národní
úložiště
šedé
literatury

Logics with Truth Constants for Delimiting Idempotents

Haniková, Zuzana
2009
Dostupný z http://www.nusl.cz/ntk/nusl-40640

Dílo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národního úložiště šedé literatury (NUŠL).
Datum stažení: 19.04.2024
Další dokumenty můžete najít prostřednictvím vyhledávacího rozhraní nusl.cz .

Institute of Computer Science Academy of Sciences of the Czech Republic

Logics with Truth Constants for Delimiting Idempotents

Zuzana Haniková

Technical report No. 1055

November 2009

Institute of Computer Science Academy of Sciences of the Czech Republic

Logics with Truth Constants for Delimiting Idempotents

Zuzana Haniková ${ }^{1}$

Technical report No. 1055

November 2009

Abstract

: The propositional logics in the language of Hájek's Basic Fuzzy Logic enriched with truth constants for idempotent elements delimiting the components of a continuous t-norm are investigated. An axiomatization is proposed for each of the logics, together with some completeness results. Computational complexity of the sets of tautologies is investigated.

Keywords:
Propositional fuzzy logic, truth constants, axiomatization, computational complexity

[^0]
Logics with Truth Constants for Delimiting Idempotents

Zuzana Haniková*
Institute of Computer Science, AS CR
18207 Prague, Czech Republic

1 Introduction

In this paper we investigate the propositional logic of standard algebras (for Hájek's Basic Fuzzy Logic, see [1]) in a language expanded by truth constants for the idempotent elements delimiting the Ł-, G-, and П-components. We start from a given standard algebra and try to present a suitable axiomatization of its tautologies in the expanded language under the given semantics. Naturally, the logic depends on the algebra as well as on a chosen enumeration of truth constants.

A particular case of this general setting was already discussed in [4] and in [5], where only one delimiting constant is considered.

Moreover, Hájek's paper [2] on logic of truth hedges is in some points similar to the present material.

This paper is organized as follows. In Section 2 we describe the set of constants introduced and their semantics. We give axioms which describe the set of constants (in particular, its ordering) and show its standard completeness. In section 3 we additionally consider the types of components inbetween the constants. Section 4 gives complexity results for the logics.

2 Logics with truth constants for endpoints

2.1 Language and semantics

According to the Mostert-Shields representation theorem, each continuous tnorm $*$ imposes the following kind of structure to the real unit interval $[0,1]$: the latter consists of a closed set I of elements of $[0,1]$ which are idempotent w. r. t. $*$, while on closures of the open intervals which constitute the complement

[^1]of $I, *$ is isomorphic either to the Łukasiewicz t-norm on $[0,1]$ or to the product t-norm on $[0,1]$.

It follows that with each $*$, one can distinguish three types of intervals on $[0,1]$: intervals on which $*$ is isomorphic to the Lukasiewicz t-norm, intervals on which $*$ is isomorphic to the product t-norm, and intervals of idempotent elements. In the last case, we consider only the maximal intervals of idempotents w. t. t. inclusion; it is obvious that on each such interval, $*$ is isomorphic to the Gödel t-norm. Each interval of one of the three above types is delimited by two idempotent elements, its endpoints.

For a given standard algebra $[0,1]_{*}$ let $\operatorname{EP}(*)$ be the set of endpoints of its L -, G-, and Π-intervals (we write EP if $*$ is clear from context). Note that for each $*$ the set $\operatorname{EP}(*)$ is countable. Moreover, it is a consequence of the representation theorem that if two standard algebras $[0,1]_{*_{1}}$ and $[0,1]_{*_{2}}$ have the same set of endpoints and for $x, y \in E P\left(*_{1}\right)$ we have $[x, y]$ is an L component, (G-component, Π-component) in $[0,1]_{*_{1}}$ iff $[x, y]$ is an E-component (G-component, Π-component respectively) in $[0,1]_{*_{2}}$, then $[0,1]_{*_{1}}$ and $[0,1]_{*_{2}}$ are isomorphic. If moreover, the isomorphism function is the same for $[x, y]$ in $[0,1]_{*_{1}}$ and $[0,1]_{*_{2}}$, then they coincide.

