
A Characterization of Hitting Sets for 1-Branching Programs of Width 3 (Revised
Version)

Šı́ma, Jiřı́
2009

Dostupný z http://www.nusl.cz/ntk/nusl-40612

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 20.04.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-40612
http://www.nusl.cz
http://www.nusl.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

A Characterization of Hitting Sets
for 1-Branching Programs of
Width 3 (Revised Version)

Jǐŕı Š́ıma, Stanislav Žák

Technical report No. 1054

November 2009

Pod Vodárenskou věž́ı 2, 182 07 Prague 8, phone: +420 266 053 111, fax: +420 286 585 789,
e-mail:sima@cs.cas.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

A Characterization of Hitting Sets
for 1-Branching Programs of
Width 3 (Revised Version)

Jǐŕı Š́ıma1, Stanislav Žák2

Technical report No. 1054

November 2009

Abstract:

An important problem in complexity theory is to find polynomial time constructible hitting sets for Boolean
functions in different standard models. This would have consequences for the relationship between deter-
ministic and probabilistic computations in the respective models. In this paper, we characterize the hitting
sets for read-once branching programs of width 3 by a necessary and (in a certain sense) sufficient so-called
richness condition which is independent of a rather technical formalism of branching programs. This result
can substantially help in looking for polynomial time constructions of hitting sets for the underlying model
which is illustrated by an example of a set that satisfies a special case of the richness condition.

Keywords:
derandomization, hitting set, read-once branching programs, bounded width

1Research partially supported by project 1M0545 of The Ministry of Education of the Czech Republic and the
Institutional Research Plan AV0Z10300504.

2Research partially supported by the “Information Society” project 1ET100300517 and the Institutional Research
Plan AV0Z10300504.
Acknowledgment: The authors would like to thank Pavel Pudlák for pointing out the problem of hitting sets for
width-3 1-branching programs.

1 Introduction

An ε-hitting set for a class of Boolean functions of n variables is a set H ⊆ {0, 1}n such that for every
function f in the class, the following is satisfied: If a random input is accepted by f with probability at
least ε, then there is also an input in H that is accepted by f . An efficiently constructible sequence of
hitting sets for increasing n is a straightforward generalization of the hitting set generator introduced
in [2].

For the class of Boolean functions of polynomial complexity in any reasonable model, it is easy to
prove the existence of ε-hitting set of polynomial size, if ε > 1/nc for a constant c and n is the number
of variables. The proof is nonconstructive, since it uses a counting argument. An important problem
in complexity theory is to find polynomial time constructible hitting sets for functions of polyno-
mial complexity in different standard models like circuits, formulas, branching programs etc. Such
constructions would have consequences for the relationship between deterministic and probabilistic
computations in the respective models.

Looking for polynomial time constructions of hitting sets for unrestricted models belongs to the
hardest problems in computer science. Hence, restricted models are investigated. In our previous
work [3], we have made the first step for finding a polynomial time constructible hitting set for read-
once branching programs of width 3. Although this computational model seems to be relatively weak
we were able to prove the result by using the construction from [1] only if an additional, rather technical
restriction is imposed on the branching programs confirming the hardness of the original problem. In
particular, this restriction is met when one from all the patterns of level-to-level transitions in a
normalized form of width-3 1-branching programs is excluded (see [3] for further details).

In this paper, we characterize the hitting sets for 1-branching programs of width 3 by a so-called
richness condition which is independent of a rather technical formalism of branching programs. We
prove that this richness condition is necessary and (in a certain sense) sufficient, which can help in
looking for polynomial time constructions of hitting sets for read-once branching programs of width
3. For example, a special case of this condition is satisfied by a set constructed by Alon, Goldreich,
H̊astad, and Peralta in their paper [1]. By the result in this paper we know that the validity of the full
richness condition for this set or its extension would provide a polynomial time constructible hitting
set for read-once branching programs of width 3, which is still left for further research.

The paper is organized as follows. After a brief review of basic definitions regarding branching
programs in Section 2 (see [4] for more information), the richness condition is formulated and proved
to be necessary in Section 3. The main result that the richness condition is sufficient for a set to be a
hitting set for width-3 1-branching programs is presented in Section 4. The subsequent four sections
are devoted to the technical proof. We will conclude by discussion of future work in Section 9.

2 Normalized Width-d 1-Branching Programs

A branching program P on the set of input Boolean variables Xn = {x1, . . . , xn} is a directed acyclic
multi-graph G = (V, E) that has one source s ∈ V of zero in-degree and, except for sinks of zero
out-degree, all the inner (non-sink) nodes have out-degree 2. In addition, the inner nodes get labels
from Xn and the sinks get labels from {0, 1}. For each inner node, one of the outgoing edges gets
the label 0 and the other one gets the label 1. The branching program P computes Boolean function
P : {0, 1}n −→ {0, 1} as follows. The computational path of P for an input a = (a1, . . . , an) ∈ {0, 1}n

starts at source s. At any inner node labeled by xi ∈ Xn, input variable xi is tested and this path
continues with the outgoing edge labeled by ai to the next node, which is repeated until the path
reaches the sink whose label gives the output value P (a). Denote by P−1(a) = {a ∈ {0, 1}n |P (a) = a}
the set of inputs for which P outputs a ∈ {0, 1}. For inputs of arbitrary lengths, infinite families {Pn}
of branching programs, each Pn for one input length n ≥ 1, are used.

A branching program P is called read-once (or shortly 1-branching program) if every input variable
from Xn is tested at most once along each computational path. Here we consider leveled branching
programs in which each node belongs to a level, and edges lead from level k ≥ 0 only to the next level
k + 1. We assume that the source of P creates level 0 whereas the last level is composed of all sinks.

1

The number of levels decreased by 1 equals the depth of P which is the length of its longest path, and
the maximum number of nodes on one level is called the width of P .

For a 1-branching program P of width w define a w×w transition matrix Tk on level k ≥ 1 such that
t
(k)
ij ∈ {0, 1

2 , 1} is the half of the number of edges leading from node v
(k−1)
j (1 ≤ j ≤ w) on level k−1 of

P to node v
(k)
i (1 ≤ i ≤ w) on level k. For example, t

(k)
ij = 1 implies there is a double edge from v

(k−1)
j

to v
(k)
i . Clearly,

∑w
i=1 t

(k)
ij = 1 since this sum equals the half of the out-degree of inner node v

(k−1)
j ,

and 2 ·∑w
j=1 t

(k)
ij is the in-degree of node v

(k)
i . Denote by a column vector p(k) = (p(k)

1 , . . . , p
(k)
w)T the

distribution of inputs among w nodes on level k of P , that is, p
(k)
i is the probability that a random

input is tested at node v
(k)
i , which equals the ratio of the number of inputs from M(v(k)

i) ⊆ {0, 1}n

that are tested at v
(k)
i to all 2n possible inputs. It follows

⋃w
i=1 M(v(k)

i) = {0, 1}n and
∑w

i=1 p
(k)
i = 1

for every level k ≥ 0. Given the distribution p(k−1) on level k− 1, the distribution on the subsequent
level k can be computed using transition matrix Tk as

p(k) = Tk · p(k−1) . (2.1)

It is because the ratio of inputs coming to node v
(k)
i from previous-level nodes equals p

(k)
i =

∑w
j=1 t

(k)
ij p

(k−1)
j

since each of the two edges outgoing from node v
(k−1)
j distributes exactly the half of the inputs tested

at v
(k−1)
j .
We say that a 1-branching program P of width w is normalized if P has the minimum depth

among the programs computing the same function (e.g. P does not contain the identity transition Tk)
and satisfies

1 > p
(k)
1 ≥ p

(k)
2 ≥ · · · ≥ p(k)

w > 0 (2.2)

for every k ≥ log2 w. Obviously, condition (2.2) can always be satisfied by permuting the nodes at
each level of P :

Lemma 1 ([3]) Any width-w 1-branching program can be normalized.

