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Datum staženı́: 02.05.2024
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Institute of Computer Science of the ASCR, v. v. i.
Pod Vodárenskou v̌eží 2

182 07 Prague 8, CZ

Institute of Computer Science of the ASCR, v. v. i.
Pod Vodárenskou v̌eží 2

182 07 Prague 8, CZ

stefka@cs.cas.cz martin@cs.cas.cz

Field of Study:
Mathematical Engineering

The research reported in this paper was partially supported by the Program “Information Society” under project
1ET100300517 and by the grant ME949 of the Ministry of Education, Youth and Sports of the Czech Republic.

Abstract

Classifier combining is a popular technique
for improving the classification quality.
Common methods for classifier combining
can be further improved by using dynamic
classification confidence measures. In this
paper, we provide a general framework of
dynamic classifier systems, which use dynamic
confidence measures to adapt the aggregation
to a particular pattern. We also introduce
methods for assessing classification confidence
measures, and we experimentally show that
there is a correlation between the feasibility
of a confidence measure for a given dataset and
a given classifier type, and the improvement
of classification quality in dynamic classifier
systems.

1. Introduction

Classification is a process of dividing objects (called
patterns) into disjoint sets calledclasses[1]. A comonly
used technique for improving classification quality is
classifier combining[2] – instead of using just one
classifier, a team of classifiers is created and trained;
each classifier in the team predicts independently,
and the classifier outputs are aggregated into a final
prediction. It can be shown that such a team of classifiers
can perform better than any of the individual classifiers.

A common drawback of classifier aggregation methods
is that they are static, i.e., they are not adapted to
the particular pattern to classify. However, if we use
the concept of dynamic classification confidence (i.e.,
the extent to which we can “trust” the output of a
particular classifier for the currently classified pattern),
the aggregation algorithms can take into account the
fact that “this classifier is/is not goodfor this particular
pattern”.

There has already been some research done in the field
of dynamic classifier aggregation. Classifier selection
methods [3, 4, 5] try to find out which classifier in the
team is locally better than the other classifiers, and this
classifier only is used for the prediction. The weakness
of these methods is that much of the information is
discarded, which can lead to unstability. In classifier
aggregation [6, 7], where all the classifiers are used for
the prediction, most of the commonly used methods
are static. However, for example Robnik-Šikonja [8]
and Tsymbal et al. [9] study aggregation of Random
Forests with classification confidences, and Avnimelech
and Intrator use dynamic aggregation of neural networks
[10].

In the wider fields of classification, pattern recognition,
and case-based reasoning, the classification confidence
has also been studied, e.g. in [11, 12, 13]. The goal of
such approaches is usually to refuse to classify a given
“hard” pattern and to leave the decision to a human
expert. However, in classifier combining, where we have
a battery of different classifiers if one classifier refuses
to classify a pattern, the classification confidence can be
used more exhaustively.

It is although common that the concept of dynamic
classification confidence is tightly bound with the
aggregation method, or with the particular classifier
type used. In this case, it is not clear whether the
reported improvements are obtained due to a particular
aggregation scheme, or because a dynamic classification
confidence was involved in the aggregation process.
Moreover, the way a classifier classifies a pattern, the
way we measure confidence of a classifier, and the way
we aggregate a team of classifiers, are independent on
each other, so they should be studied separately.
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In this paper, we provide a general framework of
dynamic classifier systems, based on three independent
aspects – the classifiers in the team, the confidence
measures of the individual classifiers, and the
aggregation strategy. This allows us to study possible
benefits of using classification confidence in classifier
combining, regardless of a particular classifier type,
or a particular confidence measure. The confidence
measures and the aggregation strategy give us three
important classes of classifier systems – confidence-
free (i.e., systems that do not utilize classification
confidence at all), static (i.e., systems that use only
“global” confidence of a classifier), and dynamic (i.e.,
systems that adapt to the particular pattern submitted for
classification).

Apart from that, we introduce methods for assessing
confidence measures, which can be used for predicting
whether a dynamic classifier system will perform better
than a confidence-free or static classifier system. We
define two heuristics for assessing confidence measures,
and we experimentally show that there is a correlation
between the feasibility of a confidence measure and the
improvement in the classification quality when used in a
dynamic classifier system.

