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Abstract

We study provability in Hilbert-style calculi
obtained by adding standard modal logic axioms
to the Monoidal T-norm based Logic (MTL) by
automated theorem proving methods. The aim
of this paper is to present some basic properties
of systems K, D, T, S4 and S5 over MTL.
These systems are defined in the same way as
are in classical propositional logic. It is shown
that many classically valid formulae become
unprovable.

1. Introduction

In logic it is quite common to enrich the expressive
power of given system by new logical connectives
or operators. The most prominent such systems over
classical propositional calculus (CPC) are modal logics,
which introduce new operators formalising a necessity
and a possibility. The practical importance of these
logics constantly grows and are studied not only
over classical logic but also over non-classical logics.
Interesting candidates for such generalisations are
mathematical fuzzy logics.

The basic generally studied modal logic is the minimal
normal modal logic K. A similar role in mathematical
fuzzy logic has, from some point of view, Esteva and
Godo’s Monoidal T-norm based Logic (MTL) [5], which
is the logic of left-continuous t-norms and their residua.

Fuzzy (or more precisely many-valued) modal logics
have already been studied in the literature, e.g., [9, 8, 6].
However, in most cases only very strong modal logics
like S4 and S5 have been considered. The systematic

study of modal logics starting from the minimal normal
modal logic K is relatively recent, see, e.g., [3].

In [3], a semantic approach is used to build a minimal
normal modal logic over finite residuated lattices. The
syntactic problems which this brings are discussed
in [2]. Our starting point is completely different, we
are interested solely in these syntactic notions. We
enrich the Hilbert-style calculus for MTL by standard
modal axioms and by the methods of automated theorem
proving we study provability and unprovability in
obtained systems.

Similar problems were quite extensively studied in
intuitionistic modal logics, for some discussions see,
e.g., [12]. In [11], automated theorem proving methods,
which are very similar to ours, were used to study
dependencies in modal logics over CPC.

We emphasise that in this paper we only touch some
basic properties. However, all of them can be proved
by automated or semi-automated theorem proving
methods. The work on this approach is currently in
progress and a much more comprehensive paper is being
planned. From these reasons and to make the paper
shorter some proofs are omitted.

The paper is organised as follows. In Section 2 we set up
terminology and in Section 3 we discuss the provability
and unprovability of some formulae in K, D, T, S4
and S5 over MTL. The choice of studied systems and
formulae is mainly influenced by [10].

PhD Conference ’09 35 ICS Prague



Karel Chvalovský Syntactic Approach to Fuzzy Modal Logics over MTL

2. Preliminaries

2.1. Monoidal T-norm based Logic MTL

We define standard Hilbert style calculus for the
Monoidal T-norm based Logic (MTL), which consists
of axioms and modus ponens as the only deduction
rule. The language of MTL consists of implication (→),
multiplicative (&) and additive (∧) conjunctions and a
constant for falsity (0).

Definition 2.1 We define the monoidal t-norm based
logic MTL as a Hilbert style calculus with following
formulae as axioms

(A1) (ϕ→ ψ)→ ((ψ→ χ)→ (ϕ→ χ)),

(A2) (ϕ& ψ)→ ϕ,

(A3) (ϕ& ψ)→ (ψ & ϕ),

(A4a) (ϕ& (ϕ→ ψ))→ (ϕ ∧ ψ),

(A4b) (ϕ ∧ ψ)→ ϕ,

(A4c) (ϕ ∧ ψ)→ (ψ ∧ ϕ),

(A5a) (ϕ→ (ψ→ χ))→ ((ϕ & ψ)→ χ),

(A5b) ((ϕ& ψ)→ χ)→ (ϕ→ (ψ→ χ)),

(A6) ((ϕ→ ψ)→ χ)→ (((ψ→ ϕ)→ χ)→ χ),

(A7) 0→ ϕ.

The only deduction rule of MTL is modus ponens

(MP) If ϕ is derivable andϕ→ψ is derivable thenψ is
derivable.

