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Technical report No. 1055

November 2009
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Zuzana Haniková∗

Institute of Computer Science, AS CR
182 07 Prague, Czech Republic

1 Introduction

In this paper we investigate the propositional logic of standard algebras (for
Hájek’s Basic Fuzzy Logic, see [1]) in a language expanded by truth constants
for the idempotent elements delimiting the  L-, G-, and Π-components. We start
from a given standard algebra and try to present a suitable axiomatization of
its tautologies in the expanded language under the given semantics. Naturally,
the logic depends on the algebra as well as on a chosen enumeration of truth
constants.

A particular case of this general setting was already discussed in [4] and in
[5], where only one delimiting constant is considered.

Moreover, Hájek’s paper [2] on logic of truth hedges is in some points similar
to the present material.

This paper is organized as follows. In Section 2 we describe the set of
constants introduced and their semantics. We give axioms which describe the
set of constants (in particular, its ordering) and show its standard completeness.
In section 3 we additionally consider the types of components inbetween the
constants. Section 4 gives complexity results for the logics.

2 Logics with truth constants for endpoints

2.1 Language and semantics

According to the Mostert-Shields representation theorem, each continuous t-
norm ∗ imposes the following kind of structure to the real unit interval [0, 1]:
the latter consists of a closed set I of elements of [0, 1] which are idempotent
w. r. t. ∗, while on closures of the open intervals which constitute the complement

∗supported by grant ICC/08/E018 of the Grant Agency of the Czech Republic (a part of
ESF Eurocores-LogICCC project FP006)
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of I, ∗ is isomorphic either to the  Lukasiewicz t-norm on [0, 1] or to the product
t-norm on [0, 1].

It follows that with each ∗, one can distinguish three types of intervals on
[0, 1]: intervals on which ∗ is isomorphic to the  Lukasiewicz t-norm, intervals
on which ∗ is isomorphic to the product t-norm, and intervals of idempotent
elements. In the last case, we consider only the maximal intervals of idempotents
w. t̊. t. inclusion; it is obvious that on each such interval, ∗ is isomorphic to the
Gödel t-norm. Each interval of one of the three above types is delimited by two
idempotent elements, its endpoints.

For a given standard algebra [0, 1]∗ let EP(∗) be the set of endpoints of
its  L-, G-, and Π-intervals (we write EP if ∗ is clear from context). Note
that for each ∗ the set EP(∗) is countable. Moreover, it is a consequence of
the representation theorem that if two standard algebras [0, 1]∗1 and [0, 1]∗2
have the same set of endpoints and for x, y ∈ EP (∗1) we have [x, y] is an  L-
component, (G-component, Π-component) in [0, 1]∗1 iff [x, y] is an  L-component
(G-component, Π-component respectively) in [0, 1]∗2 , then [0, 1]∗1 and [0, 1]∗2
are isomorphic. If moreover, the isomorphism function is the same for [x, y] in
[0, 1]∗1 and [0, 1]∗2 , then they coincide.

Definition 2.1. (i) Fix ∗ and let EP be its set of endpoints. Assume a : N −→
EP is a given enumeration of EP, i. e., a maps (some initial segment of) N
bijectively onto EP. Denote N0 = Dom(a).1 So ai = a(i) is the i-th endpoint
in our enumeration of EP(∗). Assume for convenience a0 = 0.
(ii)Furthemore, let + : N0 −→ N0 be the function assigning to each i ∈ N0 an
index j s. t. aj = min{x : x ∈ EP and ai < x}, +(i) = i if no such j exists. We
write i+ for +(i).

Given ∗, introduce a set of truth constants C∗ = {ci}card(EP)−1
i=0 . The seman-

tics for these new elements of the language is the following: e(ci) = ai for any
evaluation e in [0, 1]∗ (hence c0 denotes 0). We can define the + function on C∗:
For each i ∈ N0 we define c+i = c(i+).