The paper is structured as follows. In Section 2,
we present the formalism of classification itself
and classification confidence, and we introduce
the framework of dynamic classifier systems. In
Section 3, we deal with methods how the feasibility
of classification confidence measures can be measured,
and we introduce two heuristics how the assessment can
be done. Section 4 experimentally studies the correlation
between the feasibility of a confidence measure, and the
improvement in classification when used in a dynamic
classifier system. Section 5 summarizes the paper and
uncovers our plans for the future research.

2. Formalism of Dynamic Classifier Systems

Throughout the rest of the paper, we use the following
notation. LetX ⊆ Rn be an-dimensionalfeature space,
let C1, . . . , CN ⊆ X , N ≥ 2 be sets calledclasses. A
pattern is a tuple(x, cx), wherex ∈ X arefeaturesof
the pattern, andcx ∈ {1, ..., N} is the index of the class
the pattern belongs to. The goal of classification is to
determine to which class a given pattern belongs, i.e., to
predictcx for unclassified patterns. We assume that for
everyx ∈ X , there is a unique classificationcx (e.g.,
provided by some expert), but when we are classifying
a pattern, we do not know it – due to this fact, we will
sometimes refer to a pattern only asx ∈ X .

Definition 1 Let [0, 1] denote the unit interval. We call
a classifierevery mappingφ : X → [0, 1]N , where for
x ∈ X , φ(x) = (µ1(x), . . . , µN (x)) are degrees of
classification (d.o.c.)to each class.

The d.o.c. to classCj expresses the extent to which the
pattern belongs to classCj (if µi(x) > µj(x), it means
that the patternx belongs to classCi rather than toCj ).
Depending on the classifier type, it can be modelled by
probability, fuzzy membership, etc.

Remark 1 This definition is of course not the only way
how a classifier can be defined, but in the theory of
classifier combining, this one is used most often [2].

The prediction ofcx for an unknown patternx is done
by converting the continuous d.o.c. of the classifier into
a crisp output.

Definition 2 Let φ be a classifier,x ∈ X , φ(x) =
(µ1(x), . . . , µN (x)). Crisp outputof φ on x is defined
asφ(cr)(x) = argmaxi=1,...,N µi(x) if there are no ties
(i.e., | arg maxi=1,...,N µi(x)| = 1), defined arbitrarily
asφ(cr)(x) ∈ arg maxi=1,...,N µi(x) in the case of ties.

2.1. Classification Confidence

In addition to the classifier output (the d.o.c.s), which
predicts to which class a pattern belongs to, we will
work with confidenceof the prediction, i.e., the extent
to which we can “trust” the output of the classifier.

Definition 3 Letφ be a classifier. We call aconfidence
measureof classifierφ every mappingκφ : X → [0, 1].
Let x ∈ X . κφ(x) is calledclassification confidenceof
φ onx.

Classification confidence expresses the degree of trust
we can give to a classifierφ when classifying a pattern
x. κφ(x) = 0 means that the classification does not need
to be correct, whileκφ(x) = 1 means the classification
is probably correct.

A confidence measure can be eitherstatic, i.e., it is a
constant of the classifier, ordynamic, i.e., it adjusts itself
to the currently classified pattern.

Definition 4 Letφ be a classifier andκφ its confidence
measure. We callκφ static, iff it is constant inx, we call
κφ dynamicotherwise.
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Remark 2 Since static confidence measures are
constant, independent on the currently classified
pattern, we will omit the patternx in the notation, i.e.,
we will denote their values just asκφ.

In the rest of the paper, we will use the indicator operator
I, defined asI(true) = 1, I(false) = 0.

2.1.1 Static Confidence Measures: After the
classifier has been trained, we can use a validation
set (i.e., a set of patterns the classifier has not been
trained on; we could also use training patterns, but
in that case, the results would be biased) to assess
its predictive power as a whole (from a global view).
These methods include accuracy, precision, sensitivity,
resemblance, etc. [1, 14], and we can use these measures
as static confidence measures. In this paper, we will use
the Global Accuracy measure.

Global Accuracy (GA) of a classifierφ is defined as
the proportion of correctly classified patterns from
the validation set:

κ
(GA)
φ =

∑
(y,cy)∈M

I(φ(cr)(y)
?
= cy)

|M|
, (1)

whereM⊆ X × {1, . . . , N} is the validation set
andφ(cr)(y) is the crisp output ofφ ony.