Let us note properties stated by each axiom,
following [8, 5]. Axiom (A1) is the transitivity of
implication. Axiom (A2) states that multiplicative
conjunction implies its first member. Axiom (A3)
is the commutativity of multiplicative conjunction.
Axioms (A4c), (A4b) and (A4a) state that additive
conjunction is commutative, implies its first member
and one implication of the divisibility property.
Axioms (A5a) and (A5b) represent residuation.
Axiom (A6) is a variant of proof by cases, and states that
if bothϕ→ψ andψ→ϕ impliesχ, thenχ. Axiom (A7)
states that false implies everything.

Further logical connectives—pseudo-complement
negation (¬), disjunction (∨) and equivalence (≡ )—are

definable in MTL. Therefore, we read them as following
abbreviations

¬ϕ =df ϕ→ 0,

ϕ ∨ ψ =df ((ϕ→ ψ)→ ψ) ∧ ((ψ→ ϕ)→ ϕ),

ϕ ≡ ψ =df (ϕ→ ψ) & (ψ→ ϕ).

For some purposes can be suitable to have an involutive
negation which we obtain by adding axiom¬¬ϕ→ ϕ
to MTL. The system so obtained is called Involutive
Monoidal T-norm based Logic (IMTL). If we add the
contraction axiomϕ→ ϕ& ϕ to MTL we obtain Gödel
logic (G). The last two axiomatic extensions of MTL
mentioned in the paper are Hájek’s Basic Logic (BL)
and Łukasiewicz logic (Ł). These logics are obtained by
adding the divisibility axiomϕ ∧ ψ→ ϕ & (ϕ→ ψ) to
MTL and IMTL, respectively.

The following theorems of MTL are very useful for our
purposes. An interested reader can find proofs in [8].

Lemma 2.2 The following formulae are provable in
MTL:

(F1) (ϕ→ (ψ→ χ))→ (ψ→ (ϕ→ χ)),

(F2) ϕ→ ϕ,

(F3) (ϕ& (ϕ→ ψ))→ ψ,

(F4) (ϕ→ (ψ→ (ϕ& ψ)),

(F5) (ϕ ∧ ψ)→ ϕ, (ϕ ∧ ψ)→ ψ, (ϕ& ψ)→ (ϕ ∧ ψ),

(F6) ((ϕ→ ψ) ∧ (ϕ→ χ))→ (ϕ→ (ψ ∧ ψ)),

(F7) ϕ→ (ϕ ∨ ψ), ψ→ (ϕ ∨ ψ),

(F8) ((ϕ→ χ) ∧ (ψ→ χ))→ ((ϕ ∨ ψ)→ χ),

(F9) ϕ→¬¬ϕ,

(F10) (ϕ→ ψ)→ (¬ψ→¬ϕ),

(F11) (ϕ ≡ ψ)→ ((ϕ→ χ) ≡ (ψ→ χ)),

(F12) (ϕ ≡ ψ)→ ((χ→ ϕ) ≡ (χ→ ψ)),

(F13) (¬ϕ ∨ ¬ψ) ≡ ¬(ϕ ∧ ψ).

It is worth pointing out that we will restrict our attention
to the syntactic aspects of MTL. To emphasise this
approach we completely ignore the semantics of MTL.
An interested reader can consult [5].
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2.2. Modal logics

For our purposes only a very limited introduction to
modal logics is needed, for a detail treatment we refer
the reader to, e.g., [10, 4, 1]. We obtain modal logics
by adding a unary modal necessity operator box (�)
to our language. Another standard modal operator is
a possibility operator diamond (3) which is usually
defined as an abbreviation for¬�¬. Although in logics
with a non-involutive negation (¬¬ϕ→ϕ is not true) this
definition evidently leads to some problems, we use this
approach for simplicity and to stress these problems,

3ϕ =df ¬�¬ϕ,

The properties of a modal operator box depends on
chosen axioms. Some of the most widely studied are
these:

(K) �(ϕ→ ψ)→ (�ϕ→�ψ),

(4) �ϕ→��ϕ,

(T) �ϕ→ ϕ,

(D) �ϕ→3ϕ,

(B) ϕ→�3ϕ,

(E) 3ϕ→�3ϕ.