Definition 2.1. (i) Fix $*$ and let EP be its set of endpoints. Assume $a: \mathbb{N} \longrightarrow$ EP is a given enumeration of EP , i. e., a maps (some initial segment of) \mathbb{N} bijectively onto EP. Denote $\mathbb{N}_{0}=\operatorname{Dom}(a) .{ }^{1}$ So $a_{i}=a(i)$ is the i-th endpoint in our enumeration of $\mathrm{EP}(*)$. Assume for convenience $a_{0}=0$.
(ii)Furthemore, let $+: \mathbb{N}_{0} \longrightarrow \mathbb{N}_{0}$ be the function assigning to each $i \in \mathbb{N}_{0}$ an index j s. t. $a_{j}=\min \left\{x: x \in \mathrm{EP}\right.$ and $\left.a_{i}<x\right\},+(i)=i$ if no such j exists. We write i^{+}for $+(i)$.

Given $*$, introduce a set of truth constants $\mathcal{C}_{*}=\left\{c_{i}\right\}_{i=0}^{\text {card(EP) }-1}$. The semantics for these new elements of the language is the following: $e\left(c_{i}\right)=a_{i}$ for any evaluation e in $[0,1]_{*}$ (hence c_{0} denotes 0). We can define the + function on \mathcal{C}_{*} : For each $i \in \mathbb{N}_{0}$ we define $c_{i}^{+}=c_{\left(i^{+}\right)}$.

The semantics for the propositional BL-language expanded with the set \mathcal{C}_{*} is given by a continuous t-norm and the mapping a enumerating the endpoints of $*$; two algebras given by isomorphic t-norms, with a different enumeration of endpoints in each case, will have different sets of tautologies in the expanded language.

2.2 Axioms for constants and completeness results

For each $*$, we define the propositional logic $B L_{E P(*)}$. We have already defined the set $E P(*)$ and the corresponding set \mathcal{C} of new propositional constants. Recall that \mathbb{N}_{0} is the set of natural numbers enumerating both $E P(*)$ and \mathcal{C}.

We introduce a set of formulas which are tautologies of $[0,1]_{*}$ in the expanded propositional language and axiom candidates. To indicate idempotence of the

[^2]elements denoted by the constants we add, for each $i \in \mathbb{N}_{0}$, an axiom
$$
c_{i} \& c_{i} \equiv c_{i} .
$$

To capture the strict linear ordering of the cutpoints, add for $i, j \in \mathbb{N}_{0}$ such that $a_{i}<a_{j}$, the formulas

$$
c_{i} \rightarrow c_{j}
$$

and

$$
\left(c_{j} \rightarrow c_{i}\right) \rightarrow c_{i} .
$$

Note that, assuming c_{i}, c_{j} are evaluated by idempotents, $\left(c_{j} \rightarrow c_{i}\right) \rightarrow c_{i}$ is valid iff either $e\left(c_{i}\right)<e\left(c_{j}\right)<1$, or $e\left(c_{i}\right)=e\left(c_{j}\right)=1$. Note also that $c_{i} \rightarrow c_{i}^{+}$is an instance of the second type of formula.

We now define the logic $B L_{E P(*)}$ and demonstrate some completeness results. Note that each logic $B L_{E P(*)}$ is tailored to a particular continuous t-norm *.

Definition 2.2. Let $*$ be a continuous t-norm. The axioms of the logic $B L_{E P(*)}$ are the axioms of BL plus the following formulas:

$$
\left.\left.\begin{array}{lr}
\left(E P_{1}^{i}\right) & c_{i} \& c_{i} \\
\left(E P_{2}^{i, j}\right) & \equiv c_{i} \text { for each } i \in \mathbb{N}_{0} \\
\left(E P_{3}^{i, j}\right) & c_{i}
\end{array}\right) c_{j} \text { for each } i, j \in \mathbb{N}_{0} \text { s.t. } a_{i}<a_{j}\right\}
$$

The deduction rule is modus ponens.
Definition 2.3. Let $*$ be a continuous t-norm and $E P(*)$ the set of its endpoints. A $B L_{E P(*)}$-algebra is a structure for the language of $B L$-algebras expanded with a set \mathcal{S}_{*} of constants that makes valid all the axioms of $B L_{E P(*)}$, evaluating $e\left(c_{i}\right)=s_{i}, i \in \mathbb{N}_{0}, s_{i} \in \mathcal{A}$ for all evaluations e.
$B L_{E P(*)}$-algebras are defined by a set of propositional formulas and therefore form a variety in the given language.