2.1.2 Dynamic Confidence Measures: An
easy way how a dynamic confidence measure can
be defined is to compute some property on patterns
neighboringx. Let N(x) denote a set of neighboring
patterns from the validation set. In this paper, we define
N(x) as the set ofk patterns nearest tox under
Euclidean metric. Now we will define two dynamic
confidence measures which useN(x):

Euclidean Local Accuracy (ELA), used in [5],
measures the local accuracy ofφ in N(x):

κ
(ELA)
φ (x) =

∑
(y,cy)∈N(x)

I(φ(cr)(y)
?
= cy)

|N(x)|
,

(2)
whereφ(cr)(y) is the crisp output ofφ ony.

Euclidean Local Match (ELM), based on the ideas in
[12], measures the proportion of patterns inN(x)
from the same class asφ is predicting forx:

κ
(ELM)
φ (x) =

∑
(y,cy)∈N(x)

I(φ(cr)(x)
?
= cy)

|N(x)|
,

(3)

whereφ(cr)(x) is the crisp output ofφ onx. The
difference between (2) and (3) is that in the latter
case, there isφ(cr)(x) instead ofφ(cr)(y) in the
indicator.

The dynamic confidence measures defined in this
section have one drawback – they need to compute
neighboring patterns ofx, which can be time-
consuming, and sensitive to the similarity measure
used. There are also dynamic confidence measures,
which compute the classification confidence directly
from the degrees of classification [10, 11], e.g., the
ratio of the highest degree of classification to the
sum of all degrees of classification. However, our
preliminary experiments with such measures with
quadratic discriminant classifiers and random forests
show that such confidence measures give very poor
results [15].

2.1.3 The Oracle Confidence Measure: For
reference purposes, we also define a so-calledOracle
confidence measure, which represents the “best-we-can-
do” approach.

Oracle (OR) confidence is equal to1 iff the pattern is
classified correctly,0 otherwise:

κ
(OR)
φ (x) = I(φ(cr)(x)

?
= cx) (4)

Of course, in practical applications, we cannot use the
Oracle confidence measure, because we do not know
the actual class the pattern belong to (cx). However, the
Oracle confidence measure can give us upper bound for
performance of a classifier system using classification
confidence, and it can also be used to assess the
feasibility of a given confidence measure.

2.2. Classifier Teams

In classifier combining, instead of using just one
classifier, a team of classifiers is created, and the team
is then aggregated into one final classifier. If we want
to utilize classification confidence in the aggregation
process, each classifier must have its own confidence
measure defined.

Definition 5 Let r ∈ N, r ≥ 2. Classifier teamis
a tuple (T ,K), where T = (φ1, . . . , φr) is a set
of classifiers, andK = (κφ1

, . . . , κφr
) is a set of

corresponding confidence measures.
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If a classifier team consists only of classifiers of
the same type, which differ only in their parameters,
dimensionality, or training sets, the team is usually
called an ensemble of classifiers. The restriction to
classifiers of the same type is not essential, but it ensures
that the outputs of the classifiers are consistent. Well-
known methods for ensemble creation arebagging[16],
boosting [17], random forests[18], error correction
codes[2], or multiple feature subsetmethods [19].

Remark 3 The goal of these methods is to create an
ensemble of classifiers which are bothaccurateand
diverse[20]. Here we cite only some of the basic papers
about ensemble methods – in the literature, modified
and improved versions of the methods can be found.
In our framework, any method for creating a team (or
ensemble) can be used – i.e., ensemble methods are
not competitive to our approach, but they are more or
less supplementary. After the classifier team has been
created, the aggregation rule is totally independent of
the method by which the team has been created.

If a patternx is submitted for classification, the team of
classifiers gives us information of two kinds – outputs
of the individual classifiers (adecision profile), and
classification confidences of the classifiers onx (a
confidence vector).

Definition 6 Let(T ,K), whereT = (φ1, . . . , φr),K =
(κφ1

, . . . , κφr
), be a classifier team, and letx ∈ X .

Then we definedecision profileT (x) ∈ [0, 1]r×N

T (x) =

0

B

B

B

@

φ1(x)
φ2(x)

...
φr(x)

1

C

C

C

A

=

0

B

B

B

@

µ1,1(x) µ1,2(x) . . . µ1,N (x)
µ2,1(x) µ2,2(x) . . . µ2,N (x)

. . .
µr,1(x) µr,2(x) . . . µr,N (x)

1

C

C

C

A

,

(5)

andconfidence vectorK(x) ∈ [0, 1]r

K(x) =




κφ1
(x)

κφ2
(x)
...