We also need some derivational rules dealing with
modalities. The most common is the necessitation rule

(Nec)ϕ/�ϕ.

In Table 1 are presented some of the most prominent
modal logics over CPC. All of them are so called normal
modal logics, which means that contains the minimal
normal modal logic K.

Logic Additional axioms and rules

K (K) and (Nec)

D (K), (Nec) and (D)

T (K), (Nec) and (T)

S4 (K), (Nec), (T) and (4)

S5 (K), (Nec), (T) and (E)

Table 1: Modal logics in CPC.

We construct our systems of modal logics over MTL in
the very same way as are in CPC. It, not so surprisingly,
turns out that this leeds to some problems.

Let us remark that when proving that some formulae
are equivalent in some modal logics over CPC, we can
use the interdefinability of logical connectives, which is
mostly impossible in MTL.

2.3. Automated theorem proving methods

All given results can be obtained automatically or semi-
automatically by automated theorem proving. There is
a well known technique for encoding a propositional
Hilbert-style calculus into classical first-order logic
through terms. The key idea is that formula variables
are encoded as first-order variables and propositional
connectives as first-order function symbols. For details,
see, e.g., [13].

We used freely available software—E prover version
1.0-004 Temi1 and finite-domain model finder Paradox
3.02. No special prover setting is needed for our
purposes, but can lead to great speed improvements.
However, these aspects are too complex to be discussed
here. Moreover, all presented proofs are easy to find
for anyone familiar with the Hilbert-style calculus for
MTL and counterexamples can be find completely
automatically even with default setting. More complex
problems are not included in this paper.

2.4. Models

The standard way to prove that some formulaϕ is not
provable from the given set of formulaeΓ is to present
a modelM in which all formulae fromΓ are true,
but formulaϕ is false. In our case, we will present
tables with finitely many elements which are labelled
by integers starting from0. We always interpret0 as0
in a model and truth in a given modelM is the maximal
value in this modelM , e.g., in a four element model true
formulae are these with value3. A function from atoms
or formula variables to elements of model is called a
valuation. The definition of a valuation can be easily
extended to all formulae in a standard way. To show that
Γ is true inM we must show that all formulae fromΓ
are true inM under all valuations. To show thatϕ is not
true inM it is enough to find a valuation for whichϕ is
not true inM .

We present tables for every connective separately and
for better readability even for some defined connectives,
but never for negation which corresponds to the first
column of implication. Let us note that some formulae

1http://www.eprover.org/
2http://www.cs.chalmers.se/ koen/folkung/
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have smaller counterexamples than these presented, but
we tried to make the paper more compact.

3. Modal logics in MTL

3.1. KMTL

The basic generally studied modal logic is K. This
system is obtained by adding an axiom which distribute
box over implication and the necessitation rule. In the
same way we define KMTL over MTL.

Definition 3.1 Logic KMTL is obtained by adding
axiom(K) and the derivational rule(Nec)to MTL.

By an easy application of (Nec) and (K) we immediately
obtain that the derivation rule

(DR1) ϕ→ ψ/�ϕ→�ψ

is valid in KMTL .

The fundamental property of the classical modal logic K
is the distributivity of box over conjunction. However, in
KMTL this is not true. Moreover, we cannot interchange
box with diamond, because we don’t have an involutive
negation. From this follows that the same problem is
with the distribution of diamond over disjunction, which
is a part of popular diamond based definition of K over
CPC. Nevertheless, at least some implications can still
be proved.

Lemma 3.2 The following formulae are provable in
KMTL:

(a) (�ϕ& �ψ)→�(ϕ& ψ),

(b) �(ϕ ∧ ψ)→ (�ϕ ∧�ψ),

(c) (3ϕ ∨3ψ)→3(ϕ ∨ ψ),

(d) �ϕ→¬3¬ϕ.