In the sequel, we confine ourselves to the normalized 1-branching programs of width w = 3. Any such
program P satisfies p

(k)
1 + p

(k)
2 + p

(k)
3 = 1 and 1 > p

(k)
1 ≥ p

(k)
2 ≥ p

(k)
3 > 0, which implies

p
(k)
1 >

1
3

, p
(k)
2 <

1
2

, p
(k)
3 <

1
3

(2.3)

for every level 2 ≤ k ≤ d where d ≤ n is the depth of P .

3 A Necessary Condition

Let P be a class of branching programs and ε > 0 be a real constant. A set of input strings H ⊆ {0, 1}∗
is called an ε-hitting set for class P if for sufficiently large n, for every branching program P ∈ P with
n input variables ∣∣P−1(1)

∣∣
2n

≥ ε implies (∃a ∈ H ∩ {0, 1}n) P (a) = 1 . (3.1)

Furthermore, we say that a set A ⊆ {0, 1}∗ is ε-rich if for sufficiently large n, for any index set
I ⊆ {1, . . . , n}, and for any partition {Q1, . . . , Qq, R1, . . . , Rr} of I where q ≥ 0 and r ≥ 0, it holds
that if

1−
q∏

j=1

(
1− 1

2|Qj |

)
×

r∏

j=1

(
1− 1

2|Rj |

)
≥ ε , (3.2)

then for any c ∈ {0, 1}n there exists a ∈ A ∩ {0, 1}n such that

(∃ j ∈ {1, . . . , q}) (∀ i ∈ Qj) ai = ci (3.3)
and (∀ j ∈ {1, . . . , r}) (∃ i ∈ Rj) ai 6= ci . (3.4)

2

Particularly for q = 0 inequality (3.2) reads
r∏

j=1

(
1− 1

2|Rj |

)
≥ ε (3.5)

and conjunction (3.3) and (3.4) reduces to the second conjunct (3.4), while for r = 0 inequality (3.2)
reads

1−
q∏

j=1

(
1− 1

2|Qj |

)
≥ ε (3.6)

and conjunction (3.3) and (3.4) reduces to the first conjunct (3.3).

Theorem 1 Every ε-hitting set for the class of read-once branching programs of width 3 is ε-rich.

Proof: Let H be an ε-hitting set for the class of read-once branching programs of width 3 and on
the contrary assume that H is not ε-rich. This means that for infinitely many n there is an index set
I ⊆ {1, . . . , n}, a partition {Q1, . . . , Qq, R1, . . . , Rr} of I satisfying (3.2), and a string c ∈ {0, 1}n such
that every a ∈ H ∩ {0, 1}n meets

(∀ j ∈ {1, . . . , q}) (∃ i ∈ Qj) ai 6= ci (3.7)
or (∃ j ∈ {1, . . . , r}) (∀i ∈ Rj) ai = ci . (3.8)

We will use this partition and c for constructing a read-once branching program P of width 3 such
that ∣∣P−1(1)

∣∣
2n

≥ ε and (∀a ∈ H ∩ {0, 1}n) P (a) = 0 , (3.9)

which contradicts the assumption that H is an ε-hitting set according to (3.1).
For the simplicity reason we assume here only the general case when q ≥ 1 and r ≥ 1, while the

proof for q = 0 or r = 0 is similar. The branching program P is composed of q + r consecutive blocks
corresponding to the partition classes Q1, . . . , Qq, R1, . . . , Rr which determine the indices of variables
that are tested within these blocks. The block corresponding to Qj for j ∈ {1, . . . , q} starts on level
kj =

∑j−1
`=1 |Q`| of P (e.g. formally k1 = 0) with a transition satisfying t

(kj+1)
11 = t

(kj+1)
21 = 1

2 , followed
by a sequence of transitions that meet t

(k)
11 = 1 and t

(k)
12 = t

(k)
22 = 1

2 for every k = kj + 2, . . . , kj + |Qj |,
except for the boundary level kq + |Qq| = kq+1, which is defined below. In addition, there is a parallel
double-edge path leading from the node v

(k2+1)
3 on level k2 + 1 up to the node v

(kq+1−1)
3 , and thus

t
(k)
33 = 1 for every k = k2 +2, k2 +3, . . . , kq+1− 1. This path is wired up by q− 2 double edges coming

from nodes v
(kj)
2 , that is t

(kj+1)
32 = 1 for every j = 2, . . . , q. Finally, a special boundary transition is

defined on level kq+1 as t
(kq+1)
31 = t

(kq+1)
13 = 1 and t

(kq+1)
12 = t

(kq+1)
32 = 1

2 . Note that there are only two
nodes v

(kq+1)
1 , v

(kq+1)
3 on the boundary level kq+1. Furthermore, P continues analogously with blocks

corresponding to Rj for j = 1, . . . , r, each starting on level kq+j = kq+1 +
∑j−1

`=1 |R`| (e.g. formally
kq+r+1 = d is the depth of P) with the transition satisfying t

(kq+j+1)
11 = t

(kq+j+1)
21 = 1

2 , followed by
t
(k)
11 = 1 and t

(k)
12 = t

(k)
22 = 1

2 for every k = kq+j + 2, . . . , kq+j + |Rj |. Also the parallel double-edge
path leading from the node v

(kq+1)
3 up to the sink v

(d)
3 is introduced and wired in P , that is, t

(k)
33 = 1

for every k = kq+1 + 1, . . . , d and t
(kq+j+1)
32 = 1 for every j = 2, . . . , r. The branching program P

then queries the value of each variable xi such that i ∈ Qj for some j ∈ {1, . . . , q} or i ∈ Rj for some
j ∈ {1, . . . , r} only on one level k ∈ {kj , . . . , kj+1− 1} or k ∈ {kq+j , . . . , kq+j+1− 1}, respectively (i.e.
the nodes on level k are labeled with xi), while the single edge leading to v

(k+1)
2 (or to v

(kq+1)
1 for

k = kq+1 − 1) on the subsequent level k + 1 gets label ci. Finally, the sink v
(d)
1 gets label 1 whereas

the sinks v
(d)
2 , v

(d)
3 are labeled with the output 0, which completes the construction of P .

