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Abstract

We deal with geometrical and differential
properties of triangular norms (t-norms for
short), i.e. binary operations which implement
logical conjunctions in fuzzy logic. The
first part discusses the problem of a visual
characterization of the associativity of t-norms.
The results given by web geometry are adopted,
mainly the concept of the Reidemeister closure
condition, in order to characterize the shape
of level sets of t-norms. This way, a visual
characterization of the associativity is provided
for general, continuous, and continuous
Archimedean t-norms. The second part deals
with differential properties of continuous
Archimedean t-norms. It is shown that partial
derivatives of such a t-norm on a particular
subset of its domain correspond directly to the
generator (or to the derivative of the generator)
of the t-norm. As the result, several methods
which reconstruct multiplicative and additive
generators of continuous Archimedean t-norms
are introduced. The presented results contribute
to a partial solution of an open problem whether
a non-trivial convex combination of two t-norms
can be a triangular norm again.

1. Introduction

The fuzzy logic has been proposed as an alternative
to the classical Boolean logic. The notion “fuzzy” was
firstly introduced in 1965 by Zadeh in his paper [40]
where he defined fuzzy logic and fuzzy sets.

The main idea of the fuzzy logic is to enlarge the set of
truth values, i.e.0 and1 (false and true), to the real unit
interval[0, 1]. In comparison to the classical logic where
a statement can be either true or false, the generalization
to the fuzzy logic allows to express also a partial truth of
a statement as it admits degrees of truth.

Generalization of the set of truth values hangs together
with a generalization of the logical operations. The
logical conjunction is usually implemented by a
triangular norm (shortly, a t-norm). Although the
notion of a t-norm was originally introduced within
the framework of probabilistic metric spaces [37], it
has found a successful application in fuzzy logic. The
currently studied fuzzy logics, as will be described
in the sequel, are primarily based on t-norms.
Another important logical connective, the implication,
is usually implemented by aresiduum(also residuated
implication) which is derived from a t-norm in order
to form an adjoint pair and work correctly in the
generalized Modus Ponens rule.

The logical calculus which is able to cope with partially
true statements is called a fuzzy or many-valued logic.
The beginning of many-valued reasoning dates back
to 1920 when Łukasiewicz proposed his three-valued
logic [23] and to the work of Post [36] in 1921. Now, one
of the most successful fuzzy logics is theBasic Fuzzy
Logic (BL for short) which has been introduced by
Hájek [15] and fully described in his monograph [16].
We remark that BL includes the fuzzy logics, known so
far at the time of its introduction, as its special cases.
The semantical counterpart of BL is represented by
BL-algebras which play an analogous role as Boolean
algebras for the classical Boolean logic. An example
of a BL-algebra is the real unit interval[0, 1] endowed
with a continuous t-norm which represents a conjunction
and the corresponding residuum which represents an
implication. Such a BL-algebra is called a standard BL-
algebra. Hájek proved that BL is sound and complete
with respect to the class of BL-algebras. This means
that a formula is provable in BL if and only if it is a
tautology in all BL-algebras. BL is complete even with
respect to standard BL-algebras. This fact is known as
theStandard Completeness Theoremof BL [11].
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2. Preliminaries

We present here some basic facts about triangular
norms. The proofs and more details can be found e.g.
in the monographs on triangular norms [7, 20]. Another
good introduction to triangular norms can also be given
by monographs on fuzzy sets and fuzzy logic [22, 30].

Definition 2.1 A triangular norm(a t-normfor short) is
a binary operationT : [0, 1] × [0, 1] → [0, 1] such that
for all x, y, z ∈ [0, 1] the following axioms are satisfied:

(T1) T (x, y) = T (y, x) , (commutativity)

(T2) T (x, T (y, z)) = T (T (x, y), z) , (associativity)

(T3) x ≤ y ⇒ T (x, z) ≤ T (y, z) , (monotonicity)

(T4) T (x, 1) = x . (neutral element)

The three most common t-norms are theminimum t-
norm, TM(x, y) = min{x, y}, theŁukasiewicz t-norm,
TL(x, y) = max{x+ y− 1, 0}, and theproduct t-norm,
TP(x, y) = x · y.