κφr
(x)


 (6)

Remark 4 Here we use the notationT for both the set
of classifiers, and for the decision profile, and similarly
for K. To avoid any confusion, the decision profile and
confidence vector will always be followed by(x).

2.3. Classifier Systems

After the patternx has been classified by all the
classifiers in the team, and the confidences have been

computed, these outputs have to be aggregated using
a team aggregator, which takes the decision profile
as its first argument, the confidence vector as its
second argument, and returns the aggregated degrees of
classification to all the classes.

Definition 7 Let r,N ∈ N, r,N ≥ 2. A team
aggregatorof dimension(r,N) is any mappingA :
[0, 1]r×N × [0, 1]r → [0, 1]N .

A classifier team with an aggregator will be called a
classifier system. Such system can be also viewed as a
single classifier.

Definition 8 Let (T ,K) be a classifier team, and let
A be a team aggregator of dimension(r,N), wherer
is the number of classifiers in the team, andN is the
number of classes. The tripleS = (T ,K,A) is called a
classifier system. We define aninduced classifierofS as
a classifierΦ, defined as

Φ(x) = A(T (x),K(x)).

Depending on the way how a classifier system utilizes
the classification confidence, we can distinguish several
types of classifier systems.

Definition 9 Let (T ,K) be a classifier team.(T ,K) is
called static, iff ∀κ ∈ K : κ is a static confidence
measure.(T ,K) is calleddynamic, iff ∃κ ∈ K : κ is
a dynamic confidence measure.

Definition 10 LetA be a team aggregator of dimension
(r,N). We callA confidence-free, iff it is constant in the
second argument.

Definition 11 LetS = (T ,K,A) be a classifier system.
We callS confidence-free, iff A is confidence-free. We
call S static, iff (T ,K) is static, andA is not confidence-
free. We callS dynamic, iff (T ,K) is dynamic, andA is
not confidence-free.

Confidence-free classifier systems do not utilize the
classification confidence at all. Static classifier systems
utilize classification confidence, but only as a global
property (constant for all patterns). Dynamic classifier
systems utilize classification confidence in a dynamic
way, i.e. the aggregation is adapted to the particular
pattern submitted for classification. The different
approaches are shown in Fig. 1.
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~x

φ1

φ2

...
φr

T (~x) A Φ(~x)

(a) Confidence-free

~x

φ1

φ2

...
φr

T (~x)

Kconst

A Φ(~x)

(b) Static

~x

φ1

φ2

...
φr

κφ1

κφ2

...
κφr

T (~x)

K(~x)

A Φ(~x)

(c) Dynamic

Figure 1: Schematic comparison of confidence-free, static, and dynamic classifier systems.

2.3.1 Classifier Selection: Classifier selection
methods [3, 4, 5] use some criterion to determine which
classifier is most suitable for the current patternx, and
the output of this classifier is taken as the final result –
outputs of the other classifiers are entirely discarded.

These methods are a special case of dynamic classifier
systems – the selection criterion can be viewed as
a dynamic confidence measure evaluated on all the
classifiers in the team, and the team aggregatorA
corresponding to the classifier selection method is
defined asA(T (x),K(x)) = Φ(x) = φi(x), where
i ∈ argmaxi=1,...,r κφi

(x).

The weakness of classifier selection methods is that
they discard much potentially useful information, which
can lead to unstable results in the induced classifier’s
predictions [21]. In the rest of the paper, we do not deal
with classifier selection.

2.3.2 Classifier Aggregation: Many methods
for aggregating a team of classifiers into one final
classifier have been proposed in the literature [2, 6, 7].
The simplest methods use only some simple arithmetic
operation to aggregate the team’s output (e.g., voting,
sum, maximum, minimum, mean, weighted mean,
weighted voting, product, etc.). More advanced methods
use for example probability theory (e.g., behavior
knowledge space [22], product rule [6], Dempster-
Shafer fusion [6]), fuzzy logic (e.g., fuzzy integral
[23, 24], decision templates [6, 23]), or second-level
classifiers [6].