Clearly, P is a read-once branching program of width 3. The probability that an input reaches the
node v

(kq+1)
3 on the boundary level kq+1 can simply be computed as

p
(kq+1)
3 =

q∏

j=1

(
1− 1

2|Qj |

)
(3.10)

3

while the probability of the complementary event that an input reaches v
(kq+1)
1 equals p

(kq+1)
1 =

1−p
(kq+1)
3 . Therefore, the probability that P outputs 1 can be expressed and lower bounded by (3.2):

∣∣P−1(1)
∣∣

2n
= p

(d)
1 =

1−

q∏

j=1

(
1− 1

2|Qj |

)
×

r∏

j=1

(
1− 1

2|Rj |

)
≥ ε . (3.11)

Furthermore, we split H ∩ {0, 1}n = A1 ∪ A2 into two parts so that every a ∈ A1 satisfies the first
term (3.7) of the underlying disjunction whereas every a ∈ A2 = H \ A1 meets the second term
(3.8). Thus, for any input a ∈ A1 and for every j ∈ {1, . . . , r} the block of P corresponding to Qj

contains a level k ∈ {kj , . . . , kj+1− 1} where variable xi is tested such that ai 6= ci. This ensures that
the computational path for a ∈ A1 reaches v

(kq+1)
3 and further continues through v

(kq+1+1)
3 , . . . , v

(d)
3 ,

which gives P (a) = 0 for every a ∈ A1. Similarly, for any input a ∈ A2 there exists a block of P
corresponding to Rj for some j ∈ {1, . . . , r} such that the computational path for a traverses nodes
v
(kq+j)
1 , v

(kq+j+1)
2 , v

(kq+j+1)
2 , . . . , v

(kq+j+|Rj |)
2 . For j < r this path continues through v

(kq+j+1+1)
3 , . . . , v

(d)
3

whereas for j = r it terminates at v
(d)
2 , which gives P (a) = 0 in both cases. Hence, P satisfies (3.9),

which completes the proof. 2

4 A Sufficient Condition

For a given set A ⊆ {0, 1}∗ and a natural constant c ≥ 0 define Ωc(A) = {a′ | (∃a ∈ A) |a| =
|a′|&h(a,a′) ≤ c} where |a| denotes the length of string a and h(a,a′) is the number bits in which a
and a′ differ (the Hamming distance).

Theorem 2 Denote δ =
√

12
13 . If A is (δ11 − δ12)ε12-rich for ε > δ then H = Ω3(A) is an ε-hitting

set for the class of read-once branching programs of width 3.

Proof: After using Lemma 1, assume that a normalized read-once branching program P of width 3
with sufficiently many input variables n meets

∣∣P−1(1)
∣∣

2n
≥ ε > δ >

11
12

. (4.1)

We will prove that there exists a ∈ H such that P (a) = 1. On the contrary, suppose that P (a) = 0
for every a ∈ H.

Clearly, sink v
(d)
1 of P is labeled with 1 since p

(d)
1 > 1

3 due to (2.3) and |P−1(0)|/2n < 1
12 according

to (4.1). We will assume without loss of generality that sink v
(d)
2 of P is labeled with 1 and t

(d)
11 =

t
(d)
21 = 1

2 . In particular, if v
(d)
2 gets label 0, then t

(d)
11 = 1 according to (4.1) since p

(d−1)
1 > 1

3 , and one
edge outgoing from v

(d−1)
1 can be redirected to v

(d)
2 , while all the edges leading to v

(d)
2 are redirected

to v
(d)
3 which is labeled with 0. If v

(d)
3 was labeled with 1, then the edges that originally led to v

(d)
3

are redirected to v
(d)
1 . The case of t

(d)
21 = 1 when v

(d)
2 gets label 1 can be resolved similarly. Moreover,

we will show that t
(d)
32 > 0. Thus, suppose t

(d)
32 = 0, which implies t

(d)
33 > 0. For t

(d)
13 + t

(d)
23 > 0 the

computational path for an input a′ ∈ M(v(d−1)
3) ∩ Ω1(A) ⊆ H that differs from a ∈ A (P (a) = 0)

in the ith bit such that v
(d−1)
3 is labeled with xi would end up in the sink labeled with 1, and hence

P (a′) = 1. For t
(d)
33 = 1, on the other hand, we could shorten P by removing the last level d without

changing its function. We will further analyze P by using the following lemma whose assumptions are
trivially satisfied for m = d according to (4.1).

Lemma 2 Let m be a level of P satisfying t
(m)
11 = t

(m)
21 = 1

2 , t
(m)
32 > 0, and p

(m)
3 < 1

12 . Further assume
there is a ∈ A such that P (a′) = 1 for any input a′ ∈ M(v(m)

1) ∪M(v(m)
2) that agrees with a on the

bits that are tested on the computational path for a′ starting from level m (in other words, if we put
a ∈ A at node v

(m)
1 or v

(m)
2 , then its onward computational path arrives to the sink labeled with 1). In

addition, denote by 2 ≤ µ < m the least level of P such that t
(`)
11 = 1 for every ` = µ + 1, . . . , m − 1.

Then the following claims are true:

4

(i) 3 < µ < m− 1.

(ii) Define a change-bit path starting from v ∈ {v(k)
2 , v

(k)
3 } at level µ ≤ k < m to be a computational

path of length at most 3 edges leading from v to v
(`)
1 for some k < ` ≤ min(k + 3,m) or to v

(m)
2

for m ≤ k +3. Then there are no two simultaneous change-bit paths starting from v
(k)
2 and from

v
(k)
3 , respectively, at any level µ ≤ k < m.

(iii) If t
(k+1)
12 > 0 for some µ ≤ k < m, then t

(`)
11 = t

(`)
33 = 1, t

(`)
12 = t

(`)
22 = 1

2 for every ` = µ + 1, . . . , k,
and t

(k+1)
12 = 1

2 .

(iv) If t
(k+1)
13 > 0 for some µ < k < m, then one of the following four cases appears:

1. t
(k)
11 = t

(k)
23 = 1 and t

(k)
12 = t

(k)
32 = 1

2 ,

2. t
(k)
11 = t

(k)
23 = 1 and t

(k)
22 = t

(k)
32 = 1

2 ,

3. t
(k)
11 = t

(k)
22 = 1 and t

(k)
13 = t

(k)
33 = 1

2 ,

4. t
(k)
11 = t

(k)
22 = 1 and t

(k)
23 = t

(k)
33 = 1

2 .

In addition, if t
(k)
23 = 1 (case 1 or 2), then t

(`)
11 = t

(`)
33 = 1 and t

(`)
12 = t

(`)
22 = 1

2 for every
` = µ + 1, . . . , k − 1.

Proof:

(i) For µ ≤ 3, we would have an input a′ ∈ M(v(µ)
1)∩Ω3(A) ⊆ H which differs from the input a ∈ A

satisfying the assumption of the lemma in at most three bits that are tested on the computational
path for a′ leading from the source v

(0)
1 to v

(µ)
1 , which gives P (a′) = 1 by M(v(µ)

1) ⊆ M(v(m)
1)∪

M(v(m)
2) and the assumption on a. In addition, t

(m−1)
11 = 1 because t

(m−1)
21 + t

(m−1)
31 > 0 implies

p
(m−1)
2 > 1

6 and by t
(m)
32 > 0 we get p

(m)
3 > 1

12 , which is a contradiction.

(ii) Suppose there are two simultaneous change-bit paths starting from v
(k)
2 and from v

(k)
3 , respec-

tively, at some level µ ≤ k < m, and let a ∈ A be the input satisfying the assumption of the
lemma. Clearly, a 6∈ M(v(k)

1) ⊆ M(v(m)
1) ∪ M(v(m)

2) since then P (a) = 1 for a ∈ H. Thus
assume a ∈ M(v) for v ∈ {v(k)

2 , v
(k)
3 }. Then there is an input a′ ∈ M(v) ∩ Ω3(A) ⊆ H which

may differ from a only in the variables that are tested on the change-bit path starting from v so
that the computational path for a′ follows this change-bit path. Hence, a′ ∈ M(v(m)

1)∪M(v(m)
2)

implying P (a′) = 1 due to P is read-once. This completes the proof of (ii).