By a standard $B L_{E P(*)}$-algebra we mean an algebra which is standard and belongs to the variety generated by $[0,1]_{*}$.

Denoting $s_{i}=e\left(c_{i}\right)$ for all $i \in \mathbb{N}_{0}$ and $S^{e p}$ be the set of all s_{i}, which are idempotent elements but not necessarily endpoints of L -, G- or П-components in \mathbf{A}, the ordering of s_{i} is as follows:

Observation 2.4. Let $*$ be a continuous t-norm, EP the set of its endpoints, A a $B L_{E P(*)}$-chain and $s_{i}=e\left(c_{i}\right)$ in A. Assume $a_{i}, a_{j}, a_{k} \in E P$. Then
(i) if $a_{i}<a_{j}$ in $[0,1]_{*}$, then $s_{i} \leq s_{j}$ in \mathbf{A};
(ii) if $s_{i}, s_{j}<1$ in \mathbf{A} and $a_{i}<a_{j}$ in $[0,1]_{*}$, then $s_{i}<s_{j}$ in \mathbf{A}.

Proof. (i) Follows from the fact that $E P_{3}^{i, j}$ is valid in \mathbf{A}.
(ii) We have $s_{i} \leq s_{j}<1$ by assumptions. Moreover, both s_{i} and s_{j} are idempotents in \mathbf{A}. Then the axiom $E P_{4}^{i, j}$ yields the truth value 1 iff $s_{i}<s_{j}$ (in that case, $s_{j} \Rightarrow s_{i}=s_{i}$; if $s_{i}=s_{j}<1$, we have $s_{j} \Rightarrow s_{i}=1$ and $\left.1 \Rightarrow s_{i}=s_{i}\right) . \mathcal{Q E D}$

Theorem 2.5. (Completeness) Let $*$ be a continuous t-norm and $E P(*)$ the set of its endpoints. Let φ be a formula in the language of $B L_{E P(*)}$. Then the following are equivalent:

- (i) $\vdash_{B L_{E P}} \varphi$
- (ii) φ holds in any $B L_{E P(*)}$-algebra A
- (iii) φ holds in any $B L_{E P(*)}$-chain A.

Proof. By inspection of the completeness proof for BL-algebras.
Theorem 2.6. (Standard completeness) Let $*$ be a continuous t-norm and $E P(*)$ be the set of its endpoints. Let φ be a formula in the language of $B L_{E P(*)}$. Then $B L_{E P(*)} \vdash \varphi$ iff φ holds in all standard $B L_{E P(*)}$-algebras.

Proof. Assume φ is not provable in $B L_{E P(*)}$; then by Theorem 2.5 there is a $B L_{E P(*)}$-chain \mathbf{A} in which φ does not hold under some evaluation e. We may assume \mathbf{A} saturated. Let $\left\{v_{1}, \ldots, v_{m}\right\}$ be the values of all subformulas of φ under e. Each $v_{i}, i=1$, dots, m, either is an idempotent of \mathbf{A}, or belongs to some L- or Π-component of A. Let V be a subset of the domain of \mathbf{A} which contains, for each $i=1, \ldots, m v_{i}$ whenever v_{i} is idempotent of \mathbf{A}, and the delimiting idempotent endpoints of v_{i} if it is not idempotent. Then V is a finite subset of the domain of \mathbf{A}. Denote $S=\left\{s_{i}=e\left(c_{i}\right), i \in \mathrm{~N}_{0}\right\}$. Consider $S \cup V$ as a set ordered with the ordering of \mathbf{A}. Embed this ordered set into [0, 1] (with 1-1 embedding). Then it is obvious that one can define on $[0,1] \mathrm{L}$ - and Π-components corresponding by their types to those components of \mathbf{A} which are delimited by elements of V; denote this algebra B. (Propositional constants are evaluated by the s_{i}-images in B.) This shows that the counterexample evaluation of φ can be embedded into $[0,1]$, where it yields value less than 1 .

Finally, B is a standard $B L_{E P}$-algebra.
$\mathcal{Q E D}$

3 Axioms for components

We suggest a way of describing the isomorphism type of the intervals inbetween endpoints ($\mathrm{L}, \mathrm{G}, \Pi$) by means of a suitable translation of formulas. For each particular continuous t-norm, the ultimate goal of the endeavour is to find a complete axiomatics for the $B L_{E P}$-algebra given by it. We retain the terminology and notation from the previous section, i.e., each continuous t-norm * determines the set EP of its endpoints, as well as their enumeration \mathbb{N}_{0} and the corresponding set of truth constants \mathcal{C}.