A continuous t-normT is called Archimedean if
T (x, x) < x for all x ∈ ]0, 1[. A t-norm which
is continuous and strictly increasing on the half-open
square]0, 1]2 is said to bestrict; such a t-norm is
always Archimedean. A continuous Archimedean t-
norm is callednilpotent if it is not strict. Thus every
continuous Archimedean t-norm is either strict or
nilpotent. For example, the product t-norm is strict, the
Łukasiewicz t-norm is nilpotent, and the minimum t-
norm is an example of a continuous t-norm which is not
Archimedean.

Every continuous Archimedean t-norm can be
represented by a one-dimensional real function
called generator. This result is formalized by the
Representation Theorem[1, 14, 21, 27]:

Theorem 2.2 (Representation Theorem)For a func-
tion T : [0, 1]

2 → [0, 1] the following statements are
equivalent:

1. T is a continuous Archimedean t-norm.

2. T has a continuousadditive generator, i.e., there
exists a continuous strictly decreasing function
t : [0, 1] → [0,∞] with t(1) = 0 such that
T (x, y) = t(−1) (t(x) + t(y)) holds for all

(x, y) ∈ [0, 1]
2. Here,t(−1) denotes the pseudo-

inverse oft which is (in this case) defined as:

t(−1)(y) =

{
0 if y > t(0) ,
t−1(y) if y ≤ t(0) .

3. T has a continuousmultiplicative generator,
i.e., there exists a continuous strictly increasing
function θ : [0, 1] → [0, 1] with θ(1) = 1 such
that T (x, y) = θ(−1) (θ(x) · θ(y)) holds for all
(x, y) ∈ [0, 1]2. Here,θ(−1) denotes the pseudo-
inverse ofθ which is (in this case) defined as:

θ(−1)(y) =

{
0 if y < θ(0) ,
θ−1(y) if y ≥ θ(0) .

The supportof a binary operationT : [0, 1]
2 → [0, 1],

denoted bysuppT , is the closure of the set
{
(x, y) ∈ [0, 1]

2 | T (x, y) > 0
}
.

3. Current situation of the studied problem

3.1. Convex combinations of t-norms

This work has been primarily inspired by the long
standing open problem of convex combinations of
triangular norms and summarizes the results which have
been achieved while solving this problem. This problem
has been formulated, for example, in the list of open
problems by Alsina, Frank, and Schweizer [6]:

Problem 3.1 Is the arithmetic mean, or for that matter
any convex combination, of two distinct t-norms ever a
t-norm?

We recall that a convex combination of two t-norms
T1, T2 is a functionF = αT1 + (1 − α)T2 where
α ∈ [0, 1]. It is immediate that for trivial convex
combinations, i.e. forα ∈ {0, 1} or for T1 = T2, the
answer is positive. A positive example can be given even
for non-trivial convex combinations of non-continuous
t-norms [17, 34, 39]. For example, letT1 be an ordinal
sum of the product t-normTP on the carrier[0, 1

2 ]. Let
T2 be a binary operation on[0, 1] such thatT2(x, y) = 0
for x, y ∈ [0, 1

2 ] andT2(x, y) = min{x, y} otherwise.
It is easy to check thatT2 is a left-continuous t-
norm. Observe now that any convex combination of
T1 and T2 is a left-continuous t-norm. However, for
continuous t-norms the problem still has not been
answered completely although it is conjectured that for
the continuous t-norms the answer to the question posed
in Problem 3.1 is “never” [6].
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Thus, in order to exclude the trivial cases mentioned
above, whenever we write “convex combination” we
mean a functionαT1 + (1 − α)T2 whereα ∈ ]0, 1[,
T1 6= T2, and both t-norms are continuous.