Denote by v ∈ {v(k)
2 , v

(k)
3 } a node at some level µ < k < m with the edge outgoing to v

(k+1)
1 ,

and let u be a node on level k − 1 from which an edge leads to v while v′ ∈ {v(k)
2 , v

(k)
3 } \ {v} and

u′ ∈ {v(k−1)
2 , v

(k−1)
3 }\{u} denote the other nodes. It follows from (ii) there is no edge from u′ to v nor

to v
(k)
1 , which would establish two simultaneous change-bit paths starting from v

(k−1)
2 and from v

(k−1)
3 ,

respectively. Hence, there must be a double edge from u′ to v′. Since P is normalized, u′ = v
(k−1)
2

and v′ = v
(k)
3 cannot happen simultaneously. Moreover, the second edge from u may lead either to

v
(k)
1 or to v′ if v′ 6= v

(k)
3 . Now, the possible cases can be summarized:

(iii) For t
(k+1)
12 > 0 we know v = v

(k)
2 and v′ = v

(k)
3 , which implies t

(k)
11 = t

(k)
33 = 1 and t

(k)
12 = t

(k)
22 = 1

2 .
The proposition follows when this argument is applied recursively for k replaced with k − 1
etc. In addition, we will prove that t

(k+1)
12 < 1 for µ ≤ k < m. For t

(k+1)
12 = 1 we would have

t
(k+1)
23 = t

(k+1)
33 = 1

2 . For k > µ one could shorten P by identifying level k with µ without
changing its function. For k = µ > 3, on the other hand, there are at least two edges leading
to v

(µ)
3 because otherwise if only one edge leads to v

(µ)
3 from u ∈ {v(µ−1)

1 , v
(µ−1)
2 , v

(µ−1)
3 }, then

either a 6∈ M(u), which means a ∈ M(v(µ)
1) ∪ M(v(µ)

2) = M(v(µ+1)
1) ⊆ M(v(m)

1) ∪ M(v(m)
2)

5

implying P (a) = 1, or a ∈ M(u) providing a′ ∈ Ω1(A) ⊆ H which may differ from a in the
variable that is tested at u so that a′ ∈ M(v(µ)

1) ∪M(v(µ)
2) implying P (a′) = 1. Hence, we can

split v
(µ)
3 into two nodes and merge v

(µ)
1 and v

(µ)
2 while preserving the function of P .

(iv) For t
(k+1)
13 > 0 we know v = v

(k)
3 and v′ = v

(k)
2 and the four cases listed in the proposition are

obtained when the choice of u ∈ {v(k−1)
2 , v

(k−1)
3 } is combined with whether the second edge from

u leads to v
(k)
1 or to v′. In addition, the remaining part for case 1 and 2 follows from (iii). In

particular, in case 2 there is a path from v
(k−1)
2 to v

(k+1)
1 via v

(k)
3 , and a similar analysis applies

for v = v
(k−1)
2 excluding two change-bit paths starting from v

(k−2)
2 and v

(k−2)
3 , respectively. 2

Let µ ≤ ν ≤ m be the greatest level such that t
(`)
12 + t

(`)
13 > 0 for every ` = µ + 1, . . . , ν. From

Lemma 2 it follows:

Corollary 1 There exists µ ≤ γ ≤ ν such that

1. t
(`)
11 = t

(`)
33 = 1 and t

(`)
12 = t

(`)
22 = 1

2 for ` = µ + 1, . . . , γ − 1 (Lemma 2.iii),

2. t
(γ)
11 = t

(γ)
23 = 1 and t

(γ)
32 = 1

2 if µ < γ < ν (case 1 of Lemma 2.iv),

3. t
(`)
11 = t

(`)
22 = 1 and t

(`)
33 = 1

2 for ` = γ + 1, . . . , ν − 1 (case 3 of Lemma 2.iv),

4. t
(`)
12 = 0 for ` = ν + 1, . . . , m (Lemma 2.iii).

In addition, t
(ν)
12 < 1 for ν > µ according to Lemma 2.iii. Similarly t

(ν)
13 < 1 for ν > µ since otherwise

P could be shortened by the argument analogous to the proof of t
(ν)
12 = 1

2 given in Lemma 2.iii for
k + 1 = ν.

5 Definition of Partition Classes

With regard to Corollary 1, we define partition class R to be a set of indices of the variables that
are tested on the single-edge computational path v

(µ)
2 , v

(µ+1)
2 , . . . , v

(γ−1)
2 , v

(γ)
3 , v

(γ+1)
3 , . . . , v

(ν−1)
3 (or

v
(µ)
3 , v

(µ+1)
3 , . . . , v

(ν−1)
3 if γ = µ or v

(µ)
2 , v

(µ+1)
2 , . . . , v

(ν−1)
2 if γ = ν). For the future use of condition

(3.3) and (3.4) we also define relevant bits of string c ∈ {0, 1}n. Thus, let ci be the corresponding
labels of the edges creating this computational path including the edge outgoing from the last node
v
(ν−1)
3 (or v

(ν−1)
2 if γ = ν) which leads to v

(ν)
2 or to v

(ν)
3 . Moreover, let max(ν − 1, µ) ≤ ω ≤ m be

the greatest level such that the parallel double-edge path leading from v
(µ)
2 to v

(ν−1)
2 (for γ = µ) or

from v
(µ)
3 to v

(ν−1)
2 (for µ < γ < ν) or from v

(µ)
3 to v

(ν−1)
3 (for γ = ν) further continues up to level ω

containing only nodes v` ∈ {v(`)
2 , v

(`)
3 } for every ` = µ, . . . , ω.

Unless explicitly stated otherwise, we will further assume ω < m throughout this section, which
implies t

(m)
12 = 0 since otherwise t

(m)
12 = t

(m)
32 = 1

2 forces t
(m)
33 = 1 by Lemma 2.ii prolonging the

double-edge path from v
(µ)
3 up to v

(m)
3 according to Lemma 2.iii. We will show that t

(m)
13 > 0. On

the contrary, suppose that t
(m)
13 = 0, which implies t

(m)
22 = t

(m)
23 = 0 due to P is normalized, and

hence t
(m)
32 = t

(m)
33 = 1. Moreover, we know that t

(m−1)
11 = 1 and t

(m)
11 = t

(m)
21 = 1

2 . Thus, v
(m−1)
2 and

v
(m−1)
3 can be merged and replaced by v

(m)
3 , while v

(m−1)
1 replaces v

(m−2)
1 , which shortens P without

changing its function. Thus, t
(m)
13 > 0 which implies t

(m)
32 = 1 since t

(m)
22 > 0 is excluded by Lemma 2.ii.

Then Lemma 2.iv can be employed for k = m− 1 where only case 3 and 4 may occur due to ω < m is
assumed. In case 3, t

(m−1)
13 > 0 and Lemma 2.iv can again be applied recursively for k = m− 2 etc.