The semantics for the propositional BL-language expanded with the set C∗
is given by a continuous t-norm and the mapping a enumerating the endpoints
of ∗; two algebras given by isomorphic t-norms, with a different enumeration of
endpoints in each case, will have different sets of tautologies in the expanded
language.

2.2 Axioms for constants and completeness results

For each ∗, we define the propositional logic BLEP (∗). We have already de-
fined the set EP (∗) and the corresponding set C of new propositional constants.
Recall that N0 is the set of natural numbers enumerating both EP (∗) and C.

We introduce a set of formulas which are tautologies of [0, 1]∗ in the expanded
propositional language and axiom candidates. To indicate idempotence of the

1We assume 0 ∈ N and thus the endpoints are indexed from zero.
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elements denoted by the constants we add, for each i ∈ N0, an axiom

ci & ci ≡ ci.

To capture the strict linear ordering of the cutpoints, add for i, j ∈ N0 such
that ai < aj , the formulas

ci → cj

and
(cj → ci)→ ci.

Note that, assuming ci, cj are evaluated by idempotents, (cj → ci) → ci is
valid iff either e(ci) < e(cj) < 1, or e(ci) = e(cj) = 1. Note also that ci → c+i is
an instance of the second type of formula.

We now define the logic BLEP (∗) and demonstrate some completeness re-
sults. Note that each logic BLEP (∗) is tailored to a particular continuous t-norm
∗.

Definition 2.2. Let ∗ be a continuous t-norm. The axioms of the logic BLEP (∗)

are the axioms of BL plus the following formulas:

(EP i
1) ci & ci ≡ ci for each i ∈ N0

(EP i,j
2 ) ci → cj for each i, j ∈ N0 s.t. ai < aj

(EP i,j
3 ) (cj → ci)→ ci for each i, j ∈ N0 s.t. ai < aj

The deduction rule is modus ponens.

Definition 2.3. Let ∗ be a continuous t-norm and EP(∗) the set of its endpoints.
A BLEP (∗)-algebra is a structure for the language of BL-algebras expanded with
a set S∗ of constants that makes valid all the axioms of BLEP (∗), evaluating
e(ci) = si, i ∈ N0, si ∈ A for all evaluations e.

BLEP (∗)-algebras are defined by a set of propositional formulas and therefore
form a variety in the given language.

By a standard BLEP (∗)-algebra we mean an algebra which is standard and
belongs to the variety generated by [0, 1]∗.

Denoting si = e(ci) for all i ∈ N0 and Sep be the set of all si, which are
idempotent elements but not necessarily endpoints of  L-, G- or Π-components
in A, the ordering of si is as follows:

Observation 2.4. Let ∗ be a continuous t-norm, EP the set of its endpoints,
A a BLEP (∗)-chain and si = e(ci) in A. Assume ai, aj , ak ∈ EP . Then

(i) if ai < aj in [0, 1]∗, then si ≤ sj in A;

(ii) if si, sj < 1 in A and ai < aj in [0, 1]∗, then si < sj in A.

Proof. (i) Follows from the fact that EP i,j
3 is valid in A.

(ii) We have si ≤ sj < 1 by assumptions. Moreover, both si and sj are idempo-
tents in A. Then the axiom EP i,j

4 yields the truth value 1 iff si < sj (in that
case, sj ⇒ si = si; if si = sj < 1, we have sj ⇒ si = 1 and 1⇒ si = si). QED
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Theorem 2.5. (Completeness) Let ∗ be a continuous t-norm and EP(∗) the
set of its endpoints. Let ϕ be a formula in the language of BLEP (∗). Then the
following are equivalent:

• (i) `BLEP
ϕ

• (ii) ϕ holds in any BLEP (∗)-algebra A

• (iii) ϕ holds in any BLEP (∗)-chain A.