Assume $*$ is given. For each $i \in \mathbb{N}_{0}$, we define a translation function, operating on formulas of the language of BL. The result of the translation of a formula φ will be denoted $\varphi^{\left[c_{i}, c_{i}^{+}\right]}$. The translation function is defined by induction on the formula structure as follows:

$$
\begin{aligned}
\overline{0}^{\left[c_{i}, c_{i}^{+}\right]} & =c_{i} \\
\overline{1}^{\left[c_{i}, c_{i}^{+}\right]} & =c_{i}^{+} \\
p^{\left[c_{i}, c_{i}^{+}\right]} & =\left(p \vee c_{i}\right) \wedge c_{i}^{+} \\
(\varphi \& \psi)^{\left[c_{i}, c_{i}^{+}\right]} & =\varphi^{\left[c_{i}, c_{i}^{+}\right]} \& \psi^{\left[c_{i}, c_{i}^{+}\right]} \\
(\varphi \rightarrow \psi)^{\left[c_{i}, c_{i}^{+}\right]} & =\left(\varphi^{\left[c_{i}, c_{i}^{+}\right]} \rightarrow \psi^{\left[c_{i}, c_{i}^{+}\right]}\right) \wedge c_{i}^{+}
\end{aligned}
$$

Observation 3.1. Let * be a continuous t-norm, $E P(*)$ the set of its endpoints. For any $i \in \mathbb{N}_{0}$ and any φ, the following holds:
(i) for any evaluation e we have $e\left(\varphi^{\left[c_{i}, c_{i}^{+}\right]}\right) \in\left[c_{i}, c_{i}^{+}\right]$
(ii) $\varphi^{\left[c_{i}, c_{i}^{+}\right]} \equiv\left(\left(\varphi^{\left[c_{i}, c_{i}^{+}\right]} \vee c_{i}\right) \wedge c_{i}^{+}\right)$
(iii) $\varphi^{\left[c_{i}, c_{i}^{+}\right]} \equiv\left(\varphi^{\left[c_{i}, c_{i}^{+}\right]} \& c_{i}^{+}\right)$

Proof. (i) by induction on formula structure, using the above definition of the [$\left.c_{i}, c_{i}^{+}\right]$-translation function; (ii) follows from (i) by completeness; (iii) follows from (i) by virtue of basic facts on behaviour of idempotent elements of $*$. $\mathcal{Q E D}$

Observation 3.2. Let $*$ be a continuous t-norm, $E P(*)$ the set of its endpoints. Then for any $i \in \mathbb{N}_{0}$:

$$
\begin{aligned}
&(\neg \varphi)^{\left[c_{i}, c_{i}^{+}\right]} \text {is } \\
&\left(\varphi \wedge \varphi^{\left[c_{i}, c_{i}^{+}\right]} \rightarrow c_{i}\right) \wedge c_{i}^{+} \\
&(\varphi \vee)^{\left[c_{i}, c_{i}^{+}\right]} \text {is } \varphi^{\left[c_{i}, c_{i}^{+}\right]} \wedge \psi^{\left[c_{i}, c_{i}^{+}\right]} \\
&(\varphi \vee \psi)^{\left[c_{i}, c_{i}^{+}\right]} \text {is } \\
&\left(\left(\left(\varphi^{\left[c_{i}, c_{i}^{+}\right]} \rightarrow \psi^{\left[c_{i}, c_{i}^{+}\right]}\right) \wedge c_{i}^{+}\right) \rightarrow \psi^{\left[c_{i}, c_{i}^{+}\right]}\right) \wedge \\
&\left(\left(\left(\psi^{\left[c_{i}, c_{i}^{+}\right]} \rightarrow \varphi^{\left[c_{i}, c_{i}^{+}\right]}\right) \wedge c_{i}^{+}\right) \rightarrow \varphi^{\left[c_{i}, c_{i}^{+}\right]}\right) \wedge c_{i}^{+}
\end{aligned}
$$