To emphasize the difference between confidence-free,
static, and dynamic classifier systems, we will not
consider complex aggregation algorithms, and we will

define three simple aggregation algorithms, based on
mean value, each representing confidence-free, static, or
dynamic classifier system. This will allow us to compare
the different classifier systems without bias.

We will use the notation from Def. 6 and Def. 8. Let
Φ(x) = A(T (x),K(x)) = (µ1(x), . . . , µN (x)), and
let j = 1, . . . , N .

Mean value aggregation (MV) is the most common
(confidence-free) aggregation technique. Its
aggregator is defined as

µj(x) =

∑
i=1,...,r

µi,j(x)

r
. (7)

Static weighted mean aggregation (SWM)computes
aggregated d.o.c. as weighted mean of d.o.c. given
by the individual classifiers, where the weights are
static classification confidences:

µj(x) =

∑
i=1,...,r

κφi
µi,j(x)

∑
i=1,...,r

κφi

. (8)

Dynamic weighted mean aggregation (DWM)has
the same aggregator as SWM, with the difference
that the weights are dynamic classification
confidences:

µj(x) =

∑
i=1,...,r

κφi
(x)µi,j(x)

∑
i=1,...,r

κφi
(x)

. (9)

Remark 5 If we aggregate a team of classifiers with the
Oracle confidence measure using the DWM aggregator,
we obtain anOracle classifier– a common reference
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classifier system, which gives us correct prediction if
and only if any of its classifiers gives correct prediction.
The Oracle classifier serves as the “best how classifier
combining can be done” approach.

3. Assessing Confidence Measures

In [15, 25], we have experimentally shown that dynamic
classifier systems of Random Forests [18] and Quadratic
Discriminant Classifiers [1] using the ELA and ELM
confidence measures can significantly improve the
quality of classification, compared to confidence-free, or
static classifier systems.

However, in these experiments, the performance of
the dynamic classifier systems varied from dataset
to dataset. For some datasets, the ELM confidence
measure obtained better results, for others the ELA
was more successful, and for some datasets, neither of
them improved the classification. In other words, the
performance of a dynamic classifier system is heavily
influenced by the particular confidence measure used.

Given a particular dataset to classify, and given a set of
classifiers which form a classifier team, there are several
questions which come into one’s mind:

• Will a dynamic classifier system yield
improvement in the classification quality
compared to confidence-free or static classifier
system?

• Which confidence measure will perform the best
for the given classifiers and the given dataset?

• Are the benefits of a dynamic classifier system
worth the higher computational complexity?

To answer these questions, we could of course build
the classifier systems and compare their performance
using crossvalidation or other standard machine learning
technique. However, it would be more convenient if we
had some criterion of feasibility of a given confidence
measure, which could answer these questionsprior
to building and crossvalidating the models. In this
paper, we introduce two such criteria. Before that,
we summarize the properties which should hold for
a “good” confidence measure. Intuitively, ifκφ(x)
estimates the degree of trust we can give to the classifier
φ when classifying a patternx, the following should be
satisfied:

• If the classification confidenceκφ(x) is high
(close to1), the classifier’s predictionφ(cr)(x)
should be correct.

• If the classifier’s predictionφ(cr)(x) is not
correct, the classification confidenceκφ(x)
should be low (close to0).

For example, ifκφ(x) is an estimate of the probability
of correct classification ofx by φ (for example the
ELA confidence measure), both these implications are
satisfied, if the estimate is good enough. According to
these two properties, the ideal confidence measure is the
Oracle confidence measure.

In this paper, we propose an approach in which
the feasibility of a confidence measure is measured
empirically, on a set of validation patterns. Letφ be a
classifier,κφ a confidence measure, andM ⊆ X ×
{1, . . . , N} the validation set. The feasibility ofκφ for
classifierφ, measured empirically on data(x, cx) ∈
M will be denoted to asF(φ, κφ,M) ∈ [0, 1]. The
particular methods howF(φ, κφ,M) can be defined
will be shown in Sec. 3.2 and 3.3.