Proof:

(a)

1: �ϕ→�(ψ→ (ϕ& ψ)) (F4), (DR1)

2: �(ψ→ (ϕ& ψ))→
(�ψ→�(ϕ& ψ)) (K)

3: (�ϕ& �ψ)→�(ϕ& ψ) 1, 2, (A1), (A5a)

(b)

4: �(ϕ ∧ ψ)→�ϕ (F5), (DR1)

5: �(ϕ ∧ ψ)→�ψ (F5), (DR1)

6: �(ϕ ∧ ψ)→ (�ϕ ∧�ψ) (A1), (F4), (F5), (F6)

(c) Let us remark that3ϕ is an abbreviation for¬�¬ϕ.

7: �(¬(ϕ ∨ ψ))→�¬ϕ (F7), (F10), (DR1)

8: �(¬(ϕ ∨ ψ))→�¬ψ (F7), (F10), (DR1)

9: �(¬(ϕ∨ψ))→ (�¬ϕ∧�¬ψ) (A1), (F4), (F5), (F6)

10: (3ϕ ∨3ψ)→3(ϕ ∨ ψ) (F10), (F13), (A1)

An alternative slightly shorter proof uses the
derivational rule (DR2), which we show later on.

(d)

11: �ϕ→�¬¬ϕ (F9), (DR1)

12: �¬¬ϕ→¬¬�¬¬ϕ (F9)

13: �ϕ→¬3¬ϕ (A1)

Lemma 3.3 The following formulae are not provable in
KMTL:

(a) �(ϕ& ψ)→ (�ϕ& �ψ),

(b) (�ϕ ∧�ψ)→�(ϕ ∧ ψ),

(c) 3(ϕ ∨ ψ)→ (3ϕ ∨3ψ),

(d) ¬3¬ϕ→�ϕ.

Proof: For (a) use Table 2 andϕ = 0 andψ = 0.

& 0 1 2
0 0 0 0
1 0 0 1
2 0 1 2

→ 0 1 2
0 2 2 2
1 1 2 2
2 0 1 2

�

0 1
1 1
2 2

Table 2: Truth tables over KMTL .

For (b) and (c) use Table 3 andϕ = 1, ψ = 2 and
ϕ = 2, ψ = 3, respectively.
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∧ 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 0 1 1 1
2 0 0 2 0 2 2
3 0 1 0 3 1 3
4 0 1 2 1 4 4
5 0 1 2 3 4 5

& 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 1 0 1
2 0 0 2 0 2 2
3 0 1 0 3 1 3
4 0 0 2 1 2 4
5 0 1 2 3 4 5

→ 0 1 2 3 4 5
0 5 5 5 5 5 5
1 4 5 4 5 5 5
2 3 3 5 3 5 5
3 2 4 2 5 4 5
4 1 3 4 3 5 5
5 0 1 2 3 4 5

∨ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 1 4 3 4 5
2 2 4 2 5 4 5
3 3 3 5 3 5 5
4 4 4 4 5 4 5
5 5 5 5 5 5 5

�

0 2
1 4
2 4
3 4
4 4
5 5

3

0 0
1 1
2 1
3 1
4 1
5 3

Table 3: Truth tables over KMTL .

Table 4 andϕ = 1 is a counterexample for (d).

→ 0 1 2
0 2 2 2
1 0 2 2
2 0 1 2

�

0 0
1 0
2 2

3

0 0
1 2
2 2

Table 4: Truth tables over KMTL .

It is evident that the models in Table 2 and 3 have an
involutive negation and satisfy the divisibility axiom and
so are counterexamples to (a), (b) and (c) also in KIMTL ,
KBL and even KŁ . All these systems are obtained in the
very same way as KMTL from MTL. The completely
different situation is in KG whereϕ & ψ ≡ ϕ ∧ ψ is
true and we can prove formulae (a) and (b) similarly to
Lemma 3.2. Formula (c) then easily follows from (b).