Proof. By inspection of the completeness proof for BL-algebras. QED

Theorem 2.6. (Standard completeness) Let ∗ be a continuous t-norm and
EP (∗) be the set of its endpoints. Let ϕ be a formula in the language of BLEP (∗).
Then BLEP (∗) ` ϕ iff ϕ holds in all standard BLEP (∗)-algebras.

Proof. Assume ϕ is not provable in BLEP (∗); then by Theorem 2.5 there is a
BLEP (∗)-chain A in which ϕ does not hold under some evaluation e. We may
assume A saturated. Let {v1, . . . , vm} be the values of all subformulas of ϕ
under e. Each vi, i = 1, dots,m, either is an idempotent of A, or belongs to
some L- or Π-component of A. Let V be a subset of the domain of A which
contains, for each i = 1, . . . ,m vi whenever vi is idempotent of A, and the
delimiting idempotent endpoints of vi if it is not idempotent. Then V is a
finite subset of the domain of A. Denote S = {si = e(ci), i ∈ N0}. Consider
S∪V as a set ordered with the ordering of A. Embed this ordered set into [0, 1]
(with 1-1 embedding). Then it is obvious that one can define on [0, 1] L- and
Π-components corresponding by their types to those components of A which
are delimited by elements of V ; denote this algebra B. (Propositional constants
are evaluated by the si-images in B.) This shows that the counterexample
evaluation of ϕ can be embedded into [0, 1], where it yields value less than 1.

Finally, B is a standard BLEP -algebra. QED

3 Axioms for components

We suggest a way of describing the isomorphism type of the intervals inbetween
endpoints ( L, G, Π) by means of a suitable translation of formulas. For each
particular continuous t-norm, the ultimate goal of the endeavour is to find a
complete axiomatics for the BLEP -algebra given by it. We retain the termi-
nology and notation from the previous section, i.e., each continuous t-norm ∗
determines the set EP of its endpoints, as well as their enumeration N0 and the
corresponding set of truth constants C.

Assume ∗ is given. For each i ∈ N0, we define a translation function, operat-
ing on formulas of the language of BL. The result of the translation of a formula
ϕ will be denoted ϕ[ci,ci

+]. The translation function is defined by induction on
the formula structure as follows:
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0[ci,c
+
i ] = ci

1[ci,c
+
i ] = c+i

p[ci,c
+
i ] = (p ∨ ci) ∧ c+i

(ϕ&ψ)[ci,c
+
i ] = ϕ[ci,c

+
i ]&ψ[ci,c

+
i ]

(ϕ→ ψ)[ci,c
+
i ] = (ϕ[ci,c

+
i ] → ψ[ci,c

+
i ]) ∧ c+i

Observation 3.1. Let ∗ be a continuous t-norm, EP(∗) the set of its endpoints.
For any i ∈ N0 and any ϕ, the following holds:

(i) for any evaluation e we have e(ϕ[ci,c
+
i ]) ∈ [ci, c+i ]

(ii) ϕ[ci,c
+
i ] ≡ ((ϕ[ci,c

+
i ] ∨ ci) ∧ c+i )

(iii) ϕ[ci,c
+
i ] ≡ (ϕ[ci,c

+
i ] & c+i )

Proof. (i) by induction on formula structure, using the above definition of the
[ci, c+i ]-translation function; (ii) follows from (i) by completeness; (iii) follows
from (i) by virtue of basic facts on behaviour of idempotent elements of ∗. QED

Observation 3.2. Let ∗ be a continuous t-norm, EP(∗) the set of its endpoints.
Then for any i ∈ N0:

(¬ϕ)[ci,c
+
i ] is (ϕ[ci,c

+
i ] → ci) ∧ c+i

(ϕ ∧ ψ)[ci,c
+
i ] is ϕ[ci,c

+
i ] ∧ ψ[ci,c

+
i ]