In the rest of this section we briefly outline the results
related to the convex combinations of t-norms which
have been done so far. In the historically first paper
dealing with this problem, Tomás [38] has given a
result on strict t-norms under additional (and rather
restrictive) constraints. In the papers by Ouyang, Fang
and Li [31, 32], the whole class of continuous t-
norms is treated under no additional assumptions. For
example, they prove [31] that a convex combination of a
continuous Archimedean t-norm and a continuous non-
Archimedean t-norm is never a t-norm. In other words,
if a convex combination of two continuous t-norms is a
t-norm again, then both combined t-norms are ordinal
sums with the same structure of summand carriers. By
this result, in order to clarify the convex structure of the
class of continuous t-norms it is sufficient to clarify the
convex structure of the class of continuous Archimedean
t-norms. By another result of theirs [31], a convex
combination of a strict and a nilpotent t-norm is never
a t-norm. Thus even the latter task can be subdivided
into solving the convex structure of the nilpotent class
and of the strict class separately. Another result is due
to Jenei [17] and applies to all pairs of left-continuous
t-norms with an additional property that both t-norms
share an involutive level set. An immediate consequence
of this result is that a convex combination of two
nilpotent t-norms,T1 and T2, such thatsuppT1 =
suppT2, is never a t-norm. Let us mention also the
recent result by Mesiar and Mesiarová-Zemánková [26]
where it is stated that a convex combination of two
continuous t-norms with the same diagonal is never a
t-norm. (We recall that adiagonalof a t-normT is the
functionx 7→ T (x, x).)

Two new, recently published [33, 34], results on this
topic are presented here. Using a web-geometrical
approach to describe associativity of t-norms, it is
proven that any convex combination of two nilpotent
t-norms is never a t-norm. Furthermore, using an idea
of reconstruction of generators according to partial
derivatives of t-norms, several new results on the
problem of convex combinations of strict t-norms are
presented.

3.2. Associativity of t-norms

The commutativity, the non-decreasingness and the
existence of a neutral element have an easy graphical
interpretation. However, the question how to visually
interpret the associativity is a long-standing open

problem within the community of people dealing with
t-norms. Some results have been done, mainly thanks to
the effort of Jenei [18], and Maes and De Baets [24, 25],
yet a satisfactory answer to the question still has not
been given.

The theory ofweb geometry[9, 2, 3, 4] has come
with results which answer such, and similar, kinds
of questions in a rather intuitive way. In particular,
associative loops are characterized by theReidemeister
closure condition. These results were, however, done to
characterize algebraic properties of loops. Although t-
norms do not form loops, there are, fortunately, some
similarities between t-norms and loops (monotonicity,
neutral element, . . . ). We will show that some
modifications of the Reidemeister closure condition can
still be applied to t-norms in order to characterize their
associativity.

Motivation 3.2 Consider the Łukasiewicz t-norm,
TL(x, y) = max{x + y − 1, 0}. The structure of its
level sets is extremely simple as they are formed by
parallel lines.

Notice the following easy property of these sets: draw
a rectangle (by vertical and horizontal lines) anywhere
in the support of the operation and denote the level sets
passing through the vertices of the rectangle. Now draw
another rectangle such that three of its vertices match
the three distinct denoted level sets. The fourth vertex of
the rectangle shall, naturally, match the fourth denoted
level set.

The property described in Motivation 3.2 characterizes
associativity and corresponds to the Reidemeister
closure condition introduced by web geometry [9, 2, 3,
4].

3.3. Reconstruction of generators

When a continuous (multiplicative or additive) generator
is defined, it is easy to construct the corresponding
(continuous Archimedean) t-norm. The reverse task,
however, is not so trivial. One way how to obtain a
generator of a continuous Archimedean t-norm is to use
the proof of the Representation Theorem. This proof
is constructive, however, it does not need to result in
an explicit formula of the generator. This significantly
reduces the usability of this method. Another possibility
is to use the results given by Pi-Calleja [5, 35] and by
Craigen and Páles [12]. Both these results give explicit
formulas for additive generators of strict t-norms.
However, the computations of formulas are rather non-
intuitive and non-straightforward which disallows an
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easy usage. The formulas also show no direct relation
between t-norms and their generators.