A different situation is with (d) which is easily provable
if we have an involutive negation, but is false in KG as
follows from Table 4.

If we take into account (F10) we can prove similarly
to (DR1) that the derivational rule

(DR2) ϕ→ ψ/3ϕ→3ψ

is valid in KMTL .

In K, we can also prove the partial distribution of box
over disjunction and diamond over conjunction which
holds even in KMTL .

Lemma 3.4 The following formulae are provable in
KMTL

(a) 3(ϕ ∧ ψ)→ (3ϕ ∧3ψ),

(b) (�ϕ ∨�ψ)→�(ϕ ∨ ψ).

Proof: Both proofs are very similar to Lemma 3.2b.
In (a), we only use (DR2) instead of (DR1) and for (b)
the proof reads as follows:

14: �ϕ→�(ϕ ∨ ψ) (F7), (DR1)

15: �ψ→�(ϕ ∨ ψ) (F7), (DR1)

16: (�ϕ ∨�ψ)→�(ϕ ∨ ψ) (F4), (F5), (F8)

The following distributivity of diamond over implication
remains true in KMTL only partially.

Lemma 3.5 The following formula is provable in KMTL

3(ϕ→ ψ)→ (�ϕ→3ψ).

Proof:

17: ϕ→ ((ϕ→ ψ)→ ψ) (F3), (A5b)

18: �(ϕ→ (¬ψ→¬(ϕ→ ψ))) (F10), (Nec)

19: �ϕ→ (�¬ψ→�¬(ϕ→ ψ)) (K), (K)

20: ¬�¬(ϕ→ψ)→(�ϕ→¬�¬ψ) (F10), (F1)

The opposite implication in the previous lemma, which
is true in classical logic, is not true in KMTL and has a
three element counterexample.

We have shown that some important modal formulae of
K are not provable in KMTL . A stronger system can be
thus easily obtained by adding these formulae to KMTL .
On the other hand, some axiomatics of K are same even
over MTL. For example, if we take (DR1) and�(ϕ→ϕ)
instead of the necessitation rule (Nec) we obtain again
KMTL . Moreover, we obtain KMTL even if we replace in
this system axiom (K) with(�ϕ& �ψ)→�(ϕ& ψ).
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3.2. DMTL

Logic D, which has deontic interpretations, is the least
standard system we are going to study, but both its
standard axiomatics remain equivalent.

Definition 3.6 Logic DMTL is an axiomatic extension of
KMTL by axiom(D).

Lemma 3.7 The following formula is provable in DMTL

3(ϕ→ ϕ).

Proof: We obtain3(ϕ→ϕ) immediately from (F2) by
the necessitation and (D).

The previous formula form an alternative axiomatic
system of DMTL as we have already noted. If we add
3(ϕ→ ϕ) to KMTL then (D) is provable by Lemma 3.5.

3.3. TMTL

The rest of the paper deals with logics containing
axiom (T). This axiom is sometimes called the axiom
of necessity.

Definition 3.8 Logic TMTL is an axiomatic extension of
KMTL by axiom(T).

The following formula well illustrates problems we are
facing with our diamond definition over MTL.

Lemma 3.9 The following formula is not provable in
TMTL

3(ϕ→�ϕ).

Proof: Use Table 5 andϕ = 1.

&,∧ 0 1 2 3
0 0 0 0 0
1 0 1 1 1
2 0 1 2 2
3 0 1 2 3

�

0 0
1 0
2 1
3 3

→ 0 1 2 3
0 3 3 3 3
1 0 3 3 3
2 0 1 3 3
3 0 1 2 3

3

0 0
1 3
2 3
3 3

Table 5: Truth tables over TMTL .

However, some diamond based formulae are still
provable.

Lemma 3.10 The following formula is provable in TMTL

ϕ→3ϕ.

Proof: Follows immediately from�¬ϕ→¬ϕ by (F10)
and (F9).

The previous lemma with the transitivity of implication
gives that axiom (D) is provable in TMTL and thus TMTL

is an extension of DMTL .

