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Abstract:

We prove that the product of a symmetric positive semidefinite matrix and a symmetric matrix
has all eigenvalues real. 2
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2Above: Logo of interval computations and related areas (depiction of the solution set of the system

[2,4]z1 + [-2,1]z2 = [-2,2], [-1,2]z1 + [2,4]z2 = [—2, 2] (Barth and Nuding [1])).



A real matrix has complex eigenvalues in general. Yet there is a well-known important
exception:

Theorem 1. A symmetric matriz A € R™*™ has all eigenvalues real.

In this note we prove a generalization of this result and we show a way how to construct
generally nonsymmetric matrices having real eigenvalues only.

Theorem 2. If A, B € R™" are symmetric matrices of which at least one is positive
semidefinite, then AB has all eigenvalues real.

Proof. (a) First, let A be positive semidefinite. Put C' = A'/2, so that C is the unique
symmetric positive semidefinite real matrix satisfying C? = A (Horn and Johnson [2, Thm.
7.2.6]). Then

AB=C?B=CC"B=0(C"B)

and since C(CTB) and (CTB)C have the same spectrum (Horn and Johnson [2, Thm.
1.3.20]), the eigenvalues of AB and (C* B)C are equal, hence it suffices to prove that C* BC
has all eigenvalues real. Thus let A € C be an eigenvalue of CTBC, i.e.,

CTBCz = \z (0.1)

holds for some 0 # x € C™ which can be normalized so that "z = 1, where z* denotes the
conjugate transpose. Premultiplying (0.1) by z* yields

A=2*CTBCz = y*By = ZBZ-ij‘yj,
ij
where y = Cz € C", and consequently
A=Y Balyil + ) (Bijyiy; + Biyjui) = Y Bulyil> + > Bis(yiy; + viy).  (0.2)
i 1<j ) 1<j
Because
(Yiv; +v;9)" = vy + Y v
the number y;‘yj + y;-‘yi, being equal to its complex conjugate, is real and this in the light of
(0.2) means that A is also real.
(b) If B is positive semidefinite then by the part (a) above BA has all eigenvalues real
and thus the same holds for AB whose spectrum equals to that of BA. O
To show that Theorem 2 is indeed a generalization of Theorem 1, let us decompose a
given symmetric matrix A as A = Al where [ is the identity matrix, then the assumption
of Theorem 2 are met which implies that all eigenvalues of A are real.

Finally we describe a way how to generate generally nonsymmetric matrices having real
eigenvalues only.

Theorem 3. For any A, B € R™*"™  the matrices
ATAB"B

and
ATA(B + BT)

have all eigenvalues real.



Proof. This follows immediately from Theorem 2 since A” A is symmetric positive semidef-
inite, and BT B and B + B” are symmetric. O
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