In this work, an alternative [28, 29] is presented. It
is shown that partial derivatives of t-norms admit to
obtain formulas for generators in a closed form. As the
partial derivatives need not exist, this approach cannot
be applied to all continuous Archimedean t-norms, but
it seems general enough for all practical applications.
It is even shown that every continuous t-norm can be
approximated (with an arbitrary precision) by a t-norm
from the class of strict t-norms on which one of the
introduced methods is applicable. An advantage of this
approach is that it relates (the shape of) the generator
directly to (the shape of) the t-norm and that it is
based on the basic differential calculus which makes
the computational procedure straightforward. Benefiting
from the fact that computation with the first derivatives
is well described and can be well algorithmized,
these methods can be easily applicable both by a
manual computation and by computational systems.
Furthermore, a simplified proof of the Representation
Theorem for a subclass of strict t-norms is given as one
of the results based on this approach.

4. Results

4.1. Associativity of t-norms

Let F : [0, 1]
2 → [0, 1] be a commutative and non-

decreasing binary operation satisfyingF (x, 1) = x for
all x ∈ [0, 1].

By a rectanglewe mean a set of four pointsR =
{xR

1 , x
R
2 } × {y

R
1 , y

R
2 } ⊂ [0, 1]

2 wherexR
1 ≤ xR

2 and
yR1 ≤ y

R
2 . LetP,R ⊂ [0, 1]2 be two rectangles. We say

thatP ≈F R if and only if F
(
xP

i , y
P
j

)
= F

(
xR

i , y
R
j

)

for all i, j ∈ {1, 2}; P ∼k,l
F R if and only if the

equalityF
(
xP

i , y
P
j

)
= F

(
xR

i , y
R
j

)
is violated for at

most i = k and j = l ; P ∼F R if and only if the
equalityF

(
xP

i , y
P
j

)
= F

(
xR

i , y
R
j

)
is violated for at

most one combination ofi andj. Clearly,≈F ,∼k,l
F , and

∼F are equivalences,≈F is a subrelation of∼k,l
F , and

∼k,l
F is a subrelation of∼F for anyk, l ∈ {1, 2}.

Theorem 4.1 Let T : [0, 1]2 → [0, 1] be a non-
decreasing, commutative binary operation which
satisfiesT (x, 1) = x for everyx ∈ [0, 1].

• T is associative if and only ifP ∼1,1
T R implies

P ≈T R for every pair of rectangles,P andR,
such thatP = {xP

1 , x
P
2 } × {y

P
1 , 1} ⊂ [0, 1]2 and

R = {xR
1 , 1} × {y

R
1 , y

R
2 } ⊂ [0, 1]

2.

• If T is continuous then it is associative if and only
if P ∼1,1

T R impliesP ≈T R for every pair of
rectangles,P,R ⊂ [0, 1]

2.

• If T is continuous and Archimedean then it is
associative if and only ifP ∼T R impliesP ≈T

R for every pair of rectangles,P,R ⊂ suppT ∩
]0, 1]

2.

4.2. Reconstruction of generators

We denote byt′, θ′ the derivatives of generatorst, θ,
respectively. We denote by

DT (x, y) = lim
h→0

T (x+ h, y)− T (x, y)

h

= lim
z→x

T (z, y)− T (x, y)

z − x
.

the partial derivative of a t-normT with respect to the
first variable.