(ϕ ∨ ψ)[ci,c
+
i ] is (((ϕ[ci,c

+
i ] → ψ[ci,c

+
i ]) ∧ c+i )→ ψ[ci,c

+
i ])∧

(((ψ[ci,c
+
i ] → ϕ[ci,c

+
i ]) ∧ c+i )→ ϕ[ci,c

+
i ]) ∧ c+i

Proof. (and) (ϕ ∧ ψ)[ci,c
+
i ] is

(ϕ& (ϕ→ ψ))[ci,c
+
i ], which is by definition

ϕ[ci,c
+
i ] & ((ϕ[ci,c

+
i ] → ψ[ci,c

+
i ]) ∧ c+i ), which distributes to

(ϕ[ci,c
+
i ] & (ϕ[ci,c

+
i ] → ψ[ci,c

+
i ])) ∧ (ϕ[ci,c

+
i ] & c+i ), which, using the above lemma,

is equivalent to
ϕ[ci,c

+
i ] ∧ ψ[ci,c

+
i ]. QED

Theorem 3.3. Let ∗ be a continuous t-norm, EP(∗) the set of its endpoints,
and A the BLEP -algebra given by ∗ on [0, 1]. Let i ∈ N0 be such that ∗ on [ci, c+i ]
is isomorphic to the  Lukasiewicz t-norm (the Gödel t-norm, the product t-norm
respectively). Then ϕ ≡ ψ is a tautology of [0, 1] L ( [0, 1]G, [0, 1]Π respectively)
iff ϕ[ci,c

+
i ] ≡ ψ[ci,c

+
i ] is a tautology of A.
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Proof. Let us assume that ∗ on [ci, c+i ] is isomorphic to  Lukasiewicz t-norm; the
proofs for Gödel and product are analogous.

On [ci, c+i ] define x ⇒[ci,c
+
i ] y = min{x ⇒ y, c+i }. Then it is obvious that

Si = ([ci, c+i ], ci, c+i , ∗,⇒[ci,c
+
i ]) is an MV-algebra isomorphic to [0, 1] L. Suppose

ϕ, ψ are two formulas of at most n free variables p1, . . . , pn. Assume v1, . . . , vn ∈
[0, 1]. Observe that ϕ[ci,c

+
i ](p1/v1, . . . , pn/vn) yields the same value in [0, 1]∗ as

ϕ(p1/(v1 ∨ ci) ∧ c+i , . . . , pn/(vn ∨ ci) ∧ c+i ) evaluated in Si, by definition of the
[ci, c+i ]-translation function. Thus, if two formulas ϕ and ψ are equal in [0, 1] L
in all evaluations, so will their translations ϕ[ci,c

+
i ] and ψ[ci,c

+
i ] be in [0, 1]∗.

Vice versa, if ϕ[ci,c
+
i ] and ψ[ci,c

+
i ] are equal under all evaluations in [0, 1]∗, they

are equal under all evaluations in [ci, c+i ], thus ϕ and ψ are equal under all
evaluations in [0, 1] L. QED

In particular, if ϕ is a tautology of [0, 1] L ([0, 1]G, [0, 1]Π respectively), and
the interval [ai, a

+
i ] in ∗ is an  L-component (G-component, Π-component re-

spectively), then ϕ[ci,c
+
i ] ≡ c+i is a tautology of the BLEP (∗)-algebra given by

∗.

Let ( L) denote the additional axiom ¬¬ϕ → ϕ of  Lukasiewicz logic, (G)
denote the axiom ϕ → ϕ&ϕ of Gödel logic, and (Π) denote the axiom (ϕ →
χ) ∨ ((ϕ→ (ϕ&ψ))→ ψ) of product logic. For i ∈ N , denote

 Li the formula  L[ci,c
+
i ] ≡ c+i

Gi the formula G[ci,c
+
i ] ≡ c+i

Πi the formula Π[ci,c
+
i ] ≡ c+i

We refine the calculus BLEP with a specification of the isomorphism type
of each of the components of ∗.

