycara, Massimo Paolucci, Anupriya Ankolekar, and Naveen Srinivasan. Automated dis-
covery, interaction and composition of semantic web services. Journal of Web Semantics, 1
(1):27–46, 2004.

[24] The OWL Services Coalition. Semantic Markup for Web Services (OWL-S).
http://www.daml.org/services/owl-s/1.1/.

[25] Paolo Traverso and Marco Pistore. Automated Composition of Semantic Web Services into Exe-
cutable Processes. 2004.

[26] Roman Vacuĺın, Huajun Chen, Roman Neruda, and Katia Sycara. Modeling and discovery of data
providing services. In 2008 IEEE International Conference on Web Services, pages 1032–1039.
IEEE Computer Society, September 23-26 2008.

[27] Roman Vacuĺın, Roman Neruda, and Katia Sycara. Towards extending service discovery with
automated composition capabilities. In The 6th IEEE European Conference on Web Services,
pages 3–12. IEEE Computer Society, November 12-14 2008.

23

[28] Roman Vacuĺın and Katia Sycara. Specifying and monitoring composite events for semantic web
services. In The 5th IEEE European Conference on Web Services, pages 87–96. IEEE Computer
Society, November 26-28 2007.

[29] Roman Vacuĺın and Katia Sycara. Towards automatic mediation of OWL-S process models. In
2007 IEEE International Conference on Web Services, pages 1032–1039. IEEE Computer Society,
July 9-13 2007.

[30] Roman Vacuĺın and Katia Sycara. Semantic web services monitoring: An OWL-S based approach.
In 41st Hawaii International Conference on System Sciences, page 313, Waikoloa, Hawaii, Jan-
uary 7-10 2008. IEEE Computer Society Press.

[31] Roman Vacuĺın, Kevin Wiesner, and Katia Sycara. Exception handling and recovery of semantic
web services. In Fourth International Conference on Networking and Services, pages 217–222.
IEEE Computer Society Press, 2008.

[32] Gio Wiederhold and Michael R. Genesereth. The conceptual basis for mediation services. IEEE
Expert, 12(5):38–47, 1997.

24