Assumption 4.2 The partial derivativeDT will be
considered only in the supportsuppT . In particular,

DT (1, y) = lim
x→1−

y − T (x, y)

1− x

is the left partial derivative with respect to the first
variable. IfT is strict, then

DT (0, y) = lim
x→0+

T (x, y)

x

is the right partial derivative. For T nilpotent, we
require the second argumenty > 0; thenDT (x, y) is
defined for allx ∈ [NT (y), 1], in particular,

DT (NT (y), y) = lim
z→NT (y)

+

T (z, y)

z −NT (y)
(1)

is the right partial derivative. SinceT is nilpotent, the
negationNT is involutive. Therefore, substitutingx =
NT (y), we can write (1) as

DT (x,NT (x)) = lim
z→x+

T (z,NT (x))

z − x
.

For T nilpotent andy = 0, the line {(x, 0) | x ∈
R} intersectssuppT only at a single point(1, 0) and
DT (x, 0) is undefined for anyx ∈ [0, 1].

We say that a strict t-normT is annihilator-
differentiableif the functionDT (0, y) is defined for all
y ∈ [0, 1].
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Theorem 4.3 (Reconstruction along annihilator)Let
T be a strict annihilator-differentiable t-norm and let
ξ : [0, 1] → [0, 1] : y 7→ DT (0, y). Thenξ(0) = 0,
ξ(1) = 1, and the restriction ofξ to ]0, 1[ is either (1) the
constant0, (2) the constant1, or (3) a bijection on]0, 1[.
Moreover, in case (3) the functionξ is a multiplicative
generator ofT .

Theorem 4.4 (Reconstruction along level set)Let T
be a continuous Archimedean t-norm. Suppose thatT
has an absolutely continuous additive generator with
a non-zero finite derivative at some pointa ∈ ]0, 1].
(We take the left derivative at1.) Let DT be the
partial derivative ofT with respect to the first variable
in the supportsuppT . Suppose thatDT (z, IT (z, a))
exists for almost allz ∈ [a, 1]. Suppose further that
DT (a, IT (a, z)) exists and is in]0,∞[ for almost all
z ∈ [0, a[. ThenT has an additive generator

t∗(x) =

∫ 1

x

v(z) dz ,

where

v(z) =

{
DT (z, IT (z, a)) if z ≥ a ,

1
DT (a,IT (a,z)) if z < a

for almost allz ∈ [0, 1]. Explicitly, if x ≥ a then

t∗(x) =

∫ 1

x

DT (z, IT (z, a)) dz

and ifx < a then

t∗(x) =

∫ a

x

1

DT (a, IT (a, z))
dz

+

∫ 1

a

DT (z, IT (z, a)) dz .

Remark 4.5 We admit that the functionv may attain
zero or infinite value at some points. Then we obtain
an infinite value oft′. However, this may happen only
in countably many points and this does not influence
the integral definingt. The assumption of absolute
continuity includes also the convergence of the integral.

As a special case of Theorem 4.4, we obtain:

Theorem 4.6 (Reconstruction along unit)Let T be a
continuous Archimedean t-norm and lett be an additive
generator ofT such thatt is absolutely continuous
at ]0, 1] and t′(1) = bt,1 ∈ ]−∞, 0[. Suppose that
DT (1, y) ∈ ]0,∞[ for almost ally ∈ ]0, 1]. Then

t′(y) =
bt,1

DT (1, y)
(almost everywhere in]0, 1] )

and

t(y) =

1∫

y

−bt,1
DT (1, u)

du

for all y ∈ ]0, 1].

Theorem 4.4 allows us to reconstruct an additive
generator when a non-negative constanta ∈ ]0, 1] is
given. The following theorem shows that evena = 0
can be used. However, this works for nilpotent t-norms
only.

Theorem 4.7 LetT be a nilpotent t-norm. Suppose that
T has an absolutely continuous additive generator with
a non-zero finite (right) derivative at the point0. Let
DT be the right partial derivative ofT with respect to
the first variable in the supportsuppT . Suppose that
DT (z,NT (z)) exists for almost allz ∈ [0, 1]. ThenT
has an additive generator

t∗(x) =

∫ 1

x

DT (z,NT (z)) dz .