In general, starting with j = 1 and σ1 = m that meets t
(σj)
13 > 0, we define ω ≤ λj < σj − 1 to

be the least level such that the transitions from case 3 or 4 of Lemma 2.iv, that is, t
(`)
11 = t

(`)
22 = 1

and t
(`)
33 = 1

2 , appear for all levels ` = λj + 1, . . . , σj − 1. Note that λj > µ because λj = µ ensures
t
(µ+1)
22 = 1 implying ω > µ = λj by the definition of ω, which contradicts ω ≤ λj . Clearly, case 4 from

6

Lemma 2.iv occurs at level λj + 1, that is t
(λj+1)
23 = 1

2 , since t
(λj+1)
13 = 1

2 (case 3) for λj > ω would
force case 1 or 2 at level λj < µ by the definition of λj , which would be in contradiction to ω ≤ λj

according to Lemma 2.iv, while t
(λj+1)
13 = 1

2 for λj = ω contradicts the definition of ω. Also denote by
λj + 1 < κj ≤ σj the least level such that t

(κj)
13 > 0, which exists since at least t

(σj)
13 > 0. Now we can

define partition class Qj to be a set of indices of the variables that are tested on the computational
path v

(λj)
3 , v

(λj+1)
3 , . . . , v

(κj−1)
3 , and let ci be the corresponding labels of the edges creating this path

including the edge outgoing from the last node v
(κj−1)
3 to v

(κj)
1 , which correctly extends the definition

of c ∈ {0, 1}n due to P is read-once. Finally, define new ω + 1 < σj+1 ≤ λj to be the greatest level
such that t

(σj+1)
13 > 0 and continue in our recursive definition of λj+1, κj+1, Qj+1 with j replaced by

j + 1 etc. if such σj+1 exists, otherwise set q = j and the definition of partition classes Q1, . . . , Qq is
complete. For ω = m, on the other hand, no such partition class is defined, and we set q = 0.

Now we will lower bound p
(m)
3 in terms of p

(ω+1)
2 + p

(ω+1)
3 . For any 1 ≤ j ≤ q, we know that

t
(`)
11 = t

(`)
22 = 1 and t

(`)
23 = t

(`)
33 = 1

2 for every ` = λj + 1, . . . , κj − 1, which gives

p
(κj−1)
2 + p

(κj−1)
3 = p

(λj)
2 + p

(λj)
3 (5.1)

p
(κj−1)
3 =

p
(λj)
3

2|Qj |−1
≤ p

(λj)
2 + p

(λj)
3

2|Qj | (5.2)

because p
(λj)
3 ≤ (p(λj)

2 + p
(λj)
3)/2. It follows from the definition of σj+1 and equation (5.1) that

p
(σj+1)
2 + p

(σj+1)
3 = p

(λj)
2 + p

(λj)
3 = p

(κj−1)
2 + p

(κj−1)
3 (5.3)

for 1 ≤ j < q, and
p
(ω+1)
2 + p

(ω+1)
3 = p

(λq)
2 + p

(λq)
3 = p

(κq−1)
2 + p

(κq−1)
3 (5.4)

since t
(`)
12 = 0 for every ` = ω + 2, . . . , m by Corollary 1.4 where ν + 1 ≤ ω + 2, while for λq = ω,

we know t
(λq+1)
11 = t

(λq+1)
22 = 1 and t

(λq+1)
23 = t

(λq+1)
33 = 1

2 . Moreover, we know t
(`)
22 = 1 for every

` = κj , . . . , σj − 1 and t
(σj)
12 = 0, which implies

p
(σj)
2 + p

(σj)
3 ≥ p

(κj−1)
2 + p

(κj−1)
3 − p

(κj−1)
3 ≥ p

(κj−1)
2 + p

(κj−1)
3 − p

(λj)
2 + p

(λj)
3

2|Qj |

=
(
p
(σj+1)
2 + p

(σj+1)
3

) (
1− 1

2|Qj |

)
(5.5)

for 1 < j < q according to (5.2) and (5.3), while formula (5.5) reads

p
(m)
3 = p

(σ1)
3 ≥

(
p
(σ2)
2 + p

(σ2)
3

) (
1− 1

2|Q1|

)
(5.6)

for j = 1 < q due to t
(m)
32 = 1, whereas (5.5) is rewritten with

p
(σq)
2 + p

(σq)
3 ≥

(
p
(ω+1)
2 + p

(ω+1)
3

) (
1− 1

2|Qq|

)
(5.7)

for j = q > 1 according to (5.4). Starting with (5.6), inequality (5.5) is applied recursively for
j = 2, . . . , q − 1, and, in the end, (5.7) is employed, which gives

p
(m)
3 ≥

(
p
(ω+1)
2 + p

(ω+1)
3

) q∏

j=1

(
1− 1

2|Qj |

)
(5.8)

holding also for the special case of q = 1. This can be rewritten as

p
(m)
1 + p

(m)
2 ≤ 1−

(
1− p

(ω+1)
1

) q∏

j=1

(
1− 1

2|Qj |

)
. (5.9)

7

6 The Structure of P below Level µ

In this section, we will further analyze the structure of branching program P below level µ, provided
that

p
(µ)
3 <

1
12

, (6.1)
q∏

j=1

(
1− 1

2|Qj |

)
>

4
5

(6.2)

where the product in (6.2) formally equals 1 for q = 0. Condition (6.2) together with p
(m)
3 < 1

12
implies

p
(ω+1)
2 + p

(ω+1)
3 <

5
48

(6.3)

for ω < m according to (5.8). It follows from (6.1) that t
(µ)
31 = 0 which implies t

(µ)
21 > 0 by the

definition of µ, and p
(µ−1)
3 < 1

6 due to p
(µ)
3 ≥ p

(µ−1)
3 /2, which gives p

(µ−1)
1 + p

(µ−1)
2 > 5

6 . Hence,

p
(µ)
2 ≥ p

(µ−1)
1

2
≥ p

(µ−1)
1 + p

(µ−1)
2

4
>

5
24

. (6.4)

We will prove that t
(µ+1)
12 = 1

2 . For ω = µ, the case of t
(µ+1)
12 = 0 implies p

(ω+1)
2 +p

(ω+1)
3 ≥ p

(µ)
2 > 5

24

according to (6.4), which contradicts (6.3), while for t
(µ+1)
12 = 1 = t

(µ+1)
11 nodes v

(µ)
1 and v

(µ)
2 could be

merged and v
(µ)
3 could be split into two nodes (there are at least two edges leading to v

(µ)
3 because

otherwise if only one edge leads to v
(µ)
3 , then a′ ∈ Ω1(A) ⊆ H would exist such that P (a′) = 1),

which means the underlying analysis for µ could be transferred down to µ − 1 due to t
(µ)
31 = 0.

For ω > µ, on the other hand, we know there is a double-edge path starting from v
(µ)
2 or v

(µ)
3 and

traversing v ∈ {v(µ+1)
2 , v

(µ+1)
3 } which ends at level ω. For v = v

(µ+1)
2 , either t

(µ+1)
22 = 1, or t

(µ+1)
23 = 1

and t
(µ+1)
32 = 1

2 which implies t
(µ+1)
22 = 1

2 in this case since t
(µ+1)
12 = 1

2 leads to a contradiction
1
12 > p

(µ)
3 = p

(µ+1)
2 ≥ p

(µ+1)
3 = p

(µ)
2 /2 > 5

48 according to (6.1) and (6.4). Thus, t
(µ+1)
22 > 0, t

(`)
22 = 1

for ` = µ + 2, . . . , ω, and t
(ω+1)
12 = 0 for ω < m according to Lemma 2.iii. Hence, p

(ω+1)
2 + p

(ω+1)
3 ≥

p
(µ)
2 /2 > 5

48 for ω < m according to (6.4), which contradicts (6.3), whereas an analogous contradiction
1
12 > p

(m)
3 ≥ p

(µ)
2 /2 > 5

48 is obtained for ω = m. It follows that v = v
(µ+1)
3 which implies t

(µ+1)
33 = 1

and t
(µ+1)
12 = t

(µ+1)
22 = 1

2 by the normalization of P . In addition, t
(µ)
11 = t

(µ)
21 = 1

2 because t
(µ)
21 = 1 would

imply t
(µ)
12 > 0 and t

(µ)
13 > 0 by the normalization of P , which together with t

(µ+1)
12 = 1

2 would provide
a′ ∈ Ω1(A) such that P (a′) = 1 using three ‘change-bit’ paths v

(µ−1)
1 , v

(µ)
2 , v

(µ+1)
1 and v

(µ−1)
2 , v

(µ)
1 and

v
(µ−1)
3 , v

(µ)
1 , respectively, starting at level µ− 1 (cf. Lemma 2.ii).