Proof. (and) $(\varphi \wedge \psi)^{\left[c_{i}, c_{i}^{+}\right]}$is
$(\varphi \&(\varphi \rightarrow \psi))^{\left[c_{i}, c_{i}^{+}\right]}$, which is by definition
$\varphi^{\left[c_{i}, c_{i}^{+}\right]} \&\left(\left(\varphi^{\left[c_{i}, c_{i}^{+}\right]} \rightarrow \psi^{\left[c_{i}, c_{i}^{+}\right]}\right) \wedge c_{i}^{+}\right)$, which distributes to
$\left(\varphi^{\left[c_{i}, c_{i}^{+}\right]} \&\left(\varphi^{\left[c_{i}, c_{i}^{+}\right]} \rightarrow \psi^{\left[c_{i}, c_{i}^{+}\right]}\right)\right) \wedge\left(\varphi^{\left[c_{i}, c_{i}^{+}\right]} \& c_{i}^{+}\right)$, which, using the above lemma, is equivalent to
$\varphi^{\left[c_{i}, c_{i}^{+}\right]} \wedge \psi^{\left[c_{i}, c_{i}^{+}\right]}$.
Theorem 3.3. Let $*$ be a continuous t-norm, $E P(*)$ the set of its endpoints, and A the $B L_{E P-a l g e b r a ~ g i v e n ~ b y ~}^{*}$ on $[0,1]$. Let $i \in \mathbb{N}_{0}$ be such that $*$ on $\left[c_{i}, c_{i}^{+}\right]$ is isomorphic to the Eukasiewicz t-norm (the Gödel t-norm, the product t-norm respectively). Then $\varphi \equiv \psi$ is a tautology of $[0,1]_{\mathrm{L}}\left([0,1]_{\mathrm{G}},[0,1]_{\Pi}\right.$ respectively $)$ iff $\varphi^{\left[c_{i}, c_{i}^{+}\right]} \equiv \psi^{\left[c_{i}, c_{i}^{+}\right]}$is a tautology of A.

Proof. Let us assume that $*$ on $\left[c_{i}, c_{i}^{+}\right]$is isomorphic to Lukasiewicz t-norm; the proofs for Gödel and product are analogous.

On $\left[c_{i}, c_{i}^{+}\right]$define $x \Rightarrow^{\left[c_{i}, c_{i}^{+}\right]} y=\min \left\{x \Rightarrow y, c_{i}^{+}\right\}$. Then it is obvious that $S^{i}=\left(\left[c_{i}, c_{i}^{+}\right], c_{i}, c_{i}^{+}, *, \Rightarrow^{\left[c_{i}, c_{i}^{+}\right]}\right)$is an MV-algebra isomorphic to $[0,1]_{\mathrm{E}}$. Suppose φ, ψ are two formulas of at most n free variables p_{1}, \ldots, p_{n}. Assume $v_{1}, \ldots, v_{n} \in$ $[0,1]$. Observe that $\varphi^{\left[c_{i}, c_{i}^{+}\right]}\left(p_{1} / v_{1}, \ldots, p_{n} / v_{n}\right)$ yields the same value in $[0,1]_{*}$ as $\varphi\left(p_{1} /\left(v_{1} \vee c_{i}\right) \wedge c_{i}^{+}, \ldots, p_{n} /\left(v_{n} \vee c_{i}\right) \wedge c_{i}^{+}\right)$evaluated in S^{i}, by definition of the $\left[c_{i}, c_{i}^{+}\right]$-translation function. Thus, if two formulas φ and ψ are equal in $[0,1]_{\mathrm{E}}$ in all evaluations, so will their translations $\varphi^{\left[c_{i}, c_{i}^{+}\right]}$and $\psi^{\left[c_{i}, c_{i}^{+}\right]}$be in $[0,1]_{*}$. Vice versa, if $\varphi^{\left[c_{i}, c_{i}^{+}\right]}$and $\psi^{\left[c_{i}, c_{i}^{+}\right]}$are equal under all evaluations in $[0,1]_{*}$, they are equal under all evaluations in $\left[c_{i}, c_{i}^{+}\right]$, thus φ and ψ are equal under all evaluations in $[0,1]_{\mathrm{E}}$.
$\mathcal{Q E D}$
In particular, if φ is a tautology of $[0,1]_{\mathrm{E}}\left([0,1]_{\mathrm{G}},[0,1]_{\Pi}\right.$ respectively $)$, and the interval $\left[a_{i}, a_{i}^{+}\right]$in $*$ is an L -component (G-component, Π-component respectively), then $\varphi^{\left[c_{i}, c_{i}^{+}\right]} \equiv c_{i}^{+}$is a tautology of the $B L_{E P(*)}$-algebra given by *.