However, in classifier combining, we do not have
a single classifier and its corresponding confidence
measure – we have a set of classifiersT , and a set of
corresponding confidence measuresK. Therefore, we
defineF(T ,K,M) ∈ [0, 1] as the average feasibility
of κφ ∈ K for the corresponding classifierφ ∈ T ,
measured onM:

F(T ,K,M) =

∑
φ∈T

F(φ, κφ,M)

|T |
. (10)

3.1. Restricting the Validation Set

There is one more important aspect in which assessing
the feasibility of a confidence measure differs in
the context of classifier systems. If we measure
F(φ, κφ,M) on the whole validation setM, we
have an estimate howκφ predicts the classification
confidencefor a single classifier. However, if we want
to assess a confidence measure’s performance in the
context of dynamic classifier systems, we need to
know something different: can this particular confidence
measure improve the prediction of the classifier system?

What is the difference between these two information?
A typical situation in classifier aggregation is as follows:
for most patterns, the crisp outputs of the individual
classifiers in a classifier system show consensus on
a certain class (i.e., a vast majority of the classifiers
predicts one particular class), and the team aggregator
is not able to break this consensus, even when
incorporating the classification confidences. Therefore,
the behavior of the confidence measures on such patterns
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is totally irrelevant. On the other hand, for patterns
where there is no such consensus, the behavior of the
confidence measure ismuchmore important. Therefore,
we need to identify such patterns, and restrictM to a
such subset.

Let 0 ≤ s ≤ r, wherer = |T |. Let U(s) ⊆ M be
the set of patterns(x, cx), for which for all classesCj ,
j = 1, . . . , N , we have

|{i; i = 1, . . . , r, φ
(cr)
i (x) = j}| ≤ s. (11)

U(s) denotes set of patterns, for which at mosts
classifiers vote for any particular class. For lowers,
this means that there is no consensus on a particular
class, and so the team aggregator can easily use the
classification confidence to improve the prediction – this
suggests that restricted validation set for lowers are
more important for the analysis. However, the smaller
s, the smaller|U(s)|, which leads us to the fact that
we needs big enough so the feasibility is measured
on enough data. To solve the dilemma, we use the
following heuristic: choose smallests, for whichU(s)
covers a given portion (5-10%) of the validation data,
i.e., |U(s)| ≥ α|M|, whereα ∈ (0, 1).

3.2. Similarity to OR

The first approach howF(φ, κφ,M) can be measured
is to compute the similarity of valuesκφ(x) to the

values of the Oracle confidenceκ(OR)
φ (x) for patterns

(x, cx) ∈ M, whereM is the (restricted) validation set.
This can be done by taking the average absolute value of
the differences of the confidences:

F (SOR)(φ, κφ,M) = 1−

∑
(x,cx)∈M

|κφ(x)− κ
(OR)
φ (x)|

|M|
.

(12)

3.3. AUC for OK/NOK Histogram

The second approach howF(φ, κφ,M) can be
measured is to analyze histograms ofκφ(x) for patterns
classified correctly byφ (OK patterns) and for patterns
classified incorrectly byφ (NOK patterns). Values of
κφ(x) for the OK patterns should be concentrated near
0, while for the NOK patterns,κφ(x) should concentrate
near 1. Moreover, these two distributions should not
overlap.

LetM be the (restricted) validation set, and letMi ⊆
M for i = 1, . . . , N denote the sets of validation
patterns from classCi. For two arbitrary classesCk, Cj ,
we define the multiset

Hkj = {κφ(x)|(x, cx) ∈ Mk, φ
(cr)(x) = j}, (13)

as a multiset of classification confidence values for all
validation patterns from classCk, which have been
classified to classCj by φ. Using this notation, we can
define theOK histogramas the histogram computed
from

⋃
k Hkk, k = 1, . . . , N and theNOK histogram

as the histogram computed from
⋃

k 6=j Hkj , k, j =
1, . . . , N .

The OK and NOK histograms of the ELA and ELM
confidence measures for a Random Forest ensemble
for the Waveform dataset (non-restricted) are shown in
Fig. 2. Fig. 3 shows the evolution of the histograms for
the restricted validation set. Observe that for lowers,
the histograms are very different from the histograms
for higher values ofs.

Altough the OK/NOK (restricted) histograms give us
visual information, we need to evaluate the degree of
overlapping using a single number. This is possible, if
we represent the OK/NOK confidence values by a ROC
curve, and then we compute the area under the ROC
curve.