Furthermore, define 2 ≤ m′ ≤ µ to be the greatest level such that t
(m′)
32 > 0, which exists since

at least t
(2)
32 > 0. We will show that t

(k)
33 = 1 for k = m′ + 1, . . . , µ. On the contrary let m′ < k ≤ µ

be the greatest level such that t
(k)
33 < 1, that is t

(`)
33 = 1 for ` = k + 1, . . . , µ. Obviously t

(k)
33 > 0

because t
(`)
32 = 0 for every ` = m′ + 1, . . . , k, . . . , µ by the definition of m′, and also t

(`)
31 = 0 for every

` = k, . . . , µ since otherwise p
(µ)
3 ≥ p

(`)
3 > 1

6 which contradicts (6.1). Thus, t
(k)
33 = 1

2 and the edge from
v
(k−1)
3 to v

(k)
3 is the only edge that leads to v

(k)
3 due to t

(k)
31 = t

(k)
32 = 0. Hence, the other edge from

v
(k−1)
3 goes either to v

(k)
1 or to v

(k)
2 . For the input a ∈ A from the assumption of Lemma 2, either

a ∈ M(v(k)
1) ∪M(v(k)

2) or an input a′ ∈ M(v(k−1)
3) ∩ Ω1(A) exists which may differ from a ∈ A only

in the ith bit such that v
(k−1)
3 is labeled with xi. Since M(v(k)

1) ∪M(v(k)
2) = M(v(µ)

1) ∪M(v(µ)
2) and

t
(µ+1)
12 = 1

2 there is a′ ∈ Ω2(A) such that P (a′) = 1 by the argument similar to Lemma 2.ii. Thus
t
(k)
33 = 1 for k = m′ + 1, . . . , µ, and

p
(m′)
1 + p

(m′)
2 = p

(µ)
1 + p

(µ)
2 (6.5)

p
(m′)
3 = p

(µ)
3 <

1
12

(6.6)

8

according to (6.1). Note that inequality (6.6) ensures m′ ≥ 4 due to p
(3)
3 ≥ 1/23.

We will show that t
(m′)
11 = t

(m′)
21 = 1

2 . Obviously, t
(m′)
31 = 0 since otherwise p

(m′)
3 > 1

6 which

contradicts (6.6). Moreover, t
(m′)
21 = 1 together with t

(m′)
32 > 0 would imply p

(m′)
3 ≥ p

(m′−1)
2 /2 ≥

(p(m′−1)
2 + p

(m′−1)
3)/4 ≥ p

(m′)
1 /4 > 1

12 violating (6.6). Finally, suppose that t
(m′)
11 = 1 which implies

t
(m′)
32 = 1

2 due to P is normalized. For t
(m′)
33 = 0 the only edge to v

(m′)
3 would be from v

(m′−1)
2 . Then

the input a ∈ A from the assumption of Lemma 2 belongs either to M(v(m′−1)
1) ∪ M(v(m′−1)

3) ⊆
M(v(µ)

1) ∪ M(v(µ)
2) or an input a′ ∈ M(v(m′−1)

2) ∩ Ω1(A) exists which may differ from a ∈ A only
in the ith bit such that v

(m′−1)
2 is labeled with xi. Since t

(µ+1)
12 = 1

2 there is a′ ∈ Ω2(A) such that

P (a′) = 1 by the argument similar to Lemma 2.ii. Hence t
(m′)
33 > 0 which implies t

(m′)
22 = t

(m′)
23 = 1

2

because of p
(m′)
2 ≥ p

(m′)
3 ≥ (p(m′−1)

2 + p
(m′−1)
3)/2, but then again either a ∈ M(v(m′−1)

1) or an
input a′ ∈ (M(v(m′−1)

2) ∪ M(v(m′−1)
3)) ∩ Ω1(A) exists such that a′ ∈ M(v(m′)

2), which gives a′ ∈
(M(v(m′)

1) ∪ M(v(m′)
2)) ∩ Ω2(A) ⊆ H such that P (a′) = 1. The last possibility t

(m′)
11 = t

(m′)
21 = 1

2
follows.

We will upper bound p
(ω+1)
1 for ω < m or p

(m)
1 + p

(m)
2 for ω = m in terms of p

(m′)
1 + p

(m′)
2 . For

this purpose, we will first prove
p
(µ)
1 + p

(µ)
2 ≤ 4p

(µ)
2 . (6.7)

For µ > m′ we have p
(µ)
1 + p

(µ)
2 = p

(µ−1)
1 + p

(µ−1)
2 ≤ 2p

(µ−1)
1 ≤ 4p

(µ)
2 due to t

(µ)
21 = 1

2 . For µ = m′ we

know t
(m′)
21 = 1

2 and t
(m′)
32 > 0, which gives 4p

(µ)
2 = 4p

(m′)
2 ≥ 2p

(m′−1)
1 = 2(1 − (p(m′−1)

2 + p
(m′−1)
3)) ≥

2(1− 2p
(m′−1)
2) ≥ 2(1− 4p

(m′)
3) > 1 > p

(µ)
1 + p

(µ)
2 according to (6.6).

It follows from the definition of partition class R (see Section 5) that

p
(ν)
1 = p

(µ)
1 + p

(µ)
2

(
1− 1

2|R|

)
(6.8)

for ν < m, whereas p
(ν)
1 is replaced with p

(m)
1 +p

(m)
2 in (6.8) for ν = m. We know by the definition of ν

that t
(ν+1)
12 = t

(ν+1)
13 = 0 for ν < m (implying ν < m−1 due to t

(m)
13 > 0), which means both t

(ν+1)
32 = 1

and t
(ν+1)
33 = 1 are excluded since P is normalized. We will first assume ω > ν. The double-edge

path from the definition of ω passes through a double edge from v ∈ {v(ν)
2 , v

(ν)
3 } to v

(ν+1)
2 , while the

two edges from the other node v′ ∈ {v(ν)
2 , v

(ν)
3 } \ {v} lead to v

(ν+1)
2 and v

(ν+1)
3 . For ω < m, we have

t
(`)
22 = 1 and t

(`)
33 = 1

2 for ` = ν +2, . . . , ω, and t
(ω+1)
12 = 0 by Corollary 1.4, while the same holds for the

special case of ω = m, except for level m where t
(m)
32 = 1. Hence, p

(ν+1)
3 = p

(µ)
2 /2|R|+1 upper bounds

the fraction of inputs whose computational paths traverse nodes v′, v(ν+1)
3 , v

(ν+2)
3 , . . . , v

(`)
3 , v

(`+1)
1 for

some ν + 1 ≤ ` ≤ min(ω, m− 1). It follows that

p
(ω+1)
1 ≤ p

(ν)
1 +

p
(µ)
2

2|R|+1
(6.9)

which is valid for any ν − 1 ≤ ω < m since obviously p
(ω+1)
1 = p

(ν)
1 for m > ω ∈ {ν − 1, ν}, while

p
(ω+1)
1 is replaced with p

(m)
1 + p

(m)
2 in (6.9) for ν < ω = m. Finally, equation (6.8) is plugged into

(6.9), and inequalities (6.7) and (6.5) are employed, which results in

p
(ω+1)
1 ≤ p

(µ)
1 + p

(µ)
2

(
1− 1

2|R|

)
+

p
(µ)
2

2|R|+1
= p

(µ)
1 + p

(µ)
2

(
1− 1

2|R|+1

)

≤
(
p
(m′)
1 + p

(m′)
2

) (
1− 1

2|R|+3

)
(6.10)

for ω < m whereas p
(ω+1)
1 is replaced with p

(m)
1 +p

(m)
2 in (6.10) for ω = m. Formula (6.10) can further

be plugged into (5.9) as

p
(m)
1 + p

(m)
2 ≤ 1−

(
1−

(
p
(m′)
1 + p

(m′)
2

) (
1− 1

2|R|+3

)) q∏

j=1

(
1− 1

2|Qj |

)
(6.11)

9

which is even valid for ω = m (i.e. q = 0) according to (6.10) which reads p
(m)
1 + p

(m)
2 ≤ (p(m′)

1 +
p
(m′)
2)(1− 1/2|R|+3) for ω = m.