In CPC, the axiomatic extension of K by the previous
formula proves axiom (T), but in KMTL it is not the case.
There is a three element counterexample. It is also well
known that if we take rule (DR1), axiom (T) and formula
�(�(ϕ→ ψ)→ (�ϕ→ �ψ)) in CPC, we obtain T. It
turns out that over MTL we obtain exactly TMTL . On
the other hand, if we take another classicaly equivalent
axiomatics which hasϕ→3ϕ instead of (T), we obtain
a weaker system.

Corollary 3.11 The following formulae are provable in
TMTL:

(a) �3ϕ→3ϕ,

(b) �ϕ→3�ϕ,

(c) 3ϕ→33ϕ,

(d) ��ϕ→�ϕ.

Together with the opposite implications these formulae
form so called reduction laws. These opposite
implications

(R1) 3ϕ→�3ϕ,

(R2) 3�ϕ→�ϕ,

(R3) 33ϕ→3ϕ,

(R4) �ϕ→��ϕ

lead in classical logic to the well known axiomatic
extensions of T. If we add (R3) or (R4) to T we obtain
S4 and if we add (R1) or (R2) to T we obtain S5 which
is a proper extension of S4.

It turns out that over TMTL the situation slightly changes.
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Lemma 3.12 The following provability conditions
hold

(a) TMTL, R2⊢R1,

(b) TMTL, R2⊢R4,

(c) TMTL, R1⊢R3,

(d) TMTL, R4⊢R3,

(e) TMTL, R16⊢R2,

(f) TMTL, R36⊢R4.

Proof: For (e) and (f) use Table 5 andϕ = 2.

Thus, we have two non-equivalent axiomatics of S4 and
two non-equivalent axiomatics of S5 over MTL. We will
briefly study the three of them.

3.4. S4MTL

The first system is obtained by adding (R4), called
axiom (4), to TMTL . This is the most common definition
of axiomatics for S4.

Definition 3.13 Logic S4MTL is an axiomatic extension
of TMTL by axiom(4).

The following formulae are the direct consequences
of (R4) and thus also (R3) over TMTL .

Lemma 3.14 The following formulae are provable in
S4MTL:

(a) 3ϕ ≡ 33ϕ,

(b) �ϕ ≡ ��ϕ,

(c) 3�3ϕ→3ϕ,

(d) �3ϕ ≡ �3�3ϕ,

(e) 3�ϕ ≡ 3�3�ϕ.

Proof: All proofs are the same or very similar as in
classical logic.

3.5. S5MTL

The standard definition of S5 uses (R1), called
axiom (E), and we define this system over MTL in the
same way.

Definition 3.15 Logic S5MTL is an axiomatic extension
of TMTL by axiom(E).

However, we already know that this definition leads to
the unprovability of axiom (4) in such system. Also the
following formulae are not provable.

Lemma 3.16 The following formulae are not provable
in S5MTL:

(a) 3�ϕ→�ϕ,

(b) �ϕ→��ϕ,

(c) �(ϕ ∨�ψ)→ (�ϕ ∨�ψ),

(d) (�ϕ ∨�ψ)→�(ϕ ∨�ψ),

(e) 3(ϕ& �ψ)→ (3ϕ& �ψ),

(f) (3ϕ& �ψ)→3(ϕ& �ψ),

(g) 3(ϕ ∧�ψ)→ (3ϕ ∧�ψ),

(h) (3ϕ ∧�ψ)→3(ϕ ∧�ψ).

Proof: For (a) and (b) use Table 5 andϕ = 2. In all
other cases use Table 6. For (c) useϕ = 4 andψ = 3,
for (d) useϕ = 1 andψ = 3, for (e) and (g) useϕ = 3
andψ = 3, for (f) and (h) useϕ = 4 andψ = 3.