Let (L) denote the additional axiom $\neg \neg \varphi \rightarrow \varphi$ of Lukasiewicz logic, (G) denote the axiom $\varphi \rightarrow \varphi \& \varphi$ of Gödel logic, and (Π) denote the axiom $(\varphi \rightarrow$ $\chi) \vee((\varphi \rightarrow(\varphi \& \psi)) \rightarrow \psi)$ of product logic. For $i \in N$, denote

$$
\begin{aligned}
& \mathrm{E}^{i} \text { the formula } \mathrm{E}^{\left[c_{i}, c_{i}^{+}\right]} \equiv c_{i}^{+} \\
& \mathrm{G}^{i} \text { the formula } \mathrm{G}^{\left[c_{i}, c_{i}^{+}\right]} \equiv c_{i}^{+} \\
& \Pi^{i} \text { the formula } \Pi^{\left[c_{i}, c_{i}^{+}\right]} \equiv c_{i}^{+}
\end{aligned}
$$

We refine the calculus $B L_{E P}$ with a specification of the isomorphism type of each of the components of $*$.

Definition 3.4. Let * be a continuous t-norm, EP the set of its endpoints. The logic $B L_{C O M P(*)}$ has as axioms the axioms of $B L_{E P(*)}$ plus the following formulas, for all $i \in \mathbb{N}_{0}$:

$$
\begin{array}{ll}
\left(C O M P_{\mathrm{E}}^{i}\right) & E^{i} \text { whenever }\left[a_{i}, a_{i}^{+}\right] \text {in }[0,1]_{*} \text { is a copy of }[0,1]_{\mathrm{E}} \\
\left(C O M P_{G}^{i}\right) & \mathrm{G}^{i} \text { whenever }\left[a_{i}, a_{i}^{+}\right] \text {in }[0,1]_{*} \text { is a copy of }[0,1]_{G} \\
\left(C O M P_{\Pi}^{i}\right) & \Pi^{i} \text { whenever }\left[a_{i}, a_{i}^{+}\right] \text {in }[0,1]_{*} \text { is a copy of }[0,1]_{\Pi}
\end{array}
$$

The deduction rule is modus ponens.
As in the case of the logic $B L_{E P}$, one can state a completeness theorem w. r. t. (linearly ordered) $B L_{C O M P}$-algebras, and also a standard completeness theorem w. r. t. all standard $B L_{C O M P}$-algebras. It remains open whether the $\operatorname{logic} B L_{C O M P}$ is complete with respect to the single standard $B L_{C O M P}$-algebra given by $*$.

4 Complexity issues

We analyze the computational complexity of the set of propositional 1-tautologies of each of the $B L_{E P-\text {-algebras given by } * \text {. }}^{\text {. }}$

If $*$ is a finite ordinal sum, we show that the set of propositional 1-tautologies of $[0,1]_{*}$ in the language enriched with the constants \mathcal{C} is in coNP (in fact, it is coNP-complete).

Next we address infinite sums. Although there exist infinite sums whose sets of tautologies (in the language of $B L_{E P}$-algebras are in coNP, it is also true that some others are undecidable. There are (classes of) standard algebras which are infinite sums with a less favourable ordering/numbering of delimiting idempotents and whose sets of 1-tautologies in the enriched language are nonarithmetical.

Let $*$ be a continuous t-norm and \mathbf{A} be the standard $B L_{E P(*)}$-algebra given by $*$. One may distinguish the following sets of formulas (in all cases φ stands for a propositional formula in the BL-language with constants (\mathcal{C}) and $e_{\mathbf{A}}$ runs over evaluations in A).

$$
\begin{aligned}
\operatorname{TAUT}_{1}^{\mathbf{A}} & =\left\{\varphi: \forall e_{\mathbf{A}}\left(e_{\mathbf{A}}(\varphi)=1\right)\right\} \\
\operatorname{TAUT}_{\text {pos }}^{\mathbf{A}} & =\left\{\varphi: \forall e_{\mathbf{A}}\left(e_{\mathbf{A}}(\varphi)>0\right)\right\} \\
\operatorname{SAT}_{1}^{\mathbf{A}} & =\left\{\varphi: \exists e_{\mathbf{A}}\left(e_{\mathbf{A}}(\varphi)=1\right)\right\} \\
\operatorname{SAT}_{\text {pos }}^{\mathbf{A}} & =\left\{\varphi: \exists e_{\mathbf{A}}\left(e_{\mathbf{A}}(\varphi)>0\right)\right\}
\end{aligned}
$$

These sets are referred to as 1-tautologies, positive tautologies, 1-satisfiable formulas and positively satisfiable formulas of \mathbf{A}.