7 Recursion for m

In the previous sections we have analyzed the block of P from level m′ through m. We will now
employ this block analysis recursively so that m = mr is replaced by m′ = mr+1. For this purpose, we
will introduce additional index b = 1, . . . , r to the underlying objects in order to differentiate among
respective blocks. For example, the partition classes R, Q1, . . . , Qq defined in Section 5 corresponding
to the bth block are denoted as Rb, Qb1, . . . , Qbqb

, respectively.
We will formally proceed by induction on r starting with r = 0 and m0 = d. In the induction step

for r + 1, let the assumptions of Lemma 2 hold for m = mr, and we assume that condition (6.1) is
satisfied for the previous blocks, that is,

p
(µb)
3 <

1
12

(7.1)

for every b = 1, . . . , r. In addition, let

%r > δ ε , (7.2)
1−Πr < (1− δ) ε (7.3)

where

%k =
k∏

b=1

αb , αb =
(

1− 1
2|Rb|+3

)
, (7.4)

Πk =
k∏

b=1

πb , πb =
qb∏

j=1

(
1− 1

2|Qbj |

)
(7.5)

for k = 1, . . . , r, and formally %0 = Π0 = 1 and πb = 1 for qb = 0. It follows from (7.5) and (7.3) that

πb ≥ Πr > 1− (1− δ) ε ≥ δ >
4
5

(7.6)

which verifies assumption (6.2) for every b = 1, . . . , r. Hence, we can employ recursive inequality
(6.11) from Section 6 which is rewritten as

pb−1 ≤ 1− (1− pbαb)πb = 1− πb + pbαbπb (7.7)

for b = 1, . . . , r where notation pb = p
(mb)
1 + p

(mb)
2 is introduced. Starting with

p0 = p
(d)
1 + p

(d)
2 ≥ ε (7.8)

which follows from (4.1), recurrence (7.7) can be solved as

ε ≤
r∑

k=1

(1− πk)
k−1∏

b=1

αbπb + pr

r∏

b=1

αbπb <

r∑

k=1

(1− πk)Πk−1 + pr%rΠr

= 1−Πr + pr%rΠr . (7.9)

Throughout this section, we will further consider the case when also

1−Πr+1 < (1− δ) ε (7.10)

(cf. assumption (7.3)) which implies

πr+1 > δ >
4
5

(7.11)

10

by analogy to (7.6), while the case complementary to (7.10), which concludes the induction, will be
resolved below in Section 8. For ωr+1 < mr, we know

pr ≤ 1−
(
p
(ωr+1+1)
2 + p

(ωr+1+1)
3

)
πr+1 (7.12)

according to (5.9), and
p
(ωr+1+1)
2 + p

(ωr+1+1)
3 ≥ p

(µr+1)
3 (7.13)

by the definition of ωr+1 and Lemma 2.iii–iv for k = ωr+1, which altogether gives

ε < 1−Πr +
(
1− p

(µr+1)
3 πr+1

)
%rΠr (7.14)

according to (7.9). Hence,

δ ε <
(
1− p

(µr+1)
3 πr+1

)
%rΠr < 1− p

(µr+1)
3 πr+1 (7.15)

follows from (7.3), which gives
p
(µr+1)
3 πr+1 < 1− δ2 (7.16)

by the assumption of ε > δ, implying

p
(µr+1)
3 <

1− δ2

δ
<

1
12

(7.17)

due to (7.11), which is valid also for ωr+1 = mr since p
(µr+1)
3 ≤ p

(mr)
3 < 1

12 in this case. Therefore,
assumptions (6.1) and (6.2) of the analysis in Section 6 are met also for the (r + 1)st block according
to (7.17) and (7.11), respectively, which justifies recurrence inequality (7.7) for b = r + 1 leading to
the solution

ε < 1−Πr+1 + pr+1%r+1Πr+1 (7.18)

by analogy to (7.9) where r is replaced with r + 1. By combining (7.18) with (7.10), we obtain

%r+1 > pr+1%r+1Πr+1 > δ ε . (7.19)

Thus, inductive assumptions (7.1)–(7.3) are valid for r replaced by r + 1 according to (7.17), (7.19),
and (7.10), respectively.

In order to proceed in the next induction step, we still need to verify the assumptions of Lemma 2
for m = mr+1 that replaces m′ for which we have shown t

(mr+1)
11 = t

(mr+1)
21 = 1

2 , t
(mr+1)
32 > 0, and

p
(mr+1)
3 < 1

12 in Section 6. It suffices to show that a ∈ A exists such that if we put a at node v
(mr+1)
1 or

v
(mr+1)
2 , then its onward computational path arrives to the sink labeled with 1. For this purpose, we

exploit the fact that A is (δ11 − δ12)ε12-rich after showing corresponding condition (3.5) for partition
{R1, . . . , Rr+1} of I =

⋃r+1
b=1 Rb. In particular,

(δ11 − δ12)ε12 < (δ ε)11 <

r+1∏

b=1

(
1− 1

2|Rb|

)
(7.20)

follows from (7.19) since for any 1 ≤ b ≤ r + 1,
(

1− 1
2|Rb|+3

)11

< 1− 1
2|Rb| (7.21)

for |Rb| ≥ 1 because f(x) = ln(1 − 1
x)/ ln(1 − 1

8x) is a decreasing function for x = 2|Rb| ≥ 2 and
f(2) < 11. This provides required a ∈ A such that for every b = 1, . . . , r there exists i ∈ Rb that
meets ai 6= ci according to (3.4). Obviously, the computational path for this a ends up in a sink v

(d)
1

or v
(d)
2 labeled with 1 when we put a at node v

(mr+1)
1 or v

(mr+1)
2 by the definition of Rb, ci, and the

structure of branching program P . Thus, the inductive assumptions are met for r + 1 and we can
proceed recursively for r replaced with r + 1 etc. until condition (7.10) is broken.