Remark 6 Receiver operating characteristic (ROC)
curves [26] are a standard tool in data mining and
machine learning. ROC is basically a plot of the fraction
of true positives vs. the fraction of false positives of
a binary classifier, as some parameter is being varied
(e.g., the discrimination threshold of the classifier).
If a classifier assigns patterns to classes entirely at
random, its ROC curve is the diagonal. On the other
hand, for an ideal classifier, the ROC curve consist
only of one point(0, 1). The closer we are to the ROC
of the ideal classifier (i.e., the farther the ROC curve
is from the diagonal (above the diagonal)), the better
discrimination of the classifier. The strong point of the
ROC curve aprroach is that we can summarize the ROC
curve into a single number – area under ROC curve
(AUC) – which can be used as a criterion of quality of
a binary classifier. For a random classifier, AUC=0.5,
for an ideal classifier, AUC=1. The higher the AUC,
the better discrimination of the classifier. Classifiers
with AUC below 0.5 are actuallyworsethan a random
classifier.

In the context of classification confidence, we will
study the AUC of a so-calledOK/NOK classifier, which
assigns a pattern to the class “correctly classified” if the
classification confidence is higher than some threshold
T , and to the class “incorrectly classified” instead. By
varyingT between 0 and 1, we obtain the ROC curve.
The AUC of the OK/NOK classifier measured on a
validation setM (or, on a restricted setU(s)) can be
used as an empirical property expressing the degree of
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(a) ELA – bad separation (b) ELM – relatively good separation

Figure 2: The OK (green) and NOK (red) histograms ofκφ of a Random Forest ensemble for the Waveform dataset.

(a) ELA (b) ELM

Figure 3: The restricted OK (green) and NOK (red) histograms ofκφ of a Random Forest ensemble for the Waveform dataset for
s = 7, . . . , 20.
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Figure 4: The ROC curves and the AUCs of the OK/NOK classifiers for the Waveform dataset, measured onU(s), s = 7, . . . , 20,
for a Random Forest ensemble.
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overlapping of the OK and NOK distributions. Now
we can defineF (AUC)(φ, κφ,M) as the AUC of the
OK/NOK classifier for the confidenceκφ, measured on
M. Fig. 4 shows an example of the ROCs for the ELA
and ELM confidence measures for a Random Forest
ensemble for the Waveform dataset.

Remark 7 Receiver operating characteristic (ROC)
curves [26] are a standard tool in data mining and
machine learning. ROC is basically a plot of the fraction
of true positives vs. the fraction of false positives of
a binary classifier, as some parameter is being varied
(e.g., the discrimination threshold of the classifier).
If a classifier assigns patterns to classes entirely at
random, its ROC curve is the diagonal. On the other
hand, for an ideal classifier, the ROC curve consist
only of one point(0, 1). The closer we are to the ROC
of the ideal classifier (i.e., the farther the ROC curve
is from the diagonal (above the diagonal)), the better
discrimination of the classifier. The strong point of the
ROC curve aprroach is that we can summarize the ROC
curve into a single number – area under ROC curve
(AUC) – which can be used as a criterion of quality of
a binary classifier. For a random classifier, AUC=0.5,
for an ideal classifier, AUC=1. The higher the AUC,
the better discrimination of the classifier. Classifiers
with AUC below 0.5 are actuallyworsethan a random
classifier.

4. Experiments

To find out whether the methods for assessing
confidence measures described in the previous sections
can really predict the improvement in the classification
quality of a dynamic classifier system, we designed the
following experiment. Suppose we have a classifier team
(T ,K). Given a dataset, we put apart 20% of the data
(this was done only for the datasets which contained
more than500 patterns; for smaller datasets, we used
the whole dataset) to measureF(T ,K,M) using 5-
fold crossvalidation. After that, we use the remaining
data to measure the relative improvement of the error
rate of a dynamic classifier system (aggregated using
DWM) compared to the error rate of a confidence-free
classifier system (aggregated using MV), using 10-fold
crossvalidation:

I(S1, S2) =
Err(S1)− Err(S2)

Err(S1)
, (14)

whereErr(S1) denotes the error rate of the reference
classifier system (using MV aggregator), andErr(S2)
denotes the error rate of the dynamic classifier system
(using DWM aggregator).