For a class K of algebras of the same type, one may generalize:

$$
\begin{aligned}
\operatorname{TAUT}_{1}^{K} & =\left\{\varphi: \forall \mathbf{A} \in K \forall e_{\mathbf{A}}\left(e_{\mathbf{A}}(\varphi)=1\right)\right\} \\
\operatorname{TAUT}_{\text {pos }}^{K} & =\left\{\varphi: \forall \mathbf{A} \in K \forall e_{\mathbf{A}}\left(e_{\mathbf{A}}(\varphi)>0\right)\right\} \\
\operatorname{SAT}_{1}^{K} & =\left\{\varphi: \exists \mathbf{A} \in K \exists e_{\mathbf{A}}\left(e_{\mathbf{A}}(\varphi)=1\right)\right\} \\
\operatorname{SAT}_{\text {pos }}^{K} & =\left\{\varphi: \exists \mathbf{A} \in K \exists e_{\mathbf{A}}\left(e_{\mathbf{A}}(\varphi)>0\right)\right\}
\end{aligned}
$$

4.1 Finite ordinal sums

If the number of $\mathrm{E}-, \mathrm{G}$-, and Π-components in a continuous t-norm is finite, then so is the number of its endpoints and the computational situation is straightforward, regardless of the enumeration a of endpoints.

Let $*$ be a continuous t-norm which is a finite ordinal sum of $\mathrm{E}-$, G-, and Π components, A the $B L_{E P}$-algebra given by $*$, and n the number of components in A. W. l. o. g., we may assume that the endpoints in A are enumerated in increasing order (w. r. t. their real ordering), a_{0} being 0 and a_{n} being 1 .

For any formula φ, let $|\varphi|$ denote the number of occurrences of propositional variables, and denote $m=2|\varphi|-1$ (so m is the number of subformulas in φ). Fix an enumeration of all subformulas of φ; assume φ gets the index 1 .

Theorem 4.1. TAUT_{1}^{A} is a co-NP-complete set.
Proof. TAUT ${ }_{1}^{A}$ is trivially coNP-hard as the tautologies of $[0,1]_{*}$ (the standard algebra in a language without constants), which is a coNP-hard set, can be reduced to it (using identity).

We use a modification of the algorithm in [3], which is a nondeterministic acceptor of non-tautologies of A, running in polynomial time w. r. t. m (the size of the input φ). This will entail that the 1-tautologies of A are in coNP.
nameSubformulas () Introduce variables $x_{1} \ldots, x_{m}$, and assign the variable x_{i} to the subformula φ_{i} of φ (x_{1} is assigned to φ).
Set $V=\left\{a_{0}, \ldots, a_{n}\right\} \cup\left\{x_{1}, \ldots, x_{m}\right\}$.
guessOrder () Guess a linear ordering \preceq of elements of V, such that $x_{1} \prec a_{n}=$ 1.
checkOrder () Check that \preceq satisfies basic natural conditions: first, that it preserves the strict ordering of the endpoints a_{i} on the real unit interval,
second, any variable assigned to the constant 0 must be \approx-equal to a_{0}, the variable denoting the least endpoint.

We say that variables x_{j} s. t. $a_{i} \preceq x_{j} \preceq a_{i+1}$ belong to i.
checkExternal () Check external soundness of \preceq : for φ_{i}, φ_{j} subformulas of φ $(1 \leq i, j \leq m)$,