Definition 3.4. Let ∗ be a continuous t-norm, EP the set of its endpoints.
The logic BLCOMP (∗) has as axioms the axioms of BLEP (∗) plus the following
formulas, for all i ∈ N0:

(COMP i
 L)  Li whenever [ai, a

+
i ] in [0, 1]∗ is a copy of [0, 1] L

(COMP i
G) Gi whenever [ai, a

+
i ] in [0, 1]∗ is a copy of [0, 1]G

(COMP i
Π) Πi whenever [ai, a

+
i ] in [0, 1]∗is a copy of [0, 1]Π

The deduction rule is modus ponens.

As in the case of the logic BLEP , one can state a completeness theorem
w. r. t. (linearly ordered) BLCOMP -algebras, and also a standard completeness
theorem w. r. t. all standard BLCOMP -algebras. It remains open whether the
logic BLCOMP is complete with respect to the single standard BLCOMP -algebra
given by ∗.
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4 Complexity issues

We analyze the computational complexity of the set of propositional 1-tautologies
of each of the BLEP -algebras given by ∗.

If ∗ is a finite ordinal sum, we show that the set of propositional 1-tautologies
of [0, 1]∗ in the language enriched with the constants C is in coNP (in fact, it is
coNP-complete).

Next we address infinite sums. Although there exist infinite sums whose
sets of tautologies (in the language of BLEP -algebras are in coNP, it is also
true that some others are undecidable. There are (classes of) standard algebras
which are infinite sums with a less favourable ordering/numbering of delimiting
idempotents and whose sets of 1-tautologies in the enriched language are non-
arithmetical.

Let ∗ be a continuous t-norm and A be the standard BLEP (∗)-algebra given
by ∗. One may distinguish the following sets of formulas (in all cases ϕ stands
for a propositional formula in the BL-language with constants (C) and eA runs
over evaluations in A).

TAUTA
1 = {ϕ : ∀eA(eA(ϕ) = 1)}

TAUTA
pos = {ϕ : ∀eA(eA(ϕ) > 0)}

SATA
1 = {ϕ : ∃eA(eA(ϕ) = 1)}

SATA
pos = {ϕ : ∃eA(eA(ϕ) > 0)}

These sets are referred to as 1-tautologies, positive tautologies, 1-satisfiable
formulas and positively satisfiable formulas of A.

For a class K of algebras of the same type, one may generalize:

TAUTK
1 = {ϕ : ∀A ∈ K ∀eA(eA(ϕ) = 1)}

TAUTK
pos = {ϕ : ∀A ∈ K ∀eA(eA(ϕ) > 0)}

SATK
1 = {ϕ : ∃A ∈ K ∃eA(eA(ϕ) = 1)}

SATK
pos = {ϕ : ∃A ∈ K ∃eA(eA(ϕ) > 0)}

4.1 Finite ordinal sums

If the number of  L-, G-, and Π-components in a continuous t-norm is finite, then
so is the number of its endpoints and the computational situation is straight-
forward, regardless of the enumeration a of endpoints.

Let ∗ be a continuous t-norm which is a finite ordinal sum of  L-, G-, and Π-
components, A the BLEP -algebra given by ∗, and n the number of components
in A. W. l. o. g., we may assume that the endpoints in A are enumerated in
increasing order (w. r. t. their real ordering), a0 being 0 and an being 1.
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For any formula ϕ, let |ϕ| denote the number of occurrences of propositional
variables, and denote m = 2|ϕ| − 1 (so m is the number of subformulas in ϕ).
Fix an enumeration of all subformulas of ϕ; assume ϕ gets the index 1.

Theorem 4.1. TAUTA
1 is a co-NP-complete set.

Proof. TAUTA
1 is trivially coNP-hard as the tautologies of [0, 1]∗ (the standard

algebra in a language without constants), which is a coNP-hard set, can be
reduced to it (using identity).