Our goal in this experiment was to study the correlation
betweenF and I. We performed the experiment on
5 artificial and 11 real-world datasets from the Elena
database [27] and from the UCI repository [28]. The
classifier teams were created using the Random Forest
method [18], and as the classification confidences we
used both ELA and ELM. For reference purposes, we
also used the Oracle confidence measure (for which
F = 1 by definition). For assessing the confidence
measures, we used methods descibed in the previous
section, i.e., similarity to the Oracle confidence (SOR)
and the area under ROC curve of the OK/NOK classifier
(AUC), measured on the restricted validation setU(s),
for s such thatU(s) covers 5% of the data.

For each feasibility measure, we obtained a scatterplot
of (F , I) values, which is shown in Fig. 5. We also
computed a least-squares linear approximation of the
scatterplot. To test the statistical significance of the
results, we used the Spearman’s rank correlation test
[29], implemented in the Scipy Python package [30].
The Spearman’s rank correlation test computes the
Spearman’s rank correlation coefficientρ ∈ [−1, 1],
which expresses the degree of correlation of two
variablesX,Y based on their order inX and Y
domains.ρ = 0 means there is no correlation between
X and Y , ρ = 1 means there is a total correlation,
and ρ = −1 indicates anticorrelation. The value of
ρ is then compared to a critical value for a chosen
significance levelα, under the null hypothesis that there
is no correlation between the variables.

For F (SOR), the scatterplot shows a statistically
significant correlation betweenF andI for the ELM
confidence measure (at 1% significance level). For the
ELA confidence measure, the correlation is not clear,
and is not statistically significant. The linear least-
squares fit shows that there is an increasing tendency for
both confidence measures (however, much smaller for
ELA). Regrettably, values ofF for ELA are clustered
mainly in the area between 50% and approx. 60%, and
thus we cannot study the improvement for higher AUC
values.

For F (AUC), the scatterplot shows a statistically
significant correlation betweenF and I for both the
ELA (at 5% significance level) and ELM (at 1%
significance level) confidence measures. The linear
lease-squares fit shows clear increasing tendency for
both confidence measures. Again, values ofF for ELA
span only the area between 50% and approx. 60%, and
thus we cannot study the improvement for higher AUC
values.
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(a) SOR, ELA: ρ = −0.07, p = 80%, ELM: ρ = 0.64, p = 0.8%
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Figure 5: Scatterplot of I versus F for restricted validation setU(s), covering 5% of the validation data for 16
datasets for the ELA, ELM, and OR confidence measures. The solid/dotted lines represent least-squares linear
intrapolations/extrapolations of the data.ρ denotes the Spearman’s rank correlation coefficient andp denotes the
statistical significance level of the Spearman’s test.

These results suggest that the methods for assessing
confidence measures could be used for predicting the
performance of a dynamic classifier system using
classification confidence. As ELM obtains better
feasibility values than ELA, the correlation between its
feasibility and the improvement is more visible than
for ELA. In this experiment, the AUC approach for
assessing confidences showed better results than the
SOR approach.

5. Summary & Future Work

In this paper, we have introduced a general framework of
dynamic classifier systems, built on three main elements
– the individual classifiers, their confidence measures,
and the aggregator of the system. We have shown
examples of one static (Global Accuracy), two dynamic
(Euclidean Local Accuracy, Euclidean Local Match),
and one reference (Oracle) classification confidence
measures, which can be used in the framework.

We have introduced two different heuristics (the
similarity to the Oracle confidence measure, and the area
under ROC curve of a OK/NOK histogram) how the
feasibility of a confidence measure can be assessed for a
particular classifier and data. We have also shown that
it is useful to compute the feasibility of a confidence
measure on a set of patterns for which there is no
consensus in the classifier system.

In the experiments, we have shown a correlation
between the feasibility of a confidence measure and

the improvement of the classification quality of a
dynamic classifier system, compared to a confidence-
free classifier system (at least for the OK/NOK
histogram-based approach).

In our future research, we would like to study methods
for assessing classification confidence measures in more
detail. We would like to study deeper the way how
dynamic classifier systems work and why (and when)
the dynamic classification confidence can improve the
classification quality.

We would also like to perform experiments with
dynamic classifier systems for other classifier types
than Quadratic Discriminant Classifiers and Random
Forests, mainly Support Vector Machines and k-Nearest
Neighbor classifiers. Apart from that, we would like to
incorporate dynamic classification confidence into more
advanced classifier aggregation methods, for example
fuzzy t-conorm integral.
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