∧,& 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 0 1 0 1
2 0 0 2 2 2 2
3 0 1 2 3 2 3
4 0 0 2 2 4 4
5 0 1 2 3 4 5

→ 0 1 2 3 4 5
0 5 5 5 5 5 5
1 4 5 4 5 4 5
2 1 1 5 5 5 5
3 0 1 4 5 4 5
4 1 1 3 3 5 5
5 0 1 2 3 4 5

∨ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 1 3 3 5 5
2 2 3 2 3 4 5
3 3 3 3 3 5 5
4 4 5 4 5 4 5
5 5 5 5 5 5 5

�

0 0
1 0
2 0
3 1
4 0
5 5

3

0 0
1 5
2 5
3 5
4 5
5 5

Table 6: Truth tables over S5MTL .
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Another very important equivalence is provable in S5
only partially.

Lemma 3.17 The following formula is provable in
S5MTL

ϕ→�3ϕ.

Lemma 3.18 The following formula is not provable in
S5MTL

3�ϕ→ ϕ.

Proof: Use Table 5 andϕ = 2.

We can also present some other alternative axiomatics
of S5MTL . One standard way is to add axiom (B)
(the formula from the previous lemma) to S4MTL . An
alternative way is to add axiom (R2) to TMTL . We
already know that (R4) is provable in TMTL with (R2).
It is not difficult to show that both axiomatics lead to the
same logic.

Definition 3.19 Logic S5+MTL is an axiomatic
extension of TMTL by axiom(R2).

However, many formulae are not provable even in this
stronger system.

Lemma 3.20 The following formulae are not provable
in S5+MTL:

(a) �(ϕ& ψ)→ (�ϕ& �ψ),

(b) ¬3¬ϕ→�ϕ,

(c) (�ϕ→3ψ)→3(ϕ→ ψ),

(d) 3(ϕ→�ϕ),

(e) �(ϕ ∨�ψ)→ (�ϕ ∨�ψ).

Proof: Use Table (7). For (a) useϕ = 3 andψ = 2,
for (b) useϕ = 3, for (c) useϕ = 3 andψ = 2, for (d)
useϕ = 2, for (e) useϕ = 3 andψ = 4.

∧ 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 1 1 1 1
2 0 1 2 2 2 2
3 0 1 2 3 2 3
4 0 1 2 2 4 4
5 0 1 2 3 4 5

& 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 0 1 0 1
2 0 0 2 2 2 2
3 0 1 2 3 2 3
4 0 0 2 2 4 4
5 0 1 2 3 4 5

→ 0 1 2 3 4 5
0 5 5 5 5 5 5
1 4 5 5 5 5 5
2 1 1 5 5 5 5
3 0 1 4 5 4 5
4 1 1 3 3 5 5
5 0 1 2 3 4 5

∨ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 1 2 3 4 5
2 2 2 2 3 4 5
3 3 3 3 3 5 5
4 4 4 4 5 4 5
5 5 5 5 5 5 5

�

0 0
1 1
2 1
3 1
4 4
5 5

3

0 0
1 1
2 4
3 5
4 4
5 5

Table 7: Truth tables over S5+MTL .

One more system which is equivalent to S5+MTL is KMTL

extended by axioms�3�ϕ→ϕ and3�ϕ→�3��ϕ.
It is worth pointing out that none of these two formulae
is provable in S5MTL .

4. Summary and future work

Our paper presents a small introduction to the problems
of modal Hilbert-style calculi in mathematical fuzzy
logics. We only touch some prominent modal systems
and their axiomatics.

We also only slightly touch, in case of modal logic
K, problems in axiomatic extensions of MTL, where
some formulae unprovable in modal logics over MTL
become provable. However, it is not difficult to show
that all given counterexamples satisfy the divisibility
axiom and some of them even contraction. We also
do not discuss the difference between additive and
multiplicative conjunctions.

We have shown that some important tautologies are
not provable in naively constructed modal systems over
MTL. On the other hand, the fact that some formulae
are not provable in modal logics over MTL can be seen
as an advantage and intended property which enable us
to have some formulae, which are over CPC equivalent,
true and some false if needed.
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