- if $\varphi_{i} \& \varphi_{j}$ is a subformula φ_{k} of φ for some $k \in\{1, \ldots, m\}$ and, for some $l \in\{0, \ldots, n\}$, we have $x_{i} \preceq a_{l} \preceq x_{j}$, then $x_{k} \approx x_{i}$;
- if $\varphi_{i} \rightarrow \varphi_{j}$ is a subformula φ_{k} of φ for some $k \in\{1, \ldots, m\}$ and $x_{i} \preceq x_{j}$, then $x_{k} \approx a_{n}$;
- if $\varphi_{i} \rightarrow \varphi_{j}$ is a subformula φ_{k} of φ for some $k \in\{1, \ldots, m\}$ and for some $l \in\{0, \ldots, n\}$, we have $x_{j} \prec a_{l} \preceq x_{i}$, then $x_{k} \approx x_{j}$.
checkInternal () Check internal soundness of \preceq for each interval $\left[a_{i}, a_{i+1}\right.$], $i=0, \ldots, n-1$ in \preceq. Consider variables in i. Construct a system \mathcal{S}_{i} of equations and inequalities; \mathcal{S}_{i} is initially empty. For each subformula φ_{l} which is $\varphi_{j} \& \varphi_{k}$, if x_{j} and x_{k} are in i, check x_{l} is also in i and put equation $x_{j} * x_{k}=x_{l}$ into \mathcal{S}_{i}. For each subformula φ_{l} which is $\varphi_{j} \rightarrow \varphi_{k}$, such that $x_{k} \prec x_{j}$, if x_{j} and x_{k} are in i, check x_{l} is also in i and put equation $x_{j} \Rightarrow x_{k}=x_{l}$ into \mathcal{S}_{i}.

Further, put all equations and inequalities defined by \preceq for the variables in i into \mathcal{S}_{i}. Check whether the system \mathcal{S}_{i} has a solution in the i-th component of A.
end
It is shown in [3] that the last check can be performed (nondeterministically) in polynomial time w.r.t. the size of \mathcal{S}, for all three types of basic components. This concludes the proof.

Now we examine continuous t-norms with infinitely many endpoints.
First, an example of a continuous t-norm which is an infinite ordinal sum for which the set of 1-tautologies of the corresponding $B L_{E P}$-algebra is coNPcomplete.

Lemma 4.2. Let $*$ be a continuous t-norm which is an infinite sum of E components, with endpoints enumerated by ω. Then the set of 1-tautologies of the resulting $B L_{E P-a l g e b r a ~ i s ~ c o N P-c o m p l e t e . ~}^{\text {a }}$

Proof. Obvious.
$\mathcal{Q E D}$
However, the following statement holds for ordinal sums whose endpoints are ordered and enumerated by ω, but with both L - and Π-components.

Observation 4.3. Let S be any subset of N. Let $*$ be a continuous t-norm with endpoints ordered and enumerated by ω. Assume $*$ has two types of components \pm and Π, and the distribution of these copies the characteristic function of S in such a way that Lstands for 1 whereas Π stands for 0 . . Then char (S) is reducible to TAUT(A).

Proof. Take a formula λ which is valid in $[0,1]_{\mathrm{E}}$ but not in $[0,1]_{\Pi}$. Then one can reduce membership is S to tautologousness in $[0,1]_{*}$ by asking, for a given $i \in S$, about the validity of of $\lambda^{\left[c_{i-1}, c_{i}\right]}$ in the $B L_{E P}$-algebra given by $*$. $\mathcal{Q E D}$

The latter statement not only shows that tautologies of $B P_{E P}$-algebras can be placed arbitrarily high in the arithmetical hierarchy, but also that they can be non-arithmetical.

References

[1] Petr Hájek. Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, 1998.
[2] Petr Hájek. Some hedges for continuous t-norm logics. Neural Network World, (2):159-164, 2002.
[3] Zuzana Haniková. A note on the complexity of propositional tautologies of individual t-algebras. Neural Network World, 12(5):453-460, 2002.
[4] Zuzana Honzíková. Some fuzzy propositional calculi. Master's thesis, Matematicko-fyzikální fakulta Univerzity Karlovy v Praze, 1999.
[5] Zuzana Honzíková. Axiomatizations of standard algebras for fuzzy propositional calculi by use of truth constants. Journal of Electrical Engineering, 2000.

[^0]: ${ }^{1}$ Supported by grant ICC/08/E018 of the Grant Agency of the Czech Republic (a part of ESF Eurocores-LogICCC project FP006).

[^1]: *supported by grant ICC/08/E018 of the Grant Agency of the Czech Republic (a part of ESF Eurocores-LogICCC project FP006)

[^2]: ${ }^{1}$ We assume $0 \in \mathbb{N}$ and thus the endpoints are indexed from zero.