4.3. Convex combinations of t-norms

With the help of web geometry, the following result can
be achieved:

Theorem 4.8 Let T1 and T2 be two continuous
Archimedean t-norms such thatsuppT1 6= suppT2.
Then no non-trivial convex combination ofT1 and T2

is a t-norm.

According to the result by Jenei [17], a convex
combination of two nilpotent t-norms with the same
support is never a t-norm. Therefore Theorem 4.8 brings
the following result:

Corollary 4.9 A non-trivial convex combination of two
distinct nilpotent t-norms is never a t-norm.

Theorem 4.8 also gives an alternative proof of the result
by Ouyang and Fang [31]:

Corollary 4.10 A non-trivial convex combination of a
strict and a nilpotent t-norm is never a t-norm.
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Now, we present some results on convex combinations
of strict t-norms based on the reconstruction methods.
Let T be a strict annihilator-differentiable t-norm and
let ξ : [0, 1] → [0, 1] : y 7→ DT (0, y). ThenT is said to
be

• annihilator-weak(and we writeT ∈ TAW) if
ξ(x) = 0 for all x ∈ ]0, 1[,

• annihilator-strong(and we writeT ∈ TAS) if
ξ(x) = 1 for all x ∈ ]0, 1[,

• annihilator-reconstructible(and we writeT ∈
TAR) if ξ is a bijection.

The set of all strict t-norms which are not annihilator-
differentiable will be denoted byTN.

Let T be a continuous Archimedean t-norm with a
multiplicative generatorθ such thatθ′ is continuous at
1 andθ′(1) ∈ ]0,∞[. Then we say thatT belongs to the
classTUR.

Proposition 4.11 Let T1 andT2 belong to two distinct
classes fromTAR, TAW, TAS. Then no non-trivial convex
combination ofT1 andT2 is a t-norm.

Proposition 4.12 Let T1, T2 ∈ TAR ∩ TUR be strict t-
norms. Letθ1 : y 7→ DT (0, y) andθ2 : y 7→ DT (0, y)
be multiplicative generators ofT1 andT2, respectively.

If a non-trivial convex combination ofT1 and T2 is a
t-norm then for eachy ∈ [0, 1] at least one of the
following conditions is satisfied:

θ′2(y) =
θ′2(1)

θ′1(1)
θ′1(y) ,

θ′1(y)

θ1(y)
=
θ′2(y)

θ2(y)
.

Corollary 4.13 LetT1, T2 ∈ TAR∩TUR be two distinct
strict t-norms such that their multiplicative generators,
θ1 : y 7→ DT (0, y) and θ2 : y 7→ DT (0, y), are
absolutely continuous. If there existsa ∈ ]0, 1[ such that
θ1(a) = θ2(a) then no non-trivial convex combination
of T1 andT2 is a t-norm.

5. Summary

We summarize here briefly the contributions of the
thesis:

• Some results of web geometry, namely the
Reidemeister closure condition, have been
generalized also for algebras which do not
form loops. (T-norms can be considered as
commutative integral monoids on[0, 1].)

• A tool which visually characterizes associativity
of general t-norms has been given.

• It has been shown that the generators or
their derivatives correspond in many cases
directly to the partial derivatives of continuous
Archimedean t-norms. These results contribute
to both practical applications (they allow a
straightforward computation) and theoretical
research (they give a new insight into the subject).
A theoretical contribution has been, furhermore,
illustrated by the results on convex combinations
of strict t-norms and by the alternative proof of the
Representation Theorem.

• The question of convex combinations of t-norms
has been answered negatively for all nilpotent t-
norms. In the case of strict t-norms, the problem
has been divided into several subclasses and a
possible further research has been outlined.

• We remark that the thesis also contributes to the
question: “Which subsets of its domain uniquely
determine an Archimedean t-norm?” Several
results [8, 10, 13, 19] (and a summarization [20])
have been published giving concrete types of
subsets of the unit square. Knowing functional
values on the points of such a subset, an
Archimedean t-norm is determined uniquely.
Here a similar result is given yet the first partial
derivatives are considered instead of functional
values.
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