11

8 The End of Induction

In this section, we will consider the case of

1−Πr+1 ≥ (1− δ) ε (8.1)

complementary to (7.10), which concludes the induction in Section 7 as follows. We will again employ
the fact that A is (δ11− δ12)ε12-rich. First condition (3.2) for partition {Q11, . . . , Q1q1 , Q21, . . . , Q2q2 ,

. . . , Qr+1,1, . . . , Qr+1,qr+1 , R1, . . . , Rr} of I =
⋃r+1

b=1

⋃qb

j=1 Qbj ∪
⋃r

b=1 Rb is verified as

1−

r+1∏

b=1

qb∏

j=1

(
1− 1

2|Qbj |

)

r∏

b=1

(
1− 1

2|Rb|

)
> (1−Πr+1)%11

r

> (1− δ)ε (δ ε)11 = (δ11 − δ12)ε12 (8.2)

according to (7.21), (8.1), and (7.2). This provides a ∈ A such that there exists block 1 ≤ b ≤ r + 1
and 1 ≤ j ≤ qb satisfying ai = ci for every i ∈ Qbj , and simultaneously, for every b = 1, . . . , r there
exists i ∈ Rb that meets ai 6= ci according to (3.3) and (3.4). Using the first part (3.3) of the condition
for a, we will prove below that there is a′ ∈ Ω2(A) ⊆ H such that a′ differs from a in at most two
bits which are tested by P only below level mb−1 and a′ ∈ M(v(mb−1)

1)∪M(v(mb−1)
2), while the second

part (3.4) then guarantees that P (a′) = 1.
For the notation simplicity, we will henceforth omit the block index b. Thus within the bth block

we have 1 ≤ j ≤ q such that ai = ci for every i ∈ Qj , and denote λ = λj > µ for this j. Clearly, ω < m
due to q > 0. We will show below that there are two generalized ‘change-bit’ paths (cf. Lemma 2.ii)
starting from v

(k)
2 and from v

(k)
3 , respectively, at some level 3 < max(λ−2, µ) ≤ k < λ, which may also

lead to v
(λ)
3 in addition to v

(λ−1)
1 and v

(λ)
1 . By the argument similar to Lemma 2.ii extended now with

condition (3.3), this gives a′ ∈ Ω2(A) ⊆ H such that h(a′,a) ≤ 2 and a′ ∈ M(v(mb−1)
1) ∪M(v(mb−1)

2),
which implies P (a′) = 1 by condition (3.4). This will complete the proof of Theorem 2.

Consider first the case when t
(λ)
12 = t

(λ)
13 = 0. Obviously, t

(λ)
22 < 1 follows from the definition of λ

for λ > ω and from the definition of ω for λ = ω, which gives t
(λ)
22 = t

(λ)
32 = 1

2 and t
(λ)
23 > 0 due to

P is normalized. For t
(λ)
33 = 1

2 we obtain two change-bit paths v
(λ−1)
2 , v

(λ)
3 and v

(λ−1)
3 , v

(λ)
3 . Hence,

t
(λ)
33 = 0 which ensures t

(λ)
23 = 1 and λ > µ + 1 since λ = µ + 1 would give ω > λ. Consider first

the case when t
(λ−1)
12 = t

(λ−1)
13 = 0, which implies t

(λ−1)
22 > 0 and t

(λ−1)
23 > 0 by t

(λ−1)
11 = 1 and the

normalization of P , providing two change-bit paths v
(λ−2)
2 , v

(λ−1)
2 , v

(λ)
3 and v

(λ−2)
3 , v

(λ−1)
2 , v

(λ)
3 . Two

change-bit paths v
(λ−2)
2 , v

(λ−1)
1 and v

(λ−2)
3 , v

(λ−1)
1 are also guaranteed when t

(λ−1)
12 > 0 and t

(λ−1)
13 > 0

appear simultaneously. For t
(λ−1)
12 = 0 and t

(λ−1)
13 > 0, we have t

(λ−1)
22 > 0 by the normalization of

P , which together with t
(λ)
32 = 1

2 produces two change-bit paths v
(λ−2)
2 , v

(λ−1)
2 , v

(λ)
3 and v

(λ−2)
3 , v

(λ−1)
1 .

For t
(λ−1)
12 > 0 and t

(λ−1)
13 = 0, the case of t

(λ−1)
23 > 0 ensures two change-bit paths v

(λ−2)
2 , v

(λ−1)
1 and

v
(λ−2)
3 , v

(λ−1)
2 , v

(λ)
3 , while for t

(λ−1)
23 = 0 we obtain t

(λ−1)
12 = t

(λ−1)
22 = 1

2 and t
(λ−1)
33 = 1, which implies

λ = ν + 1 and ω > λ by Lemma 2.iii contradicting the definition of λ ≥ ω ≥ ν − 1.
Now consider the case when t

(λ)
13 > 0 which implies t

(λ)
12 = 0. Furthermore, t

(λ)
22 < 1 follows from the

definition of λ for λ > ω and from the definition of ω for λ = ω. Hence, t
(λ)
32 > 0 which produces two

change-bit paths v
(λ−1)
2 , v

(λ)
3 and v

(λ−1)
3 , v

(λ)
1 . Finally, consider the case when t

(λ)
12 > 0 (i.e. t

(λ)
13 = 0)

for which t
(λ)
33 > 0 generates two change-bit v

(λ−1)
2 , v

(λ)
1 and v

(λ−1)
3 , v

(λ)
3 , while for t

(λ)
33 = 0 we obtain

t
(λ)
32 = 1

2 and t
(λ)
23 = 1, which implies λ = ν and ω > λ by Lemma 2.iii contradicting the definition of

λ ≥ ω ≥ ν − 1. 2

9 Discussion and Future Work

The aim of this study is to support the effort for seeking polynomial time constructions of hitting sets
for branching programs. We have achieved partial progress along this line for 1-branching programs

12

of depth 3 in our previous work [3] by using the result due to Alon, Goldreich, H̊astad, and Peralta [1]
who provided a polynomial time constructible set A∗ satisfying the following condition: For any
Q ⊆ {1, . . . , n} of size |Q| ≤ log n and for any c ∈ {0, 1}n there is a ∈ A∗ ∩ {0, 1}n such that ai = ci

for every i ∈ Q. On the other hand, observe that for any partition {Q1, . . . , Qq} of I ⊆ {1, . . . , n}
that meets condition (3.6) there must be 1 ≤ j ≤ q such that |Qj | ≤ log n since, in the opposite case,
we would have

q∏

j=1

(
1− 1

2|Qj |

)
≥

(
1− 1

2log n

) n
log n

> 1− 1
n
· n

log n
= 1− 1

log n
> 1− ε (9.1)

for any ε > 0, for sufficiently large n > 21/ε, which breaks (3.6). It follows that the first conjunct
(3.3) from the richness condition holds for A∗. The validity of the second conjunct (3.4) for A∗ (or its
extension), which would imply that Ω3(A∗) is a hitting set for width-3 1-branching programs according
to Theorem 2, still remains an open problem for further research.

13

Bibliography

[1] Alon, N., Goldreich, O., H̊astad, J., and Peralta, R.: Simple Constructions of Almost k-wise
Independent Random Variables. Journal of Random structures and Algorithms 3 (3) (1992) 289–
304

[2] Goldreich, O., Wigderson, A.: Improved Derandomization of BPP Using a Hitting Set Generator.
Proceedings of the RANDOM’99 Third International Workshop on Randomization and Approxi-
mation Techniques in Computer Science, LNCS 1671, Springer-Verlag, Berlin (1999) 131–137

[3] Š́ıma, J., Žák, S.: A polynomial time constructible hitting set for restricted 1-branching programs
of width 3. Proceedings of the SOFSEM 2007 Thirty-Third International Conference on Current
Trends in Theory and Practice of Informatics, LNCS 4362, Springer-Verlag, Berlin (2007) 522–531

[4] Wegener, I.: Branching Programs and Binary Decision Diagrams—Theory and Applications. SIAM
Monographs on Discrete Mathematics and Its Applications, SIAM, Philadelphia, PA (2000)

14