We use a modification of the algorithm in [3], which is a nondeterministic
acceptor of non-tautologies of A, running in polynomial time w. r. t. m (the size
of the input ϕ). This will entail that the 1-tautologies of A are in coNP.
nameSubformulas() Introduce variables x1 . . . , xm, and assign the variable xi

to the subformula ϕi of ϕ (x1 is assigned to ϕ).
Set V = {a0, . . . , an} ∪ {x1, . . . , xm}.
guessOrder() Guess a linear ordering � of elements of V , such that x1 ≺ an =
1.
checkOrder() Check that � satisfies basic natural conditions: first, that it
preserves the strict ordering of the endpoints ai on the real unit interval,
second, any variable assigned to the constant 0 must be ≈-equal to a0, the
variable denoting the least endpoint.

We say that variables xj s. t. ai � xj � ai+1 belong to i.
checkExternal() Check external soundness of �: for ϕi, ϕj subformulas of ϕ

( 1 ≤ i, j ≤ m),
– if ϕi &ϕj is a subformula ϕk of ϕ for some k ∈ {1, . . . ,m} and, for some

l ∈ {0, . . . , n}, we have xi � al � xj , then xk ≈ xi;
– if ϕi → ϕj is a subformula ϕk of ϕ for some k ∈ {1, . . . ,m} and xi � xj ,

then xk ≈ an;
– if ϕi → ϕj is a subformula ϕk of ϕ for some k ∈ {1, . . . ,m} and for some

l ∈ {0, . . . , n}, we have xj ≺ al � xi, then xk ≈ xj .
checkInternal() Check internal soundness of � for each interval [ai, ai+1],
i = 0, . . . , n−1 in �. Consider variables in i. Construct a system Si of equations
and inequalities; Si is initially empty. For each subformula ϕl which is ϕj &ϕk,
if xj and xk are in i, check xl is also in i and put equation xj ∗ xk = xl into Si.
For each subformula ϕl which is ϕj → ϕk, such that xk ≺ xj , if xj and xk are
in i, check xl is also in i and put equation xj ⇒ xk = xl into Si.

Further, put all equations and inequalities defined by � for the variables in
i into Si. Check whether the system Si has a solution in the i-th component of
A.
end

It is shown in [3] that the last check can be performed (nondeterministically)
in polynomial time w.r.t. the size of S, for all three types of basic components.
This concludes the proof.

QED
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Now we examine continuous t-norms with infinitely many endpoints.
First, an example of a continuous t-norm which is an infinite ordinal sum

for which the set of 1-tautologies of the corresponding BLEP -algebra is coNP-
complete.

Lemma 4.2. Let ∗ be a continuous t-norm which is an infinite sum of  L-
components, with endpoints enumerated by ω. Then the set of 1-tautologies of
the resulting BLEP -algebra is coNP-complete.

Proof. Obvious. QED

However, the following statement holds for ordinal sums whose endpoints
are ordered and enumerated by ω, but with both  L- and Π-components.

Observation 4.3. Let S be any subset of N. Let ∗ be a continuous t-norm with
endpoints ordered and enumerated by ω. Assume ∗ has two types of components
 L and Π, and the distribution of these copies the characteristic function of S
in such a way that  Lstands for 1 whereas Π stands for 0. . Then char(S) is
reducible to TAUT(A).

Proof. Take a formula λ which is valid in [0, 1] L but not in [0, 1]Π. Then one
can reduce membership is S to tautologousness in [0, 1]∗ by asking, for a given
i ∈ S, about the validity of of λ[ci−1,ci] in the BLEP -algebra given by ∗. QED

The latter statement not only shows that tautologies of BPEP -algebras can
be placed arbitrarily high in the arithmetical hierarchy, but also that they can
be non-arithmetical.
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[5] Zuzana Honźıková. Axiomatizations of standard algebras for fuzzy proposi-
tional calculi by use of truth constants. Journal of Electrical Engineering,
2000